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Abstract 
 
This study investigates image processing techniques for detecting surface cracks in spring steel components, with a focus on applications 
like Magnetic Particle Inspection (MPI) in industries such as railways and automotive. The research details a comprehensive methodology 
that covers data collection, software tools, and image processing methods. Various techniques, including Canny edge detection, Hough 
Transform, Gabor Filters, and Convolutional Neural Networks (CNNs), are evaluated for their effectiveness in crack detection. The study 
identifies the most successful methods, providing valuable insights into their performance. The paper also introduces a novel batch 
processing approach for efficient and automated crack detection across multiple images. The trade-offs between detection accuracy and 
processing speed are analyzed for the Morphological Top-hat filter and Canny edge filter methods. The Top-hat method, with thresholding 
after filtering, excelled in crack detection, with no false positives in tested images. The Canny edge filter, while efficient with adjusted 
parameters, needs further optimization for reducing false positives. In conclusion, the Top-hat method offers an efficient approach for 
crack detection during MPI. This research offers a foundation for developing advanced automated crack detection system, not only to 
spring sector but also extends to various industrial processes such as casting and forging tools and products, thereby widening the scope of 
applicability. 
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1. Introduction 
 

Spring steels find applications in various industries, including 
railways, automotive, and machine tools. A classic spring is an 
elastic component designed to deform under a load and return to 
its original shape once the load is removed. Springs must adhere 
to stringent quality, environmental, and flexibility standards and 
ensure reliable performance over many years. A comprehensive 
understanding of the application and its specific criteria is 
essential for designing springs correctly. Expertise in materials 
and spring manufacturing technology is required to determine 
stress levels accurately and evaluate factors like creep, relaxation, 
and fatigue [1]. Different methodologies are employed in various 
areas, including the analysis of operational data at different stages 

of product development [2], non-destructive evaluation of 
samples and semi-products [3], mechanical property assessment 
[4], forging and rolling simulation [5], data-driven parametric 
analysis, and thermodynamic study [6,7]. 

The primary risk associated with spring products is material 
fatigue, resulting from errors that occur during production or 
operation. The appearance of defects on the material surface can 
lead to the formation of surface cracks, which propagate under 
unfavorable loading conditions, ultimately reducing the fatigue 
life and causing failure [1]. This relationship holds true for 
springs with surface faults and subsurface inclusions. 

In the railway industry, preventing defects in suspension parts 
is of utmost importance, primarily for safety and reliability 
reasons. Suspension spring fractures (fig. 1) can lead to a 
reduction in the load on the boogie wheel, making it susceptible to 
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flange climb. This situation can result in track collapse and wagon 
derailment when the wheel ends up on top of the rail (fig. 2) under 
unsatisfactory technical conditions like railway turnout or during 
curve passing [8]. 

 

 
Fig. 1. Locomotive bogie spring fracture example [9] 

 

 
Fig. 2. Forces acting between wheel and rail during flange 

climbing [8] 
 

Springs are typically manufactured from high-quality 
materials such as 51CrV4, 52CrMoV4, 61SiCr7 due to their 
specific properties and features, including high strength, relatively 
good resistance to fatigue, and resistance to overheating [7]. 

 

 
Fig. 3. Spring forming from hot rod (hot coiling). 

 
Spring production can be divided into five steps: Coiling: 

Wire is coiled around a shaft, which can be done with either cold 
or heated wire (fig. 3). Heat Treatment: The coiled spring is 
heat-treated to relieve stress and harden the steel. Shot Peening: 
The spring undergoes shot peening to strengthen the steel and 
prevent metal fatigue. 
Setting: The spring is compressed multiple times to ensure it 
functions correctly and remains stable at a specific length. 

Coating: A protective coating is applied to prevent corrosion 
which occurs either locally or throughout the section in the form 
of small shallow pits (pitting corrosion). These act as stress raisers 
under alternating stress conditions during service. 

