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 Abstract—Virtual digital representation of a physical object or 

system, created with precision through computer simulations, data 
analysis, and various digital technologies can be used as training 
set for real life situations. The principal aim behind creating a 
virtual representation is to furnish a dynamic, data-fueled, and 
digital doppelgänger of the physical asset. This digital counterpart 
serves multifaceted purposes, including the optimization of 
performance, the continuous monitoring of its well-being, and the 
augmentation of informed decision-making processes. Main 
advantage of employing a digital twin is its capacity to facilitate 
experimentation and assessment of diverse scenarios and 
conditions, all without impinging upon the actual physical entity. 
This capability translates into substantial cost savings and superior 
outcomes, as it allows for the early identification and mitigation of 
issues before they escalate into significant problems in the tangible 
world. Within our research endeavors, we've meticulously 
constructed a digital twin utilizing the Unity3D software. This 
digital replica faithfully mimics vehicles, complete with functioning 
headlamp toggles. Our lighting system employs polygons and 
normal vectors, strategically harnessed to generate an array of 
dispersed and reflected light effects. To ensure realism, we've 
meticulously prepared the scene to emulate authentic road 
conditions. For validation and testing, we integrated our model 
with the YOLO (You Only Look Once) neural network. A 
specifically trained compact YOLO model demonstrated 
impressive capabilities by accurately discerning the status of real 
vehicle headlamps. On average, it achieved an impressive 
recognition probability of 80%, affirming the robustness of our 
digital twin. 
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I. INTRODUCTION 

HE lighting system of a vehicle plays a crucial part in 

guarantee the safety of both the driver and other road users. 

This intricate car’s subsystem serves several crucial functions, 

including road illumination, signaling drivers intentions, and 

enhancing visibility when it is less light. Amongst the 

components of this system, the headlamps emerge as 

paramount. Positioned prominently at the vehicle's front end, 

headlamps bear the primary responsibility of casting light upon 

the road ahead. These essential fixtures typically come equipped 

with both high and low beams, tailored to suit various lighting 

conditions. In contemporary times, with many roadways 

illuminated by street lamps, drivers might inadvertently 

overlook the need to activate their headlamps. This oversight 
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has the potential to precipitate automobile accidents or pose 

hazards to pedestrians, underscoring the critical importance of 

headlamp usage. Modern automatic headlamp systems have 

evolved to include sensors that intelligently activate and 

deactivate the headlights based on prevailing lighting 

conditions. However, it's worth noting that numerous countries 

have implemented regulations stipulating that headlights should 

be activated whenever a vehicle is in motion. This is a measure 

aimed at enhancing road safety. Despite the convenience of 

automatic systems, it's crucial to recognize that permanent usage 

of car’s headlights can potentially accelerate their wear and lead 

to premature failure. The National Highway Traffic Safety 

Administration in the United States, as documented in [1], has 

recognized inadequate lighting as a contributing factor in 

roughly 2% of all vehicle accidents. This underscores the 

pivotal role of reliable lighting systems in vehicles. 

Additionally, statistics provided by The American Automobile 

Association (AAA), as referenced in [2], reveal that over half of 

all pedestrian fatalities occur between 6 p.m. and midnight. 

Consequently, it is imperative for vehicle owners to proactively 

inspect and maintain their lighting systems to guarantee optimal 

functionality. By doing so, they not only ensure their own safety 

but also maximize visibility while operating their vehicles, 

thereby contributing to overall road safety. In certain road 

situations, fellow road users may attempt to communicate with 

a driver to encourage them to activate their vehicle's lighting 

system. Typically, this communication is conveyed through 

brief or extended flashes of their vehicle's headlights. These 

headlight signals serve as a non-verbal means of conveying 

messages and warnings among drivers on the road. In 

contemporary road infrastructure systems, a proliferation of 

cameras is readily observable, predominantly employed for the 

purpose of monitoring road traffic. These cameras serve as a 

valuable resource for detecting anomalies in vehicle lighting 

systems. The scientific community has extensively explored 

techniques for the automatic detection of vehicles, primarily 

within the context of collision avoidance systems [3, 4], with 

cameras serving as a primary tool for this task. However, it's 

worth acknowledging that vehicle detection remains a 

challenging endeavor due to the extensive diversity in vehicle 

shapes, the often cluttered and complex road environments, and 

the ever-changing lighting conditions. To bolster the robustness 

of these detection systems, machine learning (ML) techniques  
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have come to the forefront [5–7]. Among these, convolutional 

neural networks (CNNs) have made substantial strides in 

advancing vehicle detection devices. These systems find 

prominent application in both autonomous vehicles and the 

realm of road safety. They represent a significant technological 

stride forward, enhancing the capability to detect and respond to 

vehicles in real-time, thereby contributing to safer and more 

efficient roadways. Our previous preliminary work on 

headlamps failure detection shows some successes in that matter 

[8]. 

