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Abstract
The paper deals with analysis of recognition of surface quality with reflective structures. Such surfaces
are common in metallic materials cut using a saw or polished. There are no easy methods to identify
such elements after machining. This issue is crucial in the industry for quality control as recognition of
the elements, for instance after failure, allows for a detailed study of their manufacturing process. Firstly,
six cuboid steel elements were obtained from a larger beam with a circular saw. Then, the bidirectional
reflection distribution function (BRDF) was obtained for each element 3 times. The BRDF profiles were
used in custom recognition software based on the K-nearest neighbors algorithm. In total, 140 variants of the
classifier were tested and analyzed. Additionally, each variant was solved 200 times with different splits of
the dataset. The results showed a high multiclass accuracy in all considered variants of the algorithm, with
multiple variants achieving 100% accuracy. This level of performance was attained with only 1 to 2 training
samples per class. Its low numerical complexity, easy experimental procedure, and “one-shot” nature allow
for fast recognition, which is crucial in industrial applications.
Keywords: metallic surface, reflective surface, bidirectional reflection distribution function, classification.
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1. Introduction

This paper discusses the possibilities of recognizing surfaces produced by periodic and semi
periodic processes using bidirectional reflection distribution function (BRDF) scatterometry [1,
2] with a monochromatic (laser) light source. Surfaces with a topography resulting from the
superposition of random and randomly periodic processes can be recognized with a power
spectral density (PSD) frequency spectrum using the classification algorithms presented in this
work. Research and analyzes performed to date have failed to provide reliable and unambiguous
answers [3,4]. In other words, alternative optical measurement techniques are unreliable for highly
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reflective surfaces, especially when considering the time, simplicity and cost of the measurement.
Papers or patents that would address the problem of fingerprinting for the recognition of large
metallic surfaces are also missing from the literature.

Research on backscatter by surfaces is difficult to adapt to large-scale industrial research [5].
The large number of surfaces to be recognized in a short time negatively affects their reliability.
Strong backscatter optical images obtained from charge-coupled device (CCD) cameras are
characterized by low contrast, which greatly reduces the recognition accuracy of the engineering
surface. Another problem is that each new surface is examined for production-related reasons
at a slightly, but still, different angle of incidence. This results in decreased differentiation and
increased unreliability of the recognition method.

In the methodology, the technique we propose for the recognition of highly reflective surfaces
managed to avoid problems resulting from the change of measurement geometry, poor image
contrast, and problems with the unreliability of recognition algorithms. For such engineering
surfaces, a methodology based on the study of the Power Spectral Density determined by the
BRDF method [6] proves the most efficient.

1.1. State of the art

Recognition of material surfaces has recently become an area of intense research to provide
detailed information for applications such as autonomous agents and human-machine systems [7–
9]. What is essential to recognizing different materials in images is modelling the apparent or
latent characteristic appearance. Earlier research into modelling the appearance of materials
largely focused on comprehensive laboratory measurements using dome systems, robots, or
gonioreflectometers densely collecting measurements in angular space (such as BRDF or BTDF).
This research, based on the reflectance factor, has the advantage of capturing the inherent surface
properties in different variants, which enables the identification of fine-grained material [10].

The BRDF measurements provide an estimate of the reflectance factor, but only for diffuse
scattering (hyperspectral cameras, etc.). Differential camera motion or object motion used for
shape reconstruction were already used in early works [11]. However, the fundamental problem
in surface recognition remains unsolved. Namely, we still do not know whether small changes in
observation angles influence recognition performance.

Earlier publications demonstrated the effectiveness of angle filtering as a supplement to
spatial filtering in material surface recognition. However, these methods rely on a mirror camera
to capture a BRDF fragment [6] or a light camera [12,13] to obtain multiple differential variations
and this requires specialized imaging equipment.

Texture recognition, 3D texture image classification, and bidirectional texture functions rely
on projected 3D image functions and multiple views observed at different angles [13].

One of the methodologies used for materials surface recognition relies on modelling the
detailed fundamental properties of the diffuse scattering of materials using the bidirectional
reflectance distribution function (BRDF) and the bidirectional transmittance distribution function
(BTDF) [1]. Material recognition is usually seen as a texture classification problem. Work on
textiles directly address material recognition using multiple aligned images under different angles
of view and lighting conditions.

