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This paper investigates the effect of friction on the buckling behavior of a thin,
shallow, elastic spherical shell under uniform external pressure based on an axisym-
metric model of the finite element method. The study examines a combination of
different geometric parameters with three different types of boundary conditions:
clamped, hinged, and frictional ends with a wide range of friction coefficients. Fric-
tion has a significant influence on the buckling response of the spherical shell for
all geometric parameters. In general, the critical pressure decreases as the friction
coefficient or geometric parameter decreases. The buckling behavior of the frictional
end with small friction coefficients presents an obvious difference compared to the
results of high coefficients. For certain geometric parameters, the buckling mode of
the spherical shell is transited because of changing the friction coefficient. A buckling
map that describes the dependence of critical pressure on both friction coefficient and
geometric parameter combined with buckling mode is generated. This map can be
applied to the design of the spherical shell against buckling.

1. Introduction

Spherical shells have been widely used in a variety of applications from marine
industries to aerospace because of their geometry, which is considered an ideal
structure owning high pressure-supporting capacity [1–3]. The loss of stability
in these shells may cause severe failures and has received great attention. The
bucking of elastic thin spherical shells subjected to uniform external pressure is
a well-known problem. Zoelly [4] first solved the critical buckling pressure based
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on linear buckling shell theory and applied it to fully perfect spherical shells. Its
equation is:

𝑝0 =
2𝐸√︁

3(1 − 𝜈2)

( 𝑡
𝑅

)
, (1)

where 𝑡 is the thickness, and 𝑅 is the radius; 𝐸 and 𝜈 are Young’s modulus and
Poisson’s ratio, respectively. Later, the nonlinear theory for large deformation was
examined to determine the critical pressure and deformation of complete spherical
shells and hemispheres by solving a system of four first-order differential equations
of the shell theory where shooting and parallel shooting methods were used to
obtain the numerical solutions [5] or to compare with the experimental results [6].

Many researchers have gained deep insight into the pre-buckling and post-
buckling behavior of hemispherical shells and shallow spherical shells with the
clamped end as a boundary condition under uniform external pressure, using ex-
perimental, analytical, and numerical methods. Von Kármán, and Tsien [7] pre-
sented a new theory of the mechanism of the collapse of spherical shells based
on the minimum energy criteria. Then, the critical pressure and buckling deforma-
tion of shallow spherical shells were examined by using perturbation methods [8],
power series calculations [9–11], and linearization [12]. Toinvestigate the pressure-
deflection curve and buckling characteristics of spherical caps, Keller and Reiss [13]
introduced finite differences by employing an iteration procedure. Budiansky [14]
exploited an integral-equation formulation to improve the accuracy of axisym-
metric buckling pressure for all thicknesses of the spherical shell by numerical
method. The numerical solutions were also achieved by solving the linear nonho-
mogeneous variational equations for the nonlinear system of equations [15] or by
an assumption of the initiation of unsymmetrical deflection [16, 17]. Holston [18]
presented an approximate analytical solution of the finite-deflection equations by
Newton’s method. Their results were in agreement with the known buckling results.
Recently, with the power of the finite element method, the buckling behavior of
shallow spherical shells with different boundary conditions and initial conditions
was studied [1, 19–23].

Most studies have focused on the rigidly clamped edge as the boundary con-
dition for shallow spherical shells. However, other boundary conditions at the end
edge (i.e., hinged end) also influence the buckling strength of these shells. Pan
and Cui [2] conducted an overview of the buckling and ultimate strength of a
spherical pressure hull under external pressure, taking into consideration the effect
of the end edge. They found that the critical pressure is affected by the type of
end edge, whether it is rigidly clamped, simply supported, or elastically supported.
Kai-Yuan, et al. [24] studied the axisymmetric buckling problem of thin, shallow,
circular spherical shells under uniform external pressure with the end edge either
rigidly clamped or simply supported and concluded that the buckling mode and
critical pressure were significantly affected by the end edge boundary conditions.
The edge conditions: clamped, simple, roller, or elastic support of shallow spheri-
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cal shells were examined by Silverman and Mays [25] and showed a considerable
difference in load-deflection curves. The buckling pressure of spherical caps also
showed a considerable difference between clamped edge and simple support [26].

The effect of geometry on the critical buckling pressure of a thin shallow
spherical shell under uniform external pressure with clamped or hinged ends has
also been studied. Kaplan and Fung [8] tested the shallow spherical shell under oil
and air pressures to obtain the critical pressure and compared it with theoretical
values. The experiments were conducted for small values of the geometric param-
eter. The results showed that the critical pressure nonlinearly increases with the
geometric parameter. These experimental critical pressures were used to compare
with theoretical values [11, 12], numerical results [10, 13, 15, 16], and finite ele-
ment results [1], and they showed good agreement in this range of the geometric
parameter. For larger values of the geometric parameter, as the geometric parameter
increases, the critical pressure also increases until it reaches a peak, and then it
decreases [10–12, 15]. For very large values of the geometric parameter, the critical
pressure remains unchanged as the geometric parameter increases [24].