In the first stage of producing the springs, a preheated rod is 
used, which is oil-hardened or, in the case of the design option, 
annealed/unhardened. Annealed wire springs, after the coiling 
operation, are heat-treated (hardened, tempered) to acquire the 
necessary high strength. There are few steel mills operating on the 
market specialized enough to manufacture steel meeting the 
requirements of springs used in high-speed trains, which are 
exposed to great stress levels during operation. The long products 
(hot rolled billets, bars, and rods) that are made through a 
continuous casting route and subsequently thermo-mechanical 
processing seem inconsistent in meeting their quality. Surface 
cracks are mainly revealed during inspection after the final stage 
of hot rolling at the steel producer's end or before forming at the 
customer's site. Moreover, subsurface cracks, which are present in 
steel billets, may evolve after forming at the customer's site. This 
leads to the subsequent rejection of steel billets. 

Quenching cracks are usually caused by an inadvertent use of 
the wrong grade of steel for a given heat treatment procedure, 
wrong heat coefficient of quenching medium, high hardening 
temperature, insufficient soaking period, surface defects such as 
seams, laps, clusters of non-metallic inclusions occurring at or 
near the surface, sharp grooves, or dents on the surface. In 
service, they act as stress raisers resulting in premature failure. 
Therefore, the evolution of surface cracks in long steel products 
and ready springs is one of the critical problems for producers [6]. 

The magnetic particle inspection (MPI) is a technique to the 
evidence of cracks in or close the surface of ferromagnetic 
materials conducted before shot peening. After heat treatment 
during inspection spring must be magnetized (fig. 4) [10]. The 
lines formed by the magnetization run parallel to the spring 
profile surface. Lying crosswise to created magnetic lines surface 
defects such a cracks generate opposite magnetic field.  The effect 
of variable polarity on the surface discontinuity boundaries causes 
an accumulation of iron powder in the cavity. This makes it 
possible to catch even the smallest defects in the light of an 
ultraviolet lamp revealing the dye with which the powder is 
sprinkled. Then the springs without defect can be subjected to the 
processes of peening, setting, coating like: powder coating oiling, 
galvanizing, wet painting with primer paints, passivation, 
phosphating. 

   

 
Fig. 4. MPI station (Bombardier Siegen) [10] 

 
Traditionally, the detection of cracks in coil springs has relied 

on manual inspection, which can be time-consuming, labor-
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intensive, and subject to human error. To address these challenges 
and enhance the efficiency and accuracy of quality control, 
modern manufacturing processes have increasingly turned to the 
integration of vision technology and image processing techniques. 

In the pursuit of effective defect detection, a range of image 
processing techniques beyond the Canny edge detection method 
mentioned in the abstract has been explored. These techniques 
have proven to be valuable tools in identifying defects [11,12], 
including cracks, on the surface of steel parts. Some of these 
techniques include, but are not limited to: 

Canny Edge Detection focuses on identifying sharp changes 
in pixel intensity, which can often indicate the presence of edges, 
including cracks, in an image. The algorithm enhances the 
visibility of these edges, making them easier to detect. 

Hough Transform (HT) is a powerful tool for detecting 
straight lines, which can be crucial in identifying linear defects 
like cracks. It is especially effective when combined with edge 
detection methods. Gabor Filters are widely used for texture 
analysis in image processing. They can be applied to detect 
variations in texture that may be associated with surface defects 
like cracks. Thresholding methods segment an image into 
different regions based on pixel intensity. By setting appropriate 
thresholds, one can isolate areas that may contain defects, 
including cracks. Deep learning techniques, such as 
Convolutional Neural Networks (CNNs), have gained prominence 
in defect detection. They can learn and recognize complex 
patterns in images, making them suitable for various defect types. 

These image processing techniques, when used in 
combination or in specific contexts, contribute to the robustness 
of defect detection systems. The choice of technique depends on 
factors such as the type of defect being targeted, image quality, 
and computational resources. 
 