In our current research project, we are focused on employing 

machine learning (ML) algorithms to ascertain the functioning 

status of a vehicle's headlights. Our approach involves utilizing 

a training dataset composed of images featuring 3D models of 

vehicles equipped with headlamps. These images serve as the 

foundation for training our model. The ultimate objective is to 

leverage Convolutional Neural Networks (CNNs) to perform 

real-time detection using a camera system, thereby determining 

whether the headlights of a given vehicle are in the activated 

(on) or deactivated (off) state. This application of ML and CNN 

technology holds the promise of providing a practical and 

automated solution for assessing the operational status of 

vehicle headlights, which has significant implications for road 

safety and overall vehicle maintenance. 

II. VEHICLE LIGHTING SAFETY PARAMETERS 

All road-legal vehicles have headlights. It is required for them 

to emit a white (or selectively white) light. In the case of xenon 

lamps, they can emit colors that span from light blue to almost 

violet, as long as their brightness falls within acceptable 

parameters. New regulatory changes have introduced the use of 

separate daytime running lights, with LED lighting becoming 

increasingly common. LED lights not only exhibit greater 

durability but also consume significantly less energy. Over time, 

older or poorly maintained headlights can become discolored 

and develop a yellowish tint, impairing their ability to properly 

illuminate the road. Ensuring that the lights on our vehicles not 

only have the correct color but also match in color is crucial. 

This issue is typically less problematic with traditional and 

halogen bulbs since replacing one burnt-out bulb is 

straightforward. Xenon lamps, for example, present a unique 

challenge as their filaments degrade over time, making it 

extremely challenging to match the brightness of a new lamp 

with its predecessor. The comprehensive technical standards for 

operating motor vehicle headlights are outlined in the 

regulations of the Economic Commission for Europe of the 

United Nations [9]. Collecting a sufficient number of 

photographs depicting motor vehicles with both correct and 

incorrect lighting samples can be a complex undertaking. 

Creating a substantial dataset necessitates a significant amount 

of time and runs the risk of not capturing vehicles with specific 

lighting irregularities. Furthermore, assembling a database of 

vehicle photos may entail handling sensitive data, raising 

concerns related to data protection laws. To tackle these 

challenges and acquire suitable images of motor vehicles 

displaying diverse lighting attributes, it was decided to create a 

digital simulator based on the concept of a digital twin. This 

approach offers a controlled and efficient means to generate the 

needed data for research and analysis while circumventing the 

complexities associated with real-world data collection. 

III. UNITY3D ENGINE  

The "digital twin" concept in computer simulation involves 

generating a virtual representation of a tangible object or system 

to replicate its functionality and experiment with various 

operational scenarios or solutions. Digital twins are invaluable 

for emulating diverse operational states of real systems, testing 

innovative solutions, and forecasting future system conditions. 

This approach proves especially advantageous for intricate 

systems or facilities that are impractical or impossible to 

construct or study in the physical realm. Moreover, digital twins 

offer a safe and cost-effective alternative when real-life testing 

is prohibitively expensive or hazardous. In our study, we 

harnessed the Unity3D environment to construct a simulator 

capable of configuring the lighting parameters of a motor 

vehicle and environmental lighting conditions. The simulator 

affords the flexibility to customize camera settings for specific 

scenes, facilitating the generation of a wide array of motor 

vehicle images with varying lighting attributes and external 

circumstances. To execute the simulation, we employed 

digitized models to replicate the environment and the car itself. 