Many authors have found a discrepancy between theoretically calculated and
experimentally obtained critical buckling pressures. The theoretical values are
typically three to four times higher than the experimental results [3, 7]. In order
to explain this discrepancy, the presence of initial imperfections must be taken
into account [6, 14–16, 27]. It is clear that both the shape and amplitude of initial
geometric imperfections can influence the buckling behavior of spherical shells [2].
Numerical simulations by Zhou, et al. [20] have indicated that the critical buckling
load decreases as the amplitude of imperfections increases. The effect of the initial
geometric imperfection has also been analyzed through experiments, finite element
modeling, and numerical solutions [28]. However, determining the real initial
imperfection of the spherical shell is difficult. Therefore, the shape and size of the
initial geometric imperfection of spherical shells are often introduced by using a
linear buckling mode [20, 23, 29] or a dimple-like imperfection by force [21, 22].

Relating to the presence of friction in buckling problems of shallow spherical
shells, the common objective, which is the collapse behavior of the spherical
shells compressed by a rigid plate or between a rigid plate and an indenter, has
been investigated. The frictional contact between the spherical shell and rigid
support was often considered to have an unchanged coefficient [30–32], stick
contact, or frictionless (perfect slip condition) [28, 33–35]. Most research showed
that the friction between the shell and the plate surface plays an essential role
in the buckling response and load-bearing capacity of the shell. Etsion and his
team [36–41] studied the effect of contact conditions on the elasticity terminus of a
deformable sphere compressed by a rigid flat, relying on experimental, theoretical,
and numerical studies. The results indicated a considerable difference in critical
values of load, interference, contact area, and contact pressure, as well as the
location where the limit of elasticity was first reached due to the contact conditions
with various material properties and spherical shell geometries. By changing the
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coefficients of friction of the shell–indenter contact, Gupta [42] and Nasto, et
al. [43, 44] concluded that friction has a dramatic effect on the mechanical response,
load-bearing capacity, and deformed shape of the spherical shells. The critical
buckling pressure with consideration of friction is considerably overestimated by
a linear buckling analysis. Linear perturbation is often used to find the buckling
shape for the introduction of the initial imperfection [28, 31, 45]. Moreover, linear
buckling analysis is linear, while contact problems are nonlinear [46, 47]. Therefore,
in contact problems without considering the initial imperfection, linear buckling
analysis is often neglected.

It is worth noting that the majority of theories explaining the buckling behavior
of spherical shells employ axisymmetric deformations [7, 9, 12, 14, 18]. Theoreti-
cal equations considering axisymmetric buckling have been established and solved
using numerical methods [5, 10, 11, 15, 24, 26]. The buckling results of spherical
shells subjected to uniform external pressures with a clamped end have also been
obtained using axisymmetric modeling [10, 48]. Besides, when considering asym-
metric buckling, both theoretical [49] and numerical results [16, 17] of spherical
shells have been examined. Experiments have also observed that spherical shells
can buckle asymmetrically [50, 51]. It should be noted that the presumed sources
of the discrepancy between theoretical and experimental results are the asymmet-
ric buckling [16, 17, 51]. In the case of buckling deformation with consideration
of friction, axisymmetric buckling analyses [33] and axisymmetric finite element
models [28, 39–42] were employed to examine the buckling behavior of spherical
shells.

Most studies have focused on the buckling problems of shallow spherical shells
under uniform external pressure with clamped end or hemispheres compressed by a
rigid plate or an indenter with consideration of a given friction coefficient between
them. Until now, there have been no studies on the buckling behavior of shallow
spherical shells that take into account the effect of friction at the end edge. Starting
from the motivation to add one more case of the end edge boundary condition
of shallow spherical shells, this study investigates the buckling behavior of thin,
shallow, elastic spherical shells under uniform external pressure with frictional
contact between the end edge and rigid walls. Furthermore, the clamped end
boundary condition of these shells is often created by different types of joining,
such as adhesives [52], screws [48], bolts [8], and welds [29], which can ensure
only a nearly fixed constraint [23]. Hence, these joining methods may be replaced
by a proper friction coefficient. Therefore, it is necessary to consider the effect of
friction at the end edge of shallow spherical shells on their buckling performance.

2. Methodology

To show how the friction at the edge contacting with the rigid walls influ-
ences the buckling behavior under uniform external pressure, a nonlinear buckling
analysis has been carried out by using the finite element method.