 

2. Methodology 
 
 
2.1. Data collection/software 

 
The initial phase of the work encompassed the acquisition of a 

comprehensive dataset consisting of spring images. These images 
were captured by Logitech Hd Pro Webcam C920 placed on 
tripod at a high resolution of 2448x3264 pixels and were stored in 
the PNG format. The image capture process was conducted during 
the Magnetic Particle Inspection (MPI) procedure using KD 
DEUTROFLUX UWS after rod coiling and spring heat treatment, 
as indicated in Figure 5. The captured images featured the spring's 
surface under varying conditions: some images displayed visible 
cracks, while others depicted the surface without any cracks. 
Furthermore, the imaging process involved capturing the object 
from various angles and under different UV lighting conditions 
emanating from a lamp. This was achieved while maintaining a 
standardized distance from the object, approximately 150 mm. 
Consequently, this approach yielded a diverse set of images that 
presented the object from multiple perspectives and exhibited 
variations in lighting. 

In addition to this image capture procedure, the project 
involved the utilization of specific software and hardware tool. 

The author selected open-source program Python 3.12.0  and Win 
10 Intel Pentium Quad Core 1,6 GHz DDR3L  4GB RAM 
hardware. To facilitate the execution of the code, several essential 
libraries were imported, including NumPy, a fundamental library 
renowned for its support of numerical operations in Python, 
including the management of arrays and matrices, as well as an 
array of mathematical functions. The image processing tasks were 
carried out using OpenCV (cv2), which played a crucial role in 
image manipulation and analysis. Furthermore, the Matplotlib 
plotting library was employed to create 2D and 3D visualizations, 
proving invaluable for data visualization and displaying images 
throughout various algorithmic stages, ultimately revealing the 
results. Tkinter, a standard GUI library, was also integrated into 
the authors' code to facilitate the creation of graphical user 
interfaces for desktop applications. Additionally, the Time library 
was incorporated to include the "time" module within the 
program. This module was instrumental in measuring the 
execution time of the proposed image processing solutions, 
providing valuable insights into the algorithm's performance. 

 

 
Fig. 5. MPI coil spring producer test stand a) scheme, b) view 

 
 

2.2. Image processing methods 
 

The implemented Python code adheres to a well-defined 
methodology that comprises several integral steps. These steps 
encompass image acquisition, grayscale conversion, edge 
detection, boundary extraction, and the superimposition of crack 
boundaries onto the original image. To facilitate a comprehensive 
understanding of the image processing results, these steps are 
effectively visualized using Matplotlib. This code possesses the 
capability to conduct in-depth analysis of cracks. Notably, the 
example code for image processing involving the Canny filter is 
detailed in the appendix A. 

The process begins with the user selecting an image from the 
designated folder. Following this selection, the image undergoes 
conversion to grayscale, a fundamental step aimed at simplifying 
subsequent processing. This conversion of the original image is 
illustrated in Figure 6a. Grayscale images (fig. 6b) are 
characterized by the utilization of a single intensity value for each 
pixel, rendering them more manageable for further processing. 
The conversion operation is executed through the application of 
`cv2.cvtColor`.  

During the Edge Detection step, a prominent approach is 
applied, on the grayscale image. Methods serves to accurately 
pinpoint edges and contours. The results, in the form of edges, are 
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meticulously stored in the "Edge Image" like in Figure 7a were 
Prewitt filter was used.  

 

 
Fig. 6. a) Original image with crack on surface, b) grayscale 

image 
 

The edge image obtained in the previous step serves as the 
basis for contour detection. Contours in this context represent the 
outlines of objects or shapes within the image. To identify these 
contours, the cv2.findContours function is employed. In this 
process, small contours, which may represent noise or irrelevant 
details, are filtered out based on a predefined minimum area 
threshold, defined as min_contour_area. This crucial step isolates 
significant features that effectively represent the boundaries of the 
detected cracks. 
Once the contours have been successfully filtered, the code 
proceeds to draw them on the output_image in red color to 
provide a clear visualization of the “Crack boundaries” (Fig. 7b)..  

These identified crack areas are distinctly marked in red, 
achieved either by outlining them with lines or filling them as 
regions. The processed images, which include the "Original 
Image," "Gray Image," "Edge Image," and "Crack Boundaries," 
are presented using Matplotlib. Each image is displayed in a 
separate Matplotlib window, each appropriately titled for 
enhanced visualization. This strategic choice enables users to 
make adjustments to the parameters for subsequent samples at the 
program's conclusion, allowing them to optimize the detection of 
cracks based on their findings. 