The BRDF describes the appearance of a material through its interaction with light at a
given surface point. Many analytical models represent the BRDF. However, these models are
not commonly analyzed due to the lack of high-resolution measurement data. Due to the ease of
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obtaining optical images, the BRDF is mostly used in measurements and models to render highly
realistic computer graphics.

This paper presents a detailed study on how surface material recognition depends on light and
observation conditions. There are studies in the literature [4, 5, 10–13] that cover BRDF models
and new methods for the acquisition of angular spectra. In addition, interesting new BRDF-based
methodologies keep emerging and they are used for rapid optical material recognition in industrial
metrology, in particular, based on NIR spectroscopy image analysis [14, 15].

In terms of construction materials, most of the available studies focus on classifying and
recognising defects on the surfaces of the elements. In this area, many different machine learning
approaches have been employed, for instance: support vector machine [7, 8, 16], neural networks
with attenuation mechanisms [17], convolutional neural networks [9,18–23], classification prior-
ity networks [24], Siamese networks [25, 26], Siamese basis function networks [27], generative
adversarial networks [28, 29], and k-nearest neighbors [30]. Furthermore, machine learning al-
gorithms have also been used to recognize the phases of steel [31] and steel types [32–34] to
model the mechanical properties of steel [35]. In general, approaches based on neural networks
require significant datasets for training and validation, in most cases with additional annotation for
supervised learning. This can be difficult and expensive to obtain. However, their advantage lies
with their very broad capabilities in terms of classification. On the other hand, depending on the
problem, simple methods such as k-nearest neighbors can work with smaller datasets, although
their learning capabilities might be somewhat limited, when compared to the other methods.

On the other hand, the BRDF method has been proven effective in a variety of object recog-
nition and classification problems [36]. It can be successfully employed to differentiate between
alloys of the same material or different materials with only slight variations in texture [37, 38].
Some research groups have also studied optimal illumination for objects distinguishing [39].
Nevertheless, based on the performed literature search, BRDF has never been applied to recog-
nize structural elements based on their normal surfaces after machining. Furthermore, most of
the available classification methods have been applied to classify surface defects on steel and
aluminum or to simply recognize the type of steel. To the best of our knowledge, there has not
been a study yet, in which BRDF and a classification algorithm has been used to recognize a
particular steel element’s surface obtained by machining.

1.2. The aim of the study

This study aimed to propose and verify a novel method for recognition of steel elements
surface based on BRDF and K-nearest neighbors [40]. Firstly, six cuboid steel elements were
obtained from a larger beam using a circular saw. Then, the BRDF was obtained 3 times per
element with remounting and at different heights. The BRDFs formed an initial dataset, which
was split into training and testing portions. The train and test subsets were used to analyze 140
variants of the classifier. To minimize the effects of random number generation during dataset
splitting, each variant was solved 200 times with different splits of the dataset. The performance
of the classifier was measured using a multi-class accuracy measure.

The paper is organized in the following way. Section 1 presents the problem of metal surface
recognition and identify the state of the art of analysis in the area of the presented research. The
aim of the research is discussed. In Section 2, the methods proposed by the authors are shown,
experiment results are discussed and used for validation of the formulated method of metal surface
classification. Section 3 presents the results of steel surface classifications and discusses their
quality. Section 4 includes conclusions and final remarks.
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2. Materials and methods

2.1. The experiment

Firstly, a rectangular steel beam was cut into six cuboid elements with a circular saw for
cutting steel (see Fig. 1a). The surfaces of the obtained elements were visually indistinguishable
(see Fig. 1b). Then, BRDF was registered 3 times for each element (18 BRDFs in total). Each
measurement was performed at a different height, with element remounting (see Fig. 1c).

Fig. 1. Overview of the experiment: a) a steel beam cut into smaller elements, b) the six elements with indistinguishable
normal surfaces, c) the BRDF registration (3× per element), where: 𝜃1 – the incidence light angle, 𝜃2 – outgoing

light angle.

In the BRDF measurement, the tested steel cuboids were illuminated with a light source –
laser diode 635. The light reflected from the element was registered using a high-sensitivity Si
detector [41]. Both the light source and the detector were mounted on a goniometric table, which
allowed the user to change the incidence/scattering light angle and the orientation of the sample.