Effect of friction on the buckling behavior of shallow spherical shells contacting with . . . 5

2.1. Geometry and material properties

A schematic of the shallow spherical shell is shown in Fig. 1. The shell has a
thickness 𝑡 of 0.05 mm and a radius of curvature 𝑅 of 77.70 mm. A rounded edge
with a radius 𝑅𝑒 of 1 · 10−3 mm is created at the contact regions between the shell
and rigid walls to avoid concentrated stresses.

Fig. 1. The geometry of the shallow spherical shell, a) frictional end, b) clamped end, c) hinged end

Fig. 1 also illustrates the boundary conditions for the simulation, where the
spherical shell is subjected to uniform external pressure 𝑝 at the outer surface.
The end edge of the shell is constrained with three different types of boundary
conditions: frictional end, clamped end, and hinged end, shown in Fig. 1a, Fig. 1b,
and Fig. 1c, respectively. In the frictional end, the end edge of the shell is supported
by rigid walls, and a range of friction coefficient 𝑓 is incorporated into the contacting
areas to investigate its effect on the buckling behavior of the shell. The range of
the friction coefficient examined is from 𝑓 = 0.0 (frictionless) to 𝑓 = 4.0 for each
geometric parameter and is applied to the model by penalty formulation.

𝜌 =

[
6
(
1 − 𝜈2

)] 1
2
(
𝛽2𝑅

𝑡

)
. (2)

A geometric parameter, 𝜌, defined according to Eq. (2), is considered a variable
parameter, where 𝛽 is the semi-angle of the shell opening. In this analysis, nine
different geometric parameters are taken as 8.6, 9.9, 18.4, 22.2, 27.4, 32.4, 36.8,
53.6, and 71.8.

A configuration of the shallow spherical shells for three different geometric
parameters is shown in Fig. 2. The spherical shells used for this study are made of
aluminum alloy AA6061-T6 and its mechanical properties are shown in Table 1.
The shell is assumed as an isotropic, homogeneous, and elastic material.



6 XuanCuong NGUYEN, Yoshio ARAI, Wakako ARAKI

Table 1. Mechanical properties of
AA6061-T6

Young’s modulus, Poisson’s ratio,
𝐸 , MPa 𝜈

68900 0.33

Fig. 2. Configuration of the shallow spherical shells,
a) 𝜌 = 71.8, b) 𝜌 = 36.8, and c) 𝜌 = 8.6

2.2. Numerical model

In this study, an axisymmetric model is adopted due to the axisymmetric
geometry of the structure under axisymmetric loading. This model has proven
highly efficient in addressing buckling problems of spherical shells, whether con-
sidering friction or not, as indicated in the literature. Furthermore, the analysis of
non-axisymmetric buckling behavior is notably challenging [49, 51], and requires
substantial computational resources and time (nearly 20 times) [28, 51]. Hence, for
the sake of simplification, this study employs the axisymmetric model to examine
the buckling behavior of spherical shells. A four–node axisymmetric quadrilateral
element (CAX4R) with reduced integration and hourglass control is employed for
the analysis to reduce the computation time and enhance convergence. In this sim-
ulation, the spherical shell is regarded as a constant radius, and the thickness is
also unchanged and uniform. As previously mentioned, the determination of the
actual shape and size of the initial imperfection is challenging. Moreover, when the
amplitude of the initial imperfection is below 1% of the shell thickness, shells are
generally assumed to be almost perfect [53, 54]. Therefore, the effect of the initial
imperfection is not taken into account in this study.

The buckling results of the frictional end are compared with those of the
clamped and hinged ends. The rigid walls in the frictional end are considered
fixed. In the clamped end, all degrees of freedom of the end edge of the shell are
constrained, while in the hinged end, only the center of the end edge is restrained
from displacements, allowing its end edge to rotate freely.
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2.3. Analytical process

The mesh size has an essential effect on the accuracy of numerical simulation
results. A finite element model, however, with a very fine mesh may increase the
computational time and cost. For this reason, at the initial step of this simulation,
a mesh convergence analysis is carried out by varying the number of elements
to choose an appropriate mesh. The total number of elements 𝑁 and the number
of elements along the thickness 𝑁𝑡 corresponding to twelve different mesh sizes
presented in Table 2 are examined for one case of the geometric parameter 𝜌 of
9.9, and the critical buckling pressure is compared.