The primary objective is to attain the best possible outcome, 
ensuring that the cracks are prominently marked and accurately 
detected. 
 

 
Fig. 7. Filtered grey images-"Edge Image" Filters used: a) Prewitt, 

c) Sobel, e) Canny, and  "Crack Boundaries" in order b), d), f) 
 

Throughout the testing phase, a diverse array of image 
enhancement techniques were explored to accentuate crack-like 
structures. This comprehensive exploration encompassed the 
application of various filters, like: Gaussian, Laplacian, Prewitt 
(fig. 7a), Gabor, and Sobel (fig. 7c), Canny (fig. 7e). Canny edge 
detection is widely recognized for its effectiveness in identifying 
abrupt shifts in intensity within the image. The key parameters for 
edge detection, namely threshold_low and threshold_high, are 
meticulously configured, taking into consideration the unique 
characteristics of the image under analysis. These parameters play 
a crucial role in the accuracy of edge detection as shown in Figure 
7f influencing pointing lined outside spring contour. Additionally, 
reaserch involved the implementation of morphological 
operations such as skeletonization, morpho top-hat, and different 
edge-preserving techniques.  
 
 
2.3. Crack detection from a set of images 

 
The subsequent phase encompassed the development of a 

program with the capacity for set of image processing. 
The program's initiation begins with the importation of 

essential libraries, followed by the user's selection of a folder 
containing the target images. These images are assumed to be in 
formats such as PNG, JPG, JPEG, or BMP. 
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For each image, the program validates the loading process, 
ensuring that the image is successfully loaded. If an image is 
empty or cannot be loaded, the program seamlessly proceeds to 
the subsequent image. Once loaded, the image undergoes 
conversion to grayscale.  

During the Edge Detection step, a chosen approach is applied, 
on the grayscale image. Methods serves to accurately pinpoint 
edges and contours. The results, in the form of edges, are 
meticulously stored in the "Edge Image” or are filtered once more 
time for better results.  

Subsequently, the program superimposes the filtered contours 
onto a copy of the original image in red. This visualization serves 
to accentuate the detected cracks. Additionally, the program 
conducts time measurements for each image, storing this data for 
future analysis. This data is invaluable for profiling the efficiency 
of the algorithm. 

If filtered contours are present, signifying the presence of 
cracks, the processed image that includes the detected cracks is 
displayed using Matplotlib. To conclude, the program calculates 
and displays the total execution time for processing all images in 
the folder. 

 
 

2.4. Method selection  
 

In the course of this research aimed at implementing the most 
effective image processing methodology for detecting cracks in 
the MPI process, several widely employed methods were 
systematically examined. Upon converting images to grayscale, 
various filters and their respective parameters were explored, 
yielding images that revealed the presence of cracks. However, 
the outcomes of most filters proved to be unsatisfactory. 
Exemplary results are depicted in figure 8.  

The bilateral filter, known for its edge-preserving properties 
in image processing, endeavors to smooth images while retaining 
essential edges. It is engineered to reduce image noise without 
compromising the integrity of edges and fine details. As 
illustrated in Figure 8a, it is evident that the bilateral filter tends to 
preserve features that share characteristics with cracks, such as 
coil contours or structural elements. 

Skeletonization, a process that iteratively erodes the 
boundaries of objects until only one-pixel-wide representations 
remain, referred to as skeletons, aims to maintain the core 
structure while eliminating the object's thickness. Unfortunately, 
skeletonization is susceptible to image noise, manifesting as 
clusters of glowing pixels, which are non-crack elements. This 
phenomenon leads to erroneous representations, as evident in 
Figure 8b. Gabor filter is designed to capture specific spatial 
frequency information and orientation characteristics in images. 

Figure 8c showcases the results following the application of 
the Gabor filter. However, the complex and irregular nature of 
cracks on a spring coil renders them ill-suited to description by 
simple sinusoidal waveforms, as demonstrated by the mismatch 
between the filter's characteristics and the actual cracks.  

Two methods were revealed to have potential for true positive 
crack detection adopting Canny and Top-hat filter. The first 
method employs Canny edge filtering with specific parameters, 
notably threshold_low = 300 and threshold_high = 500, for 
effectively detecting edges in specified images. This method is 

supplemented by a min_contour_length = 250, as elaborated in 
Appendix A. 