In the most general form, the BRDF function depends on four variables: incidence light angle
𝜃1, outgoing light angle 𝜃2, and two angles defining the orientation of the element with regard
to the light source. The full BRDF functions are usually obtained for light-response models used
in computer graphics. As it is a time-consuming experiment, recording of the complete light
response is not viable in an industrial setting. Hence, in this study a constant incidence light angle
𝜃1 = 60.00 deg (see Fig. 1c) and constant orientation were assumed. The latter is justifiable in
industrial applications – typical products often have distinct geometrical shapes with at least one
flat surface. This flat surface can be used to orient the elements with regard to the light source. The
only variable angle in the procedure was the outgoing light angle varied from 𝜃2 min = 70.00 deg
to 𝜃2 max = 83.75 deg, with Δ𝜃2 = 0.05 deg. This range was limited by the capabilities of the
measurement equipment.

In this case, the BRDF measured the differential of the scattered beam power per the solid
angle of the receiver aperture d𝑃/d𝛺 (in the 𝜃2 direction) divided by incident power 𝑃1 in the
direction 𝜃1. The differential d𝑃/d𝛺 can be expressed as the ratio of measured scatter power 𝑃2
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and detector acceptance angle 𝛺 [6]:

BRDF =
d𝑃/d𝛺
𝑃1 cos 𝜃2

=
𝑃2

𝑃1𝛺 cos 𝜃
. (1)

Furthermore, the domain of the obtained BRDFs was converted to spatial frequency 𝑓 using
the following formula [6]:

𝑓 =
(
sin 𝜃2 − sin 𝜃1

) /
𝜆 , (2)

where: 𝜃2 – the scattering light angle (here: 𝜃2 ∈ ⟨70.00 deg; 83.75 deg⟩), 𝜃1 – the incidence
light angle (here: 𝜃1 = 60 deg), 𝜆 – the wavelength of the laser (here: 𝜆 = 635 nm).

2.2. Algorithms – metal surfaces classification

The main aim of this study was to propose and verify a method for recognizing steel elements
based on their unique cross-sections created by a circular saw. The task of recognizing particular
elements can be defined as a classification problem – a supervised machine learning problem. In
this case, a set of training samples with their corresponding classes is given to the classification
algorithm. The algorithm learns characteristic features from the training samples and can be
used to predict the class of previously unseen samples. The performance of such an algorithm
can be measured by predicting a class of multiple unseen samples, for which the actual class is
known. In practice, this is often done by splitting the original dataset into two subsets: training
and testing sets – only the training part is used for teaching the algorithm, while the test part is
applied to assess its predictive capabilities. In the context of steel element recognition, the classes
correspond to the IDs of the steel elements, while the samples are the registered BRDF signals.
The main task is to assign an element ID (class) to an unknown BRDF signal (sample) using an
algorithm trained on a set of BRDFs, for which the IDs are known. Given the lengthy process of
BRDF acquisition and the possible industrial application of the procedure, the number of training
samples should be as low as possible – preferably: one per class, which is often referred to as
“one-shot” [26, 27, 42].

2.2.1. The classification algorithm

In this study, the classification procedure was based on the K-nearest neighbors algorithm
(KNN) [40], with 𝐾 = 1, which is a common approach in machine learning [43,44]. The working
principle of the method is very simple – given an unknown signal, the algorithm iterates over all
training signals and compares them to the unknown signal. The comparison is carried out with
the Minkowski distance, a common metric [45], which for one-dimensional BRDF signals can be
written as follows:BRDF𝑖 − BRDF 𝑗

 = 𝑝

√√
𝑛∑︁

𝑘=1

��BRDF𝑖 ( 𝑓𝑘) − BRDF 𝑗 ( 𝑓𝑘)
��𝑝 , (3)

where: BRDF𝑖 ( 𝑓𝑘) – the value of the registered BRDF signal is 𝑖 at the spatial frequency 𝑓𝑘 , 𝑛
– the number of BRDF samples, 𝑝 – the order of the Minkowski distance – in this study 𝑝 = 1
and 𝑝 = 2 were used, which are commonly referred to as the Manhattan and Euclidean distance.
Notably, the Manhattan distance is less expensive to compute than the Euclidean one [46], while
the Euclidean metric is a more natural way to specify a distance.

After the comparison, the training signal with the lowest distance (3) is selected and the
class of this signal is assigned to the unknown sample. The basic procedure for classifying one
unknown sample from the test set was presented in Fig. 2.
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Fig. 2. The flowchart presenting the procedure used to classify one unknown sample from the test set
based on the given train set and train classes.