Table 2. The number of elements along the thickness and number of elements corresponding to
different mesh sizes

Mesh size,
10−3 mm 25 12.5 8.3 6.3 5.0 4.2

𝑁𝑡 2 4 6 8 10 12
𝑁 326 1304 2940 5208 8140 11628

Mesh size,
10−3 mm 3.6 3.2 2.8 2.5 2.0 1.7

𝑁𝑡 14 16 18 20 25 30
𝑁 15820 20256 26154 32560 50875 73080

It is necessary to create a finer mesh density near the contact regions between
the shell and rigid walls in the frictional end [39–41]. Therefore, a mesh size
of 0.08 · 10−3 mm surrounding the contact zone by a radius 𝑅𝑐 of 0.01 mm is
generated as shown in Fig. 3. The mesh density is gradually increased to ensure that
the closer the contact regions, the finer the mesh size is assigned. The intersection
curves between coarse and fine mesh regions have meshed with the same number
of elements to ensure the continuity of the elements. This mesh modeling of
the contact regions is applied equally to all configurations of the spherical shell.

Fig. 3. A sample of mesh (𝜌 = 9.9), a) overall mesh, b) center part, c) contact zone
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To reduce the effect of the aspect ratio of the element, the size of the element along
the thickness and the longitudinal direction are divided equally.

Both the mesh refinement step and nonlinear buckling analysis in this study
used the Riks algorithm [55–57] to trace the pressure-displacement curve. This
algorithm can accurately predict the critical pressure and buckling deformation of
the spherical shells [20–23] or hemispherical shells compressed by a rigid plate
with frictional contact [28, 31, 44]. In this analysis, geometry nonlinearity is taken
into consideration.

The critical pressure is normalized with one of the fully perfect spherical shells,
known as the relative critical pressure 𝑝cr/𝑝0. The relationship between relative
critical pressure and the total number of elements is shown in Fig. 4. It can be seen
that the mesh size has a significant influence on the critical buckling pressure of
the spherical shell. A coarse mesh corresponding to a small number of elements
will decrease the critical pressure. The results are nearly unchanged when the mesh
density reaches a certain value [20, 58]. Thus, a mesh density of 2.5 · 10−3 mm
with 32 560 elements is considered a proper mesh for this analysis [22, 28, 58].
An illustration of the chosen mesh at the center part and the contact zone is displayed
in Fig. 3 as an example.

Fig. 4. Relationship between the relative critical pressure and the total number of elements

3. Result and discussion

The critical buckling pressure of the clamped end for different geometric pa-
rameters has been obtained and compared with previous studies. It can be observed
in Fig. 5 that there is a peak in the buckling pressure when the geometric parameter
increases. The experiment [8] also presents a peak of the critical buckling pres-
sure. However, experimental results show lower critical pressures due to the initial
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imperfection and irregularity of the shell, while the numerical [11, 24], the finite
element results [1], and the present results are in good agreement.

Fig. 5. Plot of relative critical pressure versus geometric parameter for the clamped end

To examine the effect of friction on the buckling behavior of the shell, equilib-
rium paths presenting the uniform external pressure plotted against the displace-
ment at the center 𝑤𝑐, are shown in Fig. 6 for the clamped, hinged, and frictional
ends. Four geometric parameters representing different buckling modes and mode
transitions are selected to capture the results. The circle points indicate the critical
points at which the pressure reaches a peak, and the shell loses its stability. In
general, increasing the coefficient of friction causes the equilibrium path of the
frictional end to converge with the clamped end. In the case of the geometric pa-
rameter 𝜌 of 18.4 as presented in Fig. 6b, a high critical pressure, which is even
higher than the one of the clamped end, can be seen in a range of the friction
coefficient from over 1.0 to 2.0. This greater tendency will be explained based on
the buckling mode of the shell later. For each geometric parameter, the equilibrium
path of small friction coefficients ( 𝑓 < 1.0) has the same type and shows a clearer
difference than those of high friction coefficients. For all geometric parameters,
the shell experiences a large displacement at the center when the coefficient of
friction is small at the same pressure in the pre-buckling stage. In other words,
the frictionless end undergoes the greatest deflection, which gradually decreases
in magnitude with the increase of friction coefficient under the same external pres-
sure. The higher the friction coefficient, the harder the shell deforms. Although
the end edge of the hinge end can rotate freely, it shows a smaller magnitude of
displacement at the center than the frictionless end before the shell buckles, re-
gardless of the geometric parameter. The small geometric parameter (𝜌 = 8.6) in
Fig. 6a and the large geometric parameter (𝜌 = 71.8) in Fig. 6d present a mono-
tonic increase in displacement as the pressure increases. This same tendency can
be seen in the medium geometric parameter (𝜌 = 18.4 and 𝜌 = 36.8) at low friction
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coefficients ( 𝑓 < 1.0) in Fig. 6b and Fig. 6c. However, at high friction coefficients
of the medium geometric parameter as shown in Fig. 6c, the displacement initially
increases and then decreases when the pressure increases.