The second method involves binary image creation, image 
filtering, and boundary extraction, referred to as the morphology 
top-hat method, which is described in Appendix B. 

Subsequently, the top-hat filter is applied to the grayscale 
image. In essence, this operation computes the disparity between 
the input image and its opening, where the opening operation 
involves erosion followed by dilation. The result of this operation 
is an enhancement of crack-like structures or small bright regions 
within the image. 

A binary threshold is subsequently applied to the enhanced 
image, thereby segregating regions of interest from the 
background. In the code, a threshold of 50 is set, implying that 
pixel values exceeding 50 are designated as 255 (white), while 
values below 50 are denoted as 0 (black). The program then 
identifies contours within the binary thresholded image. Contours 
effectively delineate the boundaries of connected regions within 
the image. The program specifically identifies external contours 
while disregarding internal contours, an essential step in detecting 
regions that may potentially contain cracks. Contours with an area 
smaller than a predefined minimum contour area, herein specified 
as 1000, are excluded. This minimum contour area serves as a 
threshold that can be adjusted in accordance with the 
characteristics of the processed images, effectively filtering out 
contours that are considered noise due to their diminutive size.  

 
 

3. Results  
 
 
3.1 Time Execution 
 

Time library and written code allows to measure time from 
the moment when user picks folder with images and until last 
images is completed, program also shows in the window 
execution time for each image. Succeeding the analysis of batch 
image applications using a set of 41 images (captured as described 
in chapter 2.1) including 10 images with visible cracks on the 
outer spring (200 M1342 0019 for Standard bogie UIC 517 Axle 
load 22.5 t) surface was used., the following conclusions were 
derived. Thanks to The morphological Top-hat method exhibited 
an average total execution time of 34.81 seconds for processing 
all 41 images, which is marginally longer than the execution time 
of the Canny edge filter method, averaging 29.12 seconds. This 
disparity can be attributed to the additional computational load 
introduced by the morphological operation, as it entails extra 
thresholding following the top-hat filter. In Figure 9a, we observe 
the results of the Canny filter, with edges converted into lines that 
delineate the cracks on the original image (fig. 9b). Meanwhile, 
the application of thresholding in the morphological method 
results in extended lines covering nearly the entire crack area (fig. 
9c), enhancing precision, as seen in Figure 9d. 
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Fig. 8. Original images after crack marking:  

a) Bilateral filter, b) Skeletonization, c) Gabor filter 
 

 

 
Fig. 9. a) Canny method after filter and b) draw craks, c) 

Morphological Top-hat after filter and threshold and d) draw 
cracks 

 
 
3.2 Accuracy of Crack Detection 

 
During 41 image set check test the Top-hat method identified 

12 images as potentially containing cracks, of which 9 were 
confirmed by user to exhibit actual cracks, so three images were 
inaccurately labeled as containing cracks, yielding false positives 
(like fig. 10b). The Canny edge filter method successfully 
identified 10 images with cracks, while registering also three false 
positives (fig. 10a,c).  

In the case of Canny, varying filter parameters fails to yield 
comparable results. Increasing the threshold parameters of the 
filter allows for the elimination of the undesirable effect of false 
edges that are not actual cracks (comparing fig. 7f and fig. 10e).  

However, simultaneously, the resulting edge image can be 
incomplete, resulting in minimal highlighting of the crack and 
corresponding to only a small portion of its length as visible in the 
original image (fig 10 e,g) or cracks won’t be pointed on the 
image. 

This filter experiences challenges, particularly in images with 
bright backgrounds where clusters of white pixels may appear. 
The appeared in test difficulty of establishing parameters for 
consistent crack detection is evident when dealing with images 
with pollution in the form of light-reflecting pollen (fig. 10a). 