By integrating the camera component, we obtained graphical 

representations showcasing examples of vehicles with both 

correctly functioning lighting systems and those exhibiting 

lighting irregularities. Leveraging the digital twin concept, 

which faithfully mimics the operation of a car's lighting system, 

we could simulate the activation or deactivation of vehicle 

lighting and manipulate its parameters as needed. The simulator 

also streamlines the process of automatically generating vehicle 

images from different distances and angles. Additionally, it 

offers functionality for adjusting environmental lighting 

settings, enabling the recreation of scenarios such as driving in 

daylight, nighttime conditions, or challenging lighting 

conditions like driving against the sun. Moreover, the simulator 

permits the introduction of simulated failures and irregularities, 

including variations in parameters for both headlights, or values 

for lighting emission angles that would be deemed unacceptable 

under typical road conditions. By embracing this digital twin 

approach within our experiment, we've created a versatile and 

robust tool for simulating and assessing various aspects of 

vehicle lighting, enhancing our ability to research, analyze, and 

improve the performance and safety of automotive lighting 

systems. In our simulation scene setup, we employed standard 

assets such as “Terrain” and “Skymaps”. We integrated motor 

vehicle models, acquired through scanning and 

photogrammetric techniques [10], which were developed based 

on BluePrint images and sourced from freely available FBX 

files. However, the most critical aspect of scene preparation for 

creating target motor vehicles images was modelling of light 

conditions. Within the Unity3D environment, we had access to 

various types of lights, including point, spot, directional, and 

area lights, all of which were instrumental in crafting the desired 

scene (Fig. 1). Table 1 outlines the parameters of the Light 

object in the Unity3D environment, enabling us to fine-tune the 

applied light source to meet our requirements. It's important to 

note that the appearance of objects within the scene, as captured 

in the created images, depends not only on the external lighting 

parameters but also on the environmental lighting settings 

configured through the Lighting menu. Unity3D provides the 

capability to define the environmental material (skybox), 

composed of six photos reflecting the surroundings of the scene. 
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These environmental parameters also offer control over ambient 

light color, which influences the visual characteristics of all 

illuminated objects. By leveraging these capabilities, we could 

meticulously shape the lighting conditions and environmental 

factors to create a highly realistic and dynamic simulation 

environment for our research. 

 

 
 

Fig. 1. The light object switched on Unity 3D scene 

 

The quality of the created snapshots is also influenced by the 

camera object settings within the Unity3D environment, which 

can accurately replicate the camera's physical characteristics. 

By manipulating the position properties of both the camera 

object and the car model, it becomes feasible to simulate the 

car's movement and capture virtual photos from predefined 

distances. Furthermore, the "enabled" property of the light class 

object, employed to simulate the car's lights, enables the 

activation or deactivation of the car lights. Leveraging the 

capabilities offered by the Unity 3D environment, it becomes 

possible to generate a substantial number of sample images 

without the need for prolonged observations or waiting for a car 

with the desired lighting parameters to appear. This expedited 

and controlled process streamlines the generation of diverse 

training data for machine learning applications. 

IV. PREPARING A CAR MODEL WITH LIGHTS 

One of the methods of preparing a model of realistic cars is 

the use of photogrammetric methods, which allow you to reflect 

the grid of polygons representing the body of the car, as well as 

the textures responsible for the appearance of individual 

elements. The use of photogrammetry requires taking a series of 

photos of the object that show its appearance from all sides. 

Based on these photos, it is possible to create an object using 

software such as Meshroom. It is an open-source software that 

is based on the runtime environment for the applications of the 

AliceVision Photogrammetric Computer Vision framework.  

(https://github.com/alicevision/Meshroom). Unfortunately, the 

created model file has some inaccuracies and must be corrected 

manually, e.g. using the Blender environment. The appearance 

of the geometry of the car object obtained by the 

photogrammetric method is presented in Figure 2. 

 

 
 

Fig. 2. Scanned 3D Car Object in Blender Environment 

The quality of the generated model relies on numerous factors, 

such as the quality of the photographic images employed in the 

photogrammetry process, the positioning of the camera, and the 

ambient lighting conditions. In the process of preparing the 

model, it was noticed that shiny objects photographed in natural 

lighting (e.g. car body) in the target model are reproduced with 

inaccuracies that must be corrected manually. The Xiaomi 

Redmi Note 9 smartphone was employed for photography, 

boasting a camera with the following specifications: 48 MP 

(ƒ/1.79, 1/2", 0.8μm, 79°). Additionally, the camera utilized a 

Time of Flight (ToF) sensor. This ToF component is capable of 

emitting infrared light and subsequently measuring the speed at 

which it bounces back from objects. The sensor comprises two 

essential parts: firstly, a diode responsible for emitting infrared 

radiation, and secondly, a specialized light-sensitive matrix. By 

precisely calculating the time it takes for the reflected light to 

return, the camera not only estimates the distance of individual 

objects from the sensor but also discerns their shapes with 

remarkable precision. It's worth noting that there are also 

devices available on the market equipped with LIDAR sensors. 