Fig. 6. Equilibrium path for different geometric parameters with clamped, hinged, and frictional
ends of boundary condition

To observe the deformation of the spherical shell during the pre-buckling stage,
a distribution of displacement 𝑤 along the polar angle 𝜃 at different pressure values
is illustrated in Fig. 7. As shown in Fig. 7a, b, and c, three distinct geometric
parameters corresponding to three types of buckling modes with the same friction
coefficient are considered to show the deformation. Firstly, the mode of deformation
should be defined for discussion. The mode of deformation indicates the number
of extreme points of the displacement distribution and the locations of these points
along the polar angle of the spherical shell. Mode of deformation I (mode I)
has only one extreme point located at the center of the shell. Likewise, mode of
deformation II (mode II) shows two extrema, one at the center and the other at the
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place between the center and the edge, and mode of deformation III (mode III) has
three distinct peaks of displacement, one at the center and two remaining points
occurring between the center and the edge [10–12, 24]. At the smallest geometric
parameter in Fig. 7a, as well as at the critical pressure of the equilibrium path in
Fig. 6a with the friction coefficient 𝑓 = 2.0, the shell buckles in mode I; before
that, only the mode of deformation I occurs. With a wider opening angle in Fig. 7b,
when the pressure increases, it first witnesses the mode of deformation I and then
changes to buckling mode II before the critical pressure indicated in Fig. 6c with
𝑓 = 2.0. Similarly, at the highest geometric parameter in Fig. 7c, both modes of
deformation I and II are observed before the shell buckles in mode III at critical
pressure shown in Fig. 6d with 𝑓 = 2.0. It can be observed in Fig. 7b and Fig. 7c that
when the buckling mode changes from mode I to mode II, a new local maximum
displacement occurs between the center and the old local maximum. By the same
principle, the transition from mode II to mode III creates a new local minimum at
the center, and the peaks in mode II move closer to the end edge of the shell in
mode III. The transition of the buckling mode, in essence, generates a new extreme
point of displacement at the center and yields a new quarter waveform along the
polar angle of the shell. When the pressure increases, the transition of the mode of
deformation from mode I to mode II causes a decrease in displacement magnitude
at the center region, as shown in Fig. 7b. The effect of friction on the distribution
of displacement at the same geometric parameter is also examined in Fig. 7b, d,
and e. In these figures, a decrease in the friction coefficient causes the decrease
phenomenon in displacement at the center region to disappear, even though the
transition of the mode of deformation still occurs. Additionally, a change in the
friction coefficient leads to a change in the buckling mode from mode II at 𝑓 = 2.0,
as shown in Fig. 7b, to the onset of mode III in the frictionless end, as indicated in
Fig. 7e. At this point, the onset of mode III is marked by a minimum displacement
at the center and two distinct peaks situated between the center and the edge as
presented by circle points in Fig. 7e. As shown in Fig. 7f, there is a minimum
displacement at the center and a maximum point located nearby.

The distribution of vertical displacement at the critical pressure along the polar
angle of the spherical shell for different geometric parameters with three types of
boundary conditions is presented in Fig. 8 to investigate the effect of friction on
the buckling mode of the spherical shell. As illustrated in Fig. 8a, the spherical
shell with the smallest geometric parameter is buckled in the mode of deformation
I. As the shell opening angle increases, the buckling mode transits to mode II and
then mode III in a sequence. A transition phenomenon of the buckling mode of the
spherical shell under the same geometric parameters from mode I to mode II and
from mode II to mode III due to a decrease in friction has also been observed in
Fig. 8b and Fig. 8c, respectively. As depicted in Fig. 8b, when the frictional end
has a coefficient over 2.0, and the end edge is clamped, mode I of buckling occurs.
When the friction coefficient decreases, the buckling mode changes to mode II, the
same as the hinged end. When the friction coefficient decreases from 2.0 to 1.0, the
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Fig. 7. Distribution of displacement along the polar angle during the pre-buckling stage for different
geometric parameters at the same friction coefficient and for different friction coefficients at the

same geometric parameter
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buckling mode transition occurs, and the critical pressure becomes higher at this
range of friction coefficient, as shown in Fig. 6b. Similarly, the change of buckling
mode from mode II to mode III in Fig. 8c occurs when the friction coefficient
decreases as shown in Fig. 8b. The transition of the buckling mode under the same
opening angle reveals the effect of friction on the buckling mode of the spherical
shell. It should be noted that for all geometric parameters in Fig. 8, the distribution
of displacement in the frictional end with a high friction coefficient converges to
that of the clamped end. The hinged and frictionless ends always exhibit the same
buckling mode, regardless of the geometric parameter.