During tests using bath program new approach was made by 
the author. After modification in the Top-hat code (min contour 
area= 1300) to avoid pointing pollutions the specific false positive 
images (like fig. 10b) and after increasing by 10% the brightness 
of image (fig. 10f) which was not initially indicated by the 
program the Top-hat method started to successfully detect only 
images containing visible cracks. After changes in the code for 
bath processing all 10 images from 41 images with cracks, where 
registered with 0 false positives. Top-hat employed a different 
approach compared to the Canny method, offering improved 
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accuracy, as depicted in Figure 10 f,h. This enhancement is 
attributable to described earlier thresholding after filtering, which 
broadens the edges and allows them to be superimposed on the 
original image.  
 

 
Fig. 10. Original images after crack marking:  

a,c,e,f) Canny method; b,d,f,h) Morphological Top-hat 
 
 

4. Conclusions 
 
This single-image processing program, equipped with the 

capability to implement various methods and observe images at 
each stage, proved instrumental in identifying suitable parameters 
for the Canny and Top-hat methods. Through testing, these 

methods were selected from a pool of popular crack detection 
techniques.  

Additionally, experimentation with different thresholds like 
showed chapter 2.2 for Canny edge detection revealed that 
parameters such as threshold_low = 300 and threshold_high = 500 
were conducive to detecting edges effectively, particularly when 
combined with min_contour_length = 250. The experiments 
emphasized the significance of adjusting parameters, such as 
kernel size and minimum contour area, to align with the unique 
characteristics of the images at hand.  

Assessing the accuracy of crack detection across the entire 
dataset enabled the evaluation of the method's effectiveness in 
identifying and delineating cracks within the selected image 
folder.  Moreover, the batch processing capability streamlined the 
workflow, rendering it practical for the analysis of substantial 
datasets. In the next phase, these methods can be further tested on 
a larger sample of images, emulating the conditions of a vision 
system analyzing extensive datasets during standard operations. 
Incorporating time measurement facilitated insights into the 
computational efficiency of selected methodology. 

While the Top-hat method exhibited potential for enhancing 
true positive detection it incurred a slightly longer execution time 
compared to the Canny edge filter method. This underlines the 
trade-off between accuracy and execution speed, necessitating 
further optimization to minimize the incidence of false positives 
in Canny method. In conclusion, the choice between these two 
methods should be contingent on the specific requirements of the 
application.  

For the tested set of images, the Top-hat method, thanks to its 
enhanced accuracy in crack proper indication, constitutes a valid 
and efficient approach for detecting cracks in images captured 
during MPI. Future work may explore the development of more 
advanced techniques for automated crack detection and analysis. 

 
 

References 
 
[1] Gubeljak, N., Predan, J., Senčič, B. & Chapetti, M. (2014). 

Effect of residual stresses and inclusion size on fatigue 
resistance of parabolic steel springs. Materials Testing. 
56(4), 312-317. DOI:10.3139/120.110567. 

[2] Xu, C., Yilong L., Ming Y., Jiabang Y. & Xiang P. (2021). 
Effects of the ultra-sonic assisted surface rolling process on 
the fatigue crack initiation position distribution and fatigue 
life of 51CrV4 spring steel. Materials. 14(10), 2565, 1-19. 
DOI:10.3390/ma14102565. 

[3] Yun, J.P., Choi, Dc., Jeon, Yj. et al., (2014). Defect 
inspection system for steel wire rods produced by hot rolling 
process. The International Journal of Advanced 
Manufacturing Technology. 70, 1625-1634. 
DOI:10.1007/s00170-013-5397-8. 

[4] Perichiyappan, S. & Jagadeesha, T. (2021). Modelling and 
simulation of primary suspension springs used in Indian 
railways. Materials Today: Proceedings. 46(17), 8450-8454. 
DOI: 10.1016/j.matpr.2021.03.478.  

[5] Kumar, S., Kumar, V., Nandi, R.K. et al. (2008). 
Investigation into surface defects arising in hot-rolled SUP 
11A grade spring billets. Journal of Failure Analysis and 
Prevention. 8(6), 492-497. DOI:10.1007/s11668-008-9169-y. 



A R C H I V E S  o f  F O U N D R Y  E N G I N E E R I N G  V o l u m e  2 4 ,  I s s u e  1 / 2 0 2 4 ,  5 8 - 6 5  65 

[6] Filipović, M., Eriksson, C. & Överstam, H. (2006). 
Behaviour of surface defects in wire rod rolling. Steel 
research international. 77(6), 439-444, 
DOI:10.1002/srin.200606411. 