This device employs a technique that involves measuring 

distances by emitting laser light towards the target and 

subsequently gauging the reflected light with a sensor. 

Discrepancies in the time it takes for the laser beam to return 

and any alterations in its wavelength are harnessed to construct 

a three-dimensional model. Employing this methodology can 

yield superior outcomes when capturing the structure of the 

model [11]. The lack of availability of more advanced research 

equipment, and the relatively long time of manual correction of 

the model, meant that ready-made 3D models were also used to 

differentiate the cars used for testing.  One of the problems that 

had to be solved to achieve the most realistic appearance of the 

model was to reflect the appearance of the lights, and to place 

in the hierarchical structure of the model appropriate light 

sources that would best reflect the realistic appearance of the 

real car. Prepared model files allow you to reflect their geometry 

and appearance through hierarchical mapping of individual 

elements of the car. A representation of the object hierarchy of 

an example car model is shown in Figure 3.  

 

TABLE I  

THE UNITY3D LIGHT SETTINGS 

Setting name Description 

_type The type of the light source. 

_range The range of the emitted light 

_spot_angle Angle of spot light. 

_color The color of emitted light. 

_mode Set the  CPU/GPU load. 

_intensity brightness of the light source. 
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Fig. 3. Hierarchical car model with added lights 
 

In the provided example, we employ a method that 

approximates light using two distinct sources of emission for 

each reflector. Within the Unity 3D environment, there exists 

the capability to manipulate light reflections through objects 

that interact with various emission sources, notably point lights 

and spotlights. Point lights are positioned at specific coordinates 

in space and emit light uniformly in all directions. The incident 

light's trajectory onto a surface corresponds to the line extending 

from the point of impact back to the center of the illuminated 

object. As you move farther away from the light source, the 

light's intensity diminishes, adhering to an inverse square law, 

where the light intensity decreases in proportion to the square of 

the distance from the source. On the other hand, spotlights are 

characterized by their distinct location and a defined range over 

which their light is cast. Spotlights are further constrained by an 

angle, giving rise to a cone-shaped illumination pattern. The 

central axis of this cone extends forward from the spotlight, with 

light intensity diminishing as one moves towards the outer edges 

of the spotlight's cone. 

V.  NEURAL NETWORK  

In our research, we harnessed the power of YOLO for the 

detection of proper car lighting. YOLO, which stands for "You 

Only Look Once," is a real-time object detection algorithm that 

has garnered widespread recognition in computer vision. The 

core concept behind YOLO is to execute object detection in a 

single pass, eliminating the need for a separate region proposal 

step, a characteristic found in other algorithms dedicated to 

object detection. This distinctive feature makes YOLO 

significantly faster and more efficient compared to its 

counterparts. The YOLO algorithm operates by breaking down 

the input image into a grid of cells, where each cell is entrusted 

with the task of detecting objects within its designated region. 

Leveraging a convolutional neural network (CNN), the 

algorithm predicts the likelihood of an object's presence within 

each cell and the coordinates of the bounding box encapsulating 

the object. Furthermore, YOLO incorporates a crucial step 

known as Non-Maxima Suppression (NMS). This step serves 

the purpose of eliminating redundant bounding boxes that may 

correspond to the same object. This is essential because without 

this step, the same object can be detected multiple times in 

different cells. It's noteworthy that YOLOv7 represents the 

latest iteration of the YOLO algorithm [12], embodying 

advancements and refinements to enhance its performance and 

accuracy. YOLO's unique approach and real-time capabilities 

make it a formidable tool in various applications, including our 

endeavour to detect proper car lighting. 

VI. TRAINING 

In our training model we have used two distinct classes that 

we've labeled as "lights_on" and "lights_off," signifying the 

respective states of motor vehicle headlamps. To train the 

network for the detection of these two states, we utilized a 

dataset comprising 872 snapshots per each class. This dataset 

was then partitioned into a training dataset, encompassing 748 

snapshots, and a validation dataset comprising 124 images. This 

division equates to 86% of the snapshots for training and 14% 

for validation, maintaining a consistent format for each image. 