2.2.2. Signal pre-processing

The KNN classifier can be used with raw BRDF signals, nevertheless, such signals are prone
to various sources of noise, which can impact the predictive capabilities of the model. Therefore,
in this study, we decided to apply additional filtration on all registered BRDF signals – as seen
in Fig. 2. The filtration was carried out with a Savitzky-Golay filter [47]. It is worth mentioning
that this could be done with many other methods, including other convolution-based filters, such
as a median filter or a Gaussian filter. The primary reason for choosing the Savitzky-Golay was
its ability to suppress the noise, while preserving signal peaks [48], which could correspond to
the characteristic marks left on the surface by the machining.

This digital filter was used to fit low-order polynomials to subsets of the original signal. The
two main parameters of the filter were the order of the polynomial (here: from 2 to 10) and
the window length (here: from 11 to 271 with a step of 20). Higher polynomial orders were
not explored as the quality of results degraded due to numerical issues. Additionally, it was
possible to specify the behavior of the filter near the edges of the signal – in this study, the signal
was mirrored. The filter was incorporated into the classifier using a Python library – Scipy [49]
(scipy.signal.savgol_filter). The effects of different parameters of the Savitzky-Golay filter on a
sample BRDF signal were presented in Fig. 3. In general, if we increase the length of the window
and decrease the order of the polynomial, we obtain a more smoothed filtered signal.
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Fig. 3. Effects of different parameters of the Savitzky-Golay filter on a sample BRDF signal over signal with very low
filtration (dotted line), where: 𝑊 – window length, PO – polynomial order.

2.2.3. Analysis of the prediction quality

Since the best values for the parameters of the Savitzky-Golay filter were difficult to find and
the choice of the distance metric was not obvious, we decided to check different variations of the
classifier. Namely, 14 values of window length (from 11 to 271 with a step of 20), 9 orders of
polynomials (from 2 to 10), and 2 types of distance (Manhattan and Euclidean – see (3)) were
considered in this study. These parameters were analyzed in a grid-like fashion, which resulted
in 252 (14 · 9 · 2) variants of the algorithm.

As mentioned before, the experiment results consisted of 3 repetitions of BRDF per element.
In total, the dataset contained 18 BRDF samples over 6 classes. To test the predictive capabilities
of the classifier, the original dataset was divided into the train and test subsets. The assignment
of samples was random, nevertheless, each of the subsets had to have at least one sample from
each class – in other words, all classes had to be represented in both subsets, which meant a
subset had between 6 and 12 samples. The dataset splitting procedure was performed 200 times
per classifier variant to minimize the effects of random number generation. In total, the classifier
testing procedure was executed 50400 times, which was the 252 variants of the algorithm (see the
previous paragraph) tested on 200 shuffles of the dataset to minimize the effects of the random
number generator.

The quality of prediction for each variant was measured using a multiclass accuracy met-
ric [43], computed with the following formula for each run:

acc 𝑗 =
1
𝑘

𝑘∑︁
𝑖=1

𝑚𝑐,𝑖

𝑚𝑖

, (4)
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where: acc 𝑗 – the multiclass accuracy metric [43] in run 𝑗 (where 𝑗 < 200), 𝑚𝑐,𝑖 – number of
correct predictions of class 𝑖 in the test set; 𝑚𝑖 – number of occurrences of class 𝑖 in the test set,
𝑘 – number of classes.

As mentioned before, each classifier (𝑖.𝑒. variant of the algorithm) was assessed 200 times on
different shuffles of the dataset using (4) for computing accuracy. The final score for each of the
variants was the average accuracy over 200 runs computed as follows:

acc =
1

200

200∑︁
𝑗=0

acc 𝑗 , (5)

where: acc – the final accuracy score obtained by the variant of the classifier, acc 𝑗 – the multiclass
accuracy metric [43] in run 𝑗 (where 𝑗 < 200).

3. Results and discussion

The results section is divided into three subsections. The first one presents the obtained
BRDF profiles, while the second one is focused on the performance of the proposed classification
procedure. The third one discusses the sensitivity of the procedure with regard to the signal
filtration method.

3.1. The obtained BRDF profiles

The obtained BRDF profiles are presented in Fig. 4. The shapes of these curves for all elements
are unique – see Fig. 4a. The signals overlap for spatial frequencies higher than 0.14 1/μm making

Fig. 4. BRDF profiles over spatial frequency 𝑓 after filtration with the Savitzky-Golay a) window length: 7, polynomial
order: 2, mode: mirrored and one BRDF per element; b) three BRDFs for element 1.
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them difficult to distinguish visually. Furthermore, it is worth noting that this part of the figure
contains only one sample per element. The differences between the BRDFs registered for one
element with remounting can also be significant as seen in Fig. 4b.