Fig. 8. Distribution of vertical displacement along the polar angle at critical pressure for different
geometric parameters with different boundary conditions

From the equilibrium paths as shown in Fig. 6, critical pressures are extracted
and plotted against the friction coefficient in Fig. 9a and the geometric parameter
in Fig. 9b. The results of the frictional end with different coefficients are compared
with those of the clamped and hinged ends. As shown in Fig. 9a, for small friction
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coefficient values (0.0 ⩽ 𝑓 ⩽ 1.6), the critical pressure increases nonlinearly with
a considerable change when the friction coefficient increases. In the high range
of the friction coefficient (1.6 < 𝑓 ⩽ 4.0), there is a slight change in the critical
buckling pressure, which then converges with one of the clamped end.

Fig. 9. a) The relationship between the relative critical pressure and friction coefficient for different
geometric parameters with three types of boundary condition, b) The relationship between the

relative critical pressure and geometric parameter with different boundary conditions

It can be seen from Fig. 9a and Fig. 9b that the critical pressure for the
frictionless end is extremely low compared to other ends of boundary conditions.
The critical pressure of the hinged end is 1.5 to 3.2 times higher than that of the
frictionless end. The dependence of the relative critical pressure on the geometric
parameter is shown in Fig. 9b. For a small range of friction coefficient (0.0 ⩽ 𝑓 ⩽
1.0), the critical pressure increases nonlinearly with an increase in the geometric
parameter. A wider spherical shell presents a greater critical pressure, making
it more resistant to buckling [59]. Due to the convergence of the frictional end
at high friction coefficients with the clamped end, the critical pressure at high
coefficients fluctuates and peaks at the same value of the geometric parameter as the
clamped end, frictionless end. Considering the stability curves in Fig. 6, under the
same pressure during the pre-buckling stage, the spherical shell in the frictionless
end suffers the largest displacement in magnitude at the center, regardless of the
geometric parameter. It points out that without friction, the spherical shell is easier
to deform under external pressure.

Components of the reaction force at the top and bottom corners and the angle
of rotation of the end edge 𝜑 are illustrated in Fig. 10. Because the length of the
contact regions is relatively small compared to the thickness of the spherical shell,
these reaction forces are considered concentrated forces. The angle of rotation
represents the degree of rotation from the initial state of the end edge of the shell.
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Fig. 10. Illustration of the angle of rotation and reaction forces

Fig. 11a, b, c, and d show the reaction force in the horizontal direction 𝐹𝑥𝑡 and
the vertical direction 𝐹𝑦𝑡 at the top corner, and in the horizontal direction 𝐹𝑥𝑏 and
the vertical direction 𝐹𝑦𝑏 at the bottom corner for a specific geometric parameter
at different values of the friction coefficient, respectively. It can be seen from
Fig. 11a and c that at the same pressure as the critical pressure of the frictionless
end, the horizontal reaction force at the top corner exhibits a significant value, as
this reaction force at the bottom corner, regarded as the frictional force, is zero.
Therefore, the high horizontal reaction force at the top corner is responsible for
maintaining the balance. Under the same external pressure, as the friction coefficient
increases, the horizontal reaction force at the bottom corner also increases, leading
to a decrease in the horizontal reaction force at the top corner.

The vertical reaction forces at the top and bottom corners are presented in
Fig. 11b and c. At the top corner, the vertical reaction force is negative, while at the
bottom corner, it is positive. The contrasting relationship between the horizontal
reaction force at the top corner and the friction coefficient, under the same external
pressure, results in a fluctuation of the vertical reaction force at the top corner. Due
to the principle of equilibrium, the sum of the vertical reaction forces at the top
and bottom corners remains constant. Consequently, the vertical reaction force at
the bottom corner also exhibits fluctuations, corresponding to the changes in the
friction coefficient.

The resultant moment of force 𝑀 due to the reaction forces at the top and
bottom corners at the critical pressure is shown in Fig. 12. This resultant moment
of force is calculated at the center point of the end edge (point A in Fig. 10).
In cases of the frictional end, the resultant moment of force corresponds to the
bending moment at the end edge of the spherical shells. It has a positive value
in the anticlockwise direction, and vice versa. At small friction coefficients, the
resultant moment of force is anticlockwise, aligning with the direction of the angle
of rotation of the end edge. However, at high friction coefficients, it decreases and



16 XuanCuong NGUYEN, Yoshio ARAI, Wakako ARAKI

Fig. 11. a) Horizontal reaction force, b) vertical reaction force at the top corner, and c) horizontal
reaction force, d) vertical reaction force at the bottom corner for a specific geometric parameter with

different friction coefficients

changes to the clockwise direction, opposing the direction of the rotation angle of
the end edge.