[7] Matjeke, V.J., Van Der Merwe, J.W., Mukwevho, G. & 
Phasha, M.J. (2019). Thermal characteristics of spring steels 
used in railway bogies. SN Applied Sciences. 1, 1548, 1-8. 
DOI:10.1007/s42452-019-1546-5. 

[8] Nagumo, Y., Tanifuji, K. & Imai, J. (2010). A basic study on 
wheel flange climbing using model wheelset. International 
Journal of Railway. 3(2), 60-67. DOI:10.1299/kikaic.74.242. 

[9] The Rail Safety Inspection Office. (2021). Accident and 
incident investigation report: Derailment of the regional 
passenger train No. 21209 between Chvalkov and Vcelnicka 
operating control points. Retrieved November 7, 2023, from 
https://www.dicr.cz/files/uploads/Zpravy/MU/DI_Chvalkov_
Vcelnicka_210715.pdf. 

[10] Maass, M., Deutsch, W.A., Bartholomai, F. (2014). 
Magnetic Particle Inspection on train components. In 11th 
European Conference on Non-Destructive Testing, 6-11 
October 2014 (pp. 1-9). Prague, Czech Republic. 

[11] Deng, J., Singh, A., Zhou, Y., Lu, Y. & Lee, V.C.S. (2022). 
Review on computer vision-based crack detection and 
quantification methodologies for civil structures. 
Construction and Building Materials. 356, 129238. 
DOI:10.1016/j.conbuildmat.2022.129238. 

[12] Mohan, A. & Poobal, S. (2018). Crack detection using image 
processing: A critical review and analysis. Alexandria 
Engineering Journal. 57(2), 787-798. 
DOI:10.1016/j.aej.2017.01.020. 
 

Appendix A 
gray_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2GRAY)     
    plt.figure() 
    plt.title(f"Grayscale Image: {image_file}") 
    plt.imshow(gray_image, cmap='gray') 
    plt.axis("off") 
    threshold_low = 300   
    threshold_high = 500   
    edges = cv2.Canny(gray_image, threshold_low, threshold_high) 

    plt.figure() 
    plt.title(f"Canny Edge Detection: {image_file}") 
    plt.imshow(edges, cmap='gray') 
    plt.axis("off") 
    output_image = original_image.copy() 
    contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, 
cv2.CHAIN_APPROX_SIMPLE) 
    min_contour_length = 250   
    filtered_contours = [contour for contour in contours if 
cv2.arcLength(contour, closed=True) > min_contour_length] 

# Draw the filtered contours on the output image 
    cv2.drawContours(output_image, filtered_contours, -1, (0, 0, 255), 10) 
 
Appendix B 
    gray_image = cv2.cvtColor(original_image, 
cv2.COLOR_BGR2GRAY) 
    plt.figure() 
    plt.title(f"Grayscale Image: {image_file}") 
    plt.imshow(gray_image, cmap='gray') 
    plt.axis("off") 
    kernel_size = 15 
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (kernel_size, 
kernel_size)) 
    top_hat = cv2.morphologyEx(gray_image, cv2.MORPH_TOPHAT, 
kernel) 
    plt.figure() 
    plt.title(f"Top-Hat Filtered Image: {image_file}") 
    plt.imshow(top_hat, cmap='gray') 
    plt.axis("off") 
    _, binary_image = cv2.threshold(top_hat, 50, 255, 
cv2.THRESH_BINARY) 
    plt.figure() 
    plt.title(f"Thresholded Image: {image_file}") 
    plt.imshow(binary_image, cmap='gray') 
    plt.axis("off") 
    contours, _ = cv2.findContours(binary_image, 
cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) 
    min_contour_area = 1000   
    filtered_contours = [contour for contour in contours if 
cv2.contourArea(contour) > min_contour_area] 
    output_image = original_image.copy() 
    cv2.drawContours(output_image, filtered_contours, -1, (0, 0, 255), 
thickness=10) 
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