3.2. The performance of the classifier

In total, 44 variants of the algorithm achieved perfect accuracy of 100.00% over 200 runs
with different train/test splits. Selected ones were detailed in Table 1. This was done using a
moderate level of filtration with a window length from 47 to 87 and a polynomial order from
4 to 6. Interestingly, within the best variants, the Euclidean distance measure was employed in
35 out of 44 cases. This showcased its suitability to the studied problem. It is worth mentioning
that the classifiers with filtration significantly outperformed the baseline – the classifiers without
filtration – which, in the best case, achieved a mean accuracy of 98.71%.

Table 1. The multiclass accuracy for the five best and worst variants of the classifier along with their parameters, mean
accuracy of the 252 variants, and baseline accuracy obtained for the classifier with no filtration applied to BRDFs, where

“Avg acc” means accuracy averaged over the final scores of 252 variants.

Best acc [%] Distance Window length Polynomial order
100.00 Euclidean 71 4

100.00 Euclidean 51 10

100.00 Euclidean 51 8

100.00 Euclidean 51 7

100.00 Euclidean 51 6

Worst acc [%] Distance Window length Polynomial order
89.62 Manhattan 271 3

90.00 Manhattan 251 3

90.33 Manhattan 271 2

90.46 Manhattan 211 2

90.50 Manhattan 211 10

Avg acc [%]
97.43 – – –

acc with no filtration [%]
98.71 Euclidean – –

98.46 Manhattan – –

Significantly worse results were obtained with highly filtered signals, which meant a large
window length and a low polynomial order. The worst variant achieved an accuracy of only
89.62%. Furthermore, all of the five worst cases were obtained using the Manhattan distance
metric. The overall average accuracy of the 252 variants was 97.43%.

Based on these findings, it can be seen that moderate filtration was beneficial to the prediction
accuracy, while overfiltration resulted in unsatisfactory performance of the algorithm. This might
suggest that high-frequency information in BRDFs is essential for recognition of steel-based
elements. Nonetheless, it has to be pointed out that even in the worst-case scenario, the classifier
still achieved nearly 90% accuracy, which is a good result when predicting 6 classes.
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The conclusions drawn from Table 1 were further exemplified using a contour plot of accuracy
with regard to polynomial order and window length, presented in Fig. 5. Both very low and very
high filtration levels resulted in suboptimal performance of the classifier. The issue was especially
evident for high values of the window length combined with low polynomial order. Very good
accuracy was achieved under moderate filtration levels – window length between 31 and 91. It
is worth mentioning that predictions were also valid with higher values of the window length
(> 91), but with a high order of the polynomial. This could be explained by the fact that higher-
order polynomials have greater flexibility in terms of following the signal, and the filtered signal
retains more high-frequency details – refer to Fig. 3 for a visual example. Nevertheless, it is worth
mentioning that higher polynomial orders offer clear benefits only to the 9th order. After that,
the general performance of the classifier drops, likely due to numerical issues with higher order
polynomials. Again, these findings suggested that the information differentiating the signals was
in the high-frequency part of the BRDFs.

Fig. 5. Contour plot presenting the accuracy (acc) of the classifier with regard to the window length and polynomial order
of the Savitzky-Golay filter applied to BRDF signals.

In terms of the distance metric, the Euclidean approach offered better results both in the
average as well as the worst case, as seen in Table 2. Nonetheless, both metrics were capable of
achieving perfect performance on the test set with 100.00% accuracy, assuming proper levels of
filtration (here: window length of 51 and polynomial order of 6 or 7).

Note that our approach achieved this level of performance with only 1 or 2 training samples
per class. This “one-shot” nature of the approach is an important characteristic and might make
the method an interesting choice for large-scale industrial applications. Nevertheless, it should
be noted that our original dataset had only 18 samples. More samples could showcase some
outliers, for instance due to different external conditions, equipment limitations or measurement
problems. Furthermore, the range of the spatial frequencies might also be minimized to shorten
the experiment. Therefore, in a future study, this analysis should be carried out on a larger dataset
with more classes and samples per class.
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Table 2. The best, worst, and mean multiclass accuracy for the classifier when using the Euclidean and Manhattan distance,
where “Avg acc” means accuracy averaged over the final accuracy scores of 126 variants with the Euclidean/Manhattan

distance.