The angle of rotation of the end edge at the same pressure as the critical pressure
of the frictionless end and at critical pressure for different geometric parameters
are shown in Fig. 13a and b, respectively. Positive values of the angle of rotation
indicate that the end edge rotates in the anticlockwise direction. For all geometric
parameters, the rotation angle of the end edge of a shallow spherical shell under
the same pressure shows the smallest value at a higher value of friction coefficient
as shown in Fig. 13a. As the friction coefficient decreases, this angle of rotation
monotonically increases. Higher friction coefficients make the shallow spherical
shell harder to rotate. Fig. 13a also demonstrates that in the frictional end, the
angle of rotation decreases as the geometric parameter increases. In other words,



Effect of friction on the buckling behavior of shallow spherical shells contacting with . . . 17

Fig. 12. Resultant moment of force at the critical pressure for different geometric parameters

Fig. 13. The angle of rotation of the end edge a) at the same pressure as the critical pressure of the
frictionless end, and b) at critical pressure for different geometric parameters

a narrow spherical shell is easier to rotate than a wider one under external pressure.
The rotation of the end edge of shallow spherical shells at the critical pressure
is always in the anticlockwise direction as depicted in Fig. 13b. As the friction
coefficient decreases, the rotation angle of the end edge increases, regardless of
the geometric parameter. The spherical shell is less prone to rotation with higher
friction coefficients.

The hinged end has no moment of force at the end edge, while the frictionless
end exhibits an anticlockwise moment of force (as indicated in Fig. 12) due to
the presence of a couple of reaction forces at the top and bottom corners. The
direction of this moment of force in the frictionless end aligns with the angle of
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rotation of the end edge as shown in Fig. 13b, while this direction is opposite in
the clamped end. This moment of force could explain the smaller critical pressure
in the frictionless end compared to that in the hinged end.

Fig. 14a, c and Fig. 14b, d show the tangential stress distribution 𝜎𝑡 at the
pressure the same as the critical pressure of the frictionless end and at the critical
pressure, respectively. In these figures, the distribution of tangential stress at the
inner and outer surfaces of the shell with different geometric parameters at distinct
friction coefficients is considered. As shown in Fig. 14a and c, at the pressure equal
to the critical pressure of the frictionless end, the bending stress without friction
is greater than that considering friction at different geometric parameters. This
small bending stress in the frictional end explains the reason why the shell does
not buckle at the same pressure as the critical buckling pressure of the frictionless
end. The bending stress near the end edge shows a difference in sign between with

Fig. 14. Distribution of tangential stress for different geometric parameters with different friction
coefficients, a, and c) at the same pressure as the critical pressure of the frictionless end,

b, and d) at the critical pressure
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and without friction. This change in sign is due to the high horizontal reaction
force at the top corner in the case of the frictionless end, as mentioned before in
Fig. 11. As indicated in Fig. 14a and c, a change of bending stress generates a
point where there is no bending stress (the point at which the stress at the inner and
outer surfaces is the same). When the pressure reaches the critical pressure in the
frictional end, as illustrated in Fig. 14b and d, the magnitude of the bending stress
increases, regardless of the geometric parameter and friction coefficient.

The dotted arrows in Fig. 15 depict the movement of the no-bending points
for a specific geometric parameter within a small range of friction coefficient
(0.8 ⩽ 𝑓 ⩽ 1.3), during which a transition in the buckling mode from mode III
to mode II as the friction coefficient increases. The central portion of Fig. 15a is
highlighted in Fig. 15b. As the friction coefficient increases, the moment of force
due to the reaction forces changes its direction, as demonstrated in Fig. 13b. In
other words, the bending moment at the end edge of the shell reverses its sign.
Consequently, a new no-bending point emerges near the end edge, as depicted in
Fig. 14b, d, and Fig. 15a. With the friction coefficient continuously rising, the
magnitude of the bending moment at the end edge also grows. This increase leads
to the shifting of not only the newly formed no-bending point but also the pre-
existing ones, all closer to the center. In certain specific geometric cases, such as
the one represented in Fig. 15 (𝜌 = 36.8), the no-bending point near the center
reaches the center as the friction coefficient increases from 0.8 to 1.0 as illustrated
in Fig. 15b and then the bending moment at the center no longer equals zero as
friction coefficient is larger than 1.0. Consequently, the number of no-bending
points decreases, leading to a decrease in the buckling mode.

Fig. 15. Movement of the no-bending points

The distribution of displacement at the pressure equivalent to the critical
pressure of the frictionless end is shown in Fig. 16. This figure considers different
geometric parameters with varying friction coefficients. At any position of the
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Fig. 16. Distribution of displacement for different geometric parameters with different friction
coefficients at the same pressure as the critical pressure of the frictionless end

polar angle apart from the end edge, the larger the friction coefficient, the smaller
the displacement value, regardless of the geometric parameter. This finding again
indicates that the presence of friction makes the shell more difficult to displace. In
the case without friction, the shell displaces more easily.