For uniformity, all images were set to a resolution of 640x640 

pixels, employing the RGB color model, and saved in JPEG file 

format. Table 2 and Figure 2 provide examples of images 

sourced from our training set. It's worth noting that all these 

images were captured within our digital twin simulation hosted 

in the Unity3D engine. The vehicle photos adhered to the rules 

outlined in Table 2, covering scenarios with both states 

headlights. Additionally, snapshots of the digital motor vehicle 

simulation were taken under three distinct lighting conditions, 

named night, dawn, and midday, as depicted in Figure 2. We did 

not apply any further enhancements or alterations to these 

images using external image editing software. To facilitate 

YOLO network training, we labeled the images using a labelling 

program developed in Python, with OpenCV as a core 

component. In our training dataset, we utilized a standard tiny 

YOLO model, which is optimized for edge IoT computing 

devices such as the Jetson Nano, ensuring efficient 

computational performance. The training procedures were 

conducted using a GPU, specifically the NVIDIA GeForce GTX 

960M with CUDA 5.0 capability, to expedite the training 

process and improve model performance. 

 

 

Fig. 4. The vehicle model captured in snapshots under three distinct time of 

day, like a) night, b) dawn, and c) midday 

VII. RESULTS 

In our experiment, we have used a total of 872 images taken 

from the Unity3D scene as the training dataset for the YOLOv7  

 

TABLE II  
THE UNITY3D CAMERA COORDINATES RELATIVE TO THE CAR MODEL   IN (X,Y,Z) 

VECTOR FORMAT. ALL DISTANCES ARE USING METERS UNITS. 

The names 
of the 

distance 

The names of viewpoints 

(left) (right) (center) (top) 

(near) (-2,1.5,3) (2,1.5,3) (0,1.5,3) (0,3,3) 

(middle) (-2,1.5,15) (2,1.5,15) (0,1.5,15) (0,3,15) 

(far) (-2,1.5,30) (2,1.5,30) (0,1.5,30) (0,3,30) 
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network. Our training process extended over 500 epochs. To 

assess the quality of our model's inference, we utilized a 

confusion matrix, as illustrated in Figure 5. This matrix is 

structured with actual class columns and predicted class rows, 

and its performance hinges on the values along its diagonal. 

Higher values on the diagonal signify better performance. Upon 

inspecting the matrix, we observe that our network demonstrates 

an impressive ability to identify 3D virtual motor vehicles with 

headlights on with 100% accuracy and cars with headlights off 

with 97% accuracy. The "Background FP" in Figure 5 refers to 

instances where the network incorrectly identifies background 

objects as belonging to one of the classes. However, a pertinent 

question arises: how well does our network perform when faced 

with real-life images of cars? Is the level of graphical detail from 

our 3D simulation sufficient to train the YOLOv7 network to 

recognize cars with both headlamps on and off in real-world 

photos? To investigate this, we compiled a set of 110 

photographs featuring actual cars with their headlamps in both 

states. We utilized the testing tool integrated into the YOLO 

software to evaluate our trained model against these real images. 

Under real-world conditions, the confusion matrix exhibits 

slightly different results, as depicted in Figure 6.  

Fig. 5. The confusion matrix after the training using digital twin set 

 

Fig. 6. Trained network confusion matrix for the images of the real-life photos 

In this scenario, the inference quality for both classes is 

approximately 80%. Alongside less precise class recognition, 

the YOLO network also occasionally identifies non-existing 

objects. The term "Background FN" in the confusion matrix 

alludes to instances where the detector misses trash or non-trash 

objects, erroneously categorizing them as other background 

objects. These findings underscore the nuances and challenges 

associated with transitioning from computer-generated 3D 

graphics to real-world images. While our model excels in the 

former environment, it faces some hurdles when confronted 

with the inherent complexities of real-life photography. An 

illustration of the worst-predicted batch is presented in Figure 7.  

 
Fig. 7. The worse predicted batch example 

 

Within this batch, we can observe 16 images, each 

accompanied by bounding boxes denoting the class labels and 

the associated probabilities. Notably, five of these images depict 

instances of false recognition of switched-on headlamps. 

Additionally, one image is erroneously classified as both 

switched-on and off headlamps simultaneously. This 

misclassification is attributable to the inherent disparities 

between real-world lighting conditions and the simplified 

lighting model employed in computer graphics. Consequently, 

we encounter instances where the network infers the presence 

of non-existent group of objects in the example set of images. 

For instance, the network occasionally identifies switched-off 

headlamps as part of the background structure or building in the 

image. These challenges underscore the intricacies of training a 

model to accurately recognize objects under real-world 

conditions, where lighting variations and complex environments 

can introduce complexities that differ from the controlled 

settings of computer-generated graphics. Precision (P) in 

recognition is quantified by considering both true positive (TP) 

and false positive (FP) cases, and it is calculated using the 

formula P = TP / (TP + FP).  