Euclidean Window length Polynomial order

Avg acc [%] 97.94 – –

Best acc [%] 100.00 51 6

Worst acc [%] 91.46 251 3

Manhattan

Avg acc [%] 96.92 – –

Best acc [%] 100.00 51 7

Worst acc [%] 89.62 271 3

3.3. The sensitivity of the classifier with regard to the filtration method

As mentioned in Section 2.2.3, there were many available approaches for signal filtration.
The Savitzky-Golay method was just one of the available options. It was selected because of its
ability to filter the noise, while preserving peaks in the signal [48], which could correspond to
the marks caused by machining on the surface of the elements. Nevertheless, to critically assess
this choice, we decided to test the Savitzky-Golay against some other popular choices in signal
filtration – the median filter and the Gaussian filter.

The median filter was directly compared to the Savitzky-Golay as it featured the same param-
eter – window length. The results were presented in Fig. 6. In this case, the peak-preserving ability
of the Savitzky-Golay filter was clear and, for larger windows, the proposed approach was better.
It should also be mentioned that the median filter was capable of achieving 100% accuracy for
very small window lengths. In these cases, only some of the noise was filtered, but high frequency
information was still retained.

Fig. 6. Plot presenting the accuracy (acc) of the classifier with the Savitzky-Golay filter against the median filter with
regard to the used window length. In both cases the algorithm’s Euclidean distance was used. The results from the

Savitzky-Golay were averaged over the polynomial order from 2 to 10.
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With Gaussian filtration it was more difficult to directly compare the results, as the Gaussian
filter used standard deviation as its main parameter. Nevertheless, we have found that for relatively
small standard deviations (from 1.0 to 5.0) the Gaussian filter could also achieve 100% accuracy
with the Euclidean distance – see Fig. 7. We have concluded that this meant that our assumption to
employ BRDF to differentiate steel elements was correct. Nevertheless, larger values of standard
deviation degraded the results significantly, as the signal peaks were no longer preserved. In
comparison, the Savitzky-Golay filter was much more stable when tested over a wide range of its
parameters. We believe that this feature might be even more pronounced with larger datasets.

Fig. 7. Plot presenting the accuracy (acc) of the classifiers with a Gaussian filter with regard to its standard deviation
(sigma). Two points per standard deviation correspond to Euclidean and Manhattan distance metrics. The solid line
represents is the linear regression over the obtained results, which showcases degrading performance with higher standard

deviation.

4. Conclusions and final remarks

1. In this study, a novel method for the recognition of surface features of steel elements was
presented. The procedure was based on BRDF and KNN with Savitzky-Golay filtration.
To verify the procedure, a set of 18 BRDFs were acquired from 6 cuboid steel elements. In
total, 252 variants of the classifier were tested and analyzed with the original dataset split
into training and testing portions. To minimize the effects of random number generation,
each variant was solved 200 times with different splits of the dataset.

2. The obtained results showed that the proposed approach offers a very high multiclass
accuracy in all the considered variants of the algorithm. Furthermore, multiple variations
achieved a perfect accuracy score of 100% using moderate filtration.

3. It should be noted that this level of performance was attained using only 1 or 2 training
samples per class. While it is true that the current performance is satisfactory even with 1 or
2 training samples per class, more samples might showcase some outliers. Furthermore, the
range of the spatial frequencies might be minimized to shorten the experiment. Therefore,
in the future an extended study should be performed on a larger dataset.

4. Very high levels of signal filtration were found to lower the accuracy score of the classifica-
tor. Similarly, signals with very low level of filtration contained too much high-frequency
noise for classification. Best results were obtained under moderate filtration, which meant
the polynomial order between 4–9 and window size close to 51.
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5. To summarize, the method offered great predictive capabilities, while being both non-
destructive and easy to implement. Additionally, its low numerical complexity, easy ex-
perimental procedure, and “one-shot” nature allow for fast recognition, which is crucial
in industrial use. It is our belief that the method could be extended to machined ele-
ments made from different materials. Future work will be focused on testing the method
in large-scale industrial applications and extending the approach to elements with curved
geometry. Furthermore, we also plan to increase the illuminated area, which could improve
the recognition results as more surface features would be registered.
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