𝑝cr
𝑝0

( 𝑓ref , 𝜌ref) = 𝑎1 + 𝑎2 𝑓ref + 𝑎3𝜌ref + 𝑎4 𝑓
2
ref + 𝑎5 𝑓ref𝜌ref , (3)

where
𝑓ref =

𝑓 − 1.632
1.393

(4)

and
𝜌ref =

𝜌 − 31.79
119.5

. (5)

The relative critical pressure in Fig. 9 can be expressed as a function of
the friction coefficient and geometric parameters. Therefore, a buckling map that
describes the relationship between relative critical pressure and these parameters,
combined with the mode of buckling, is illustrated in Fig. 17. To determine the
contour plot of the relative critical pressure, the variation of relative critical pressure
with respect to the friction coefficient and geometric parameter is presented in
Eq. (3). The constants 𝑎𝑖 (𝑖 = 1, . . . , 18) are determined using the linear least
squares fitting method and are shown in Table 3.

From Eq. (3), the relative critical pressure can be predicted for each pair
of friction coefficient and geometric parameters with a root mean squared error
(RMSE) of 0.058. The relationships between relative critical pressure, geometric
parameter, and friction coefficient in Fig. 17 agree well with these relationships as
shown in Fig. 9. Specifically, when the geometric parameter and friction coefficient
increase, the changes in relative critical pressure are the same in both figures.
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Fig. 17. Buckling map

Table 3. The constants of the fitted equation to determine the surface describing the relationship
between relative critical pressure and friction coefficient and geometric parameter

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6

0.987 0.314 0.108 –0.215 0.071 –0.325

𝑎7 𝑎8 𝑎9 𝑎10 𝑎11 𝑎12

0.036 0.003 –0.163 0.106 0.009 0.066

𝑎13 𝑎14 𝑎15 𝑎16 𝑎17 𝑎18

–0.050 0.079 –0.003 -0.022 0.041 –0.037

As shown in Fig. 17, the optimal shape of a spherical shell can be determined to
obtain the greatest critical buckling pressure when applied to design problems. The
highest critical pressure values occur when the geometric parameter is between 22.0
and almost 50.0, the friction coefficient is greater than 1.6. Using this buckling map,
the buckling mode can be estimated for given values of the geometric parameter
and friction coefficient, and the transition of the buckling mode can be determined
simultaneously. The black and red lines indicate the boundary between buckling
modes I and II, and buckling modes II and III, respectively. As demonstrated in
Fig. 17, the buckling mode increases as the geometric parameter rises. For most
geometric parameters, a decrease in the friction coefficient does not lead to any
change in the buckling mode. However, at 𝜌 = 36.8, the buckling mode transitions
from mode II to mode III, and at 𝜌 = 18.4, the buckling mode changes from mode I
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to mode II Eq. (3) can be simplified as follows:

𝑝cr = 𝐾
2𝐸√︁

3(1 − 𝜈2)

( 𝑡
𝑅

)2
. (6)

Here, 𝐾 is a coefficient describing the influence of the boundary conditions
at the end edge on the critical pressure of the shallow spherical shell. The critical
pressure at the clamped end is always greater than that at the hinged end [11, 17,
24, 26]. Therefore, the value of 𝐾 at the clamped end is higher than its value at the
hinged end. Similarly, in the frictional end, as the friction coefficient decreases, the
value of 𝐾 also decreases.

4. Conclusions

The buckling behavior of thin, shallow, elastic spherical shells under uniform
external pressure with frictional, clamped, and hinged ends are examined using an
axisymmetric finite element model. Nonlinear analysis is utilized to obtain buckling
results for the frictional end with a wide range of friction coefficients, which are
then compared to results for the two other ends. The following conclusions are
found in this study:

• Friction has a strong effect on critical buckling pressure and displacement of
the shell, especially at small values of friction coefficient. However, at high
friction coefficients, the effect is less pronounced. In general, as the friction
coefficient or geometric parameter decreases, the resistance of the shell to
buckle also decreases. This occurs because, at small friction coefficients
or geometric parameters, the spherical shell becomes more susceptible to
rotating and displacing under uniform external pressure.

• The buckling mode is also influenced by friction. For specific geometric
parameters, when the friction coefficient decreases, the mode of buckling
changes from mode I to mode II and from mode II to mode III due to changes
in the direction and magnitude of the moment of force at the end edge.

• A map of buckling describing the relationship of buckling mode, critical
pressure, geometric parameter, and friction coefficient has been established.

This study employs an axisymmetric model to analyze the buckling behavior
of spherical shells. It is assumed that the buckling deformation occurs in two
dimensions, which may result in some variations compared to the actual three-
dimensional characteristics of real-world structures. However, opting for a three-
dimensional model introduces a high level of complexity. To simplify the analysis,
the limitations of this model are acknowledged, and the non-axisymmetric buckling
behavior of spherical shells is identified as a potential subject for further study.
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