This measure of precision is typically determined at a 

specified confidence level. To ascertain the confidence level at 

which the precision reaches 100%, we can refer to Figure 8, 
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which displays the precision-confidence curve. As depicted, for 

all classes, the precision attains a perfect score of 100% at a 

confidence level of 86.4%. This finding informs us that, under 

the specified conditions and confidence threshold, the model 

achieves a flawless precision rate, correctly identifying objects 

without any false positives when the confidence score reaches 

86.4%.   

 

Fig. 8. The precision-confidence dependency curve 

Another crucial parameter for evaluating the performance of 

machine learning models is recall, also known as the true 

positive rate or sensitivity. Recall (R) is calculated using the 

formula R = TP / (TP + FN), with FN representing the instances 

of false negatives. In the batch of pictures (Fig. 7), there is an 

example of a false negative (FN) case where the class was 

detected but inaccurately so. Recall can be understood as the 

ratio of true positive predictions to all actual positive instances 

within the dataset. Like precision, recall is evaluated with 

respect to confidence levels. Figure 9 presents the recall-

confidence curve, offering insights into how recall varies at 

different confidence thresholds.  

 

Fig. 9. The recall-confidence dependency curve 

When the threshold is set at 0% confidence, we obtain all 

predictions from our machine learning model, irrespective of 

their correctness. At the 50% confidence threshold, we still 

retain 78.6% of predictions. Notably, the recall curve gradually 

diminishes to zero as we approach the 90% confidence 

threshold. This signifies that if we set the confidence threshold 

to 0.9 in our trained YOLO model, we would receive no 

predictions. For an ideal classifier, the recall curve should be 

constant with a value of 1.0 across all confidence levels, 

indicating perfect recall where all actual positive objects are 

correctly identified by the model. The optimal scenario for an 

algorithm entails achieving both high precision and high recall, 

effectively balancing accurate positive predictions and 

comprehensive coverage of actual positive instances.    

This equilibrium ensures the algorithm's effectiveness in 

accurately identifying relevant items while minimizing false 

positives and false negatives. To comprehensively evaluate the 

quality of a classifier, the precision-recall (PR) curve, as 

illustrated in Figure 10, is commonly employed. A high area 

under the PR curve signifies a superior classifier. Upon 

reviewing this plot, it's evident that our classifier exhibits a 

stronger recognition performance for the headlamp on class 

compared to the headlamp off class. For all groups of objects, 

the ideal confidence threshold that achieves a balanced 

compromise between precision and recall is established at 

83.3%. This insight informs us that, under these conditions, our 

classifier achieves a favorable equilibrium between making 

accurate positive predictions and ensuring comprehensive 

coverage of positive instances, marking it as a proficient 

performer.  

 

Fig. 10. The plot of precision-recall curve 

When considering the practical application of our classifier, 

such as in a road lighting sensor system, it becomes crucial to 

determine the optimal confidence threshold. To achieve this, we 

create the F1 score curve, which represents a specialized 

instance of the broader Fβ function [13]. The F1 score curve, as 

depicted in Figure 11, allows us to visualize the trade-off 

between precision and recall. By conducting this analysis, we 

can pinpoint the optimal confidence threshold for our classifier, 

which is determined to be 0.417. At this threshold, the F1 score 
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function attains its peak value, signifying that it achieves the 

most effective equilibrium between precision and recall. This 

threshold is particularly valuable when deploying the classifier 

in real-world scenarios, ensuring that it delivers a strong 

performance by optimizing both the accuracy of positive 

predictions and the coverage of positive instances.  

Fig. 11. The dependance of F1 score function on confidence 

Enhancing the robustness of a network by generating 

additional spatially distorted images and incorporating them 

into the training set is a well-established technique in machine 

learning [14-19]. This method has demonstrated its 

effectiveness in improving the quality of trained ML models.  

It helps the network generalize better and perform well even 

when presented with data that deviates from its training 

samples. Our work highlights how even a simple model of 

lighting in a 3D scene can yield impressive results in 

recognizing the status of vehicle headlights. This underscores 

the power of digital twins in the machine learning training 

process. Our research serves as a testament to the utility of 

digital twins in training machine learning models. It's evident 

that the costs associated with training neural networks using 

digital twins are substantially lower than using real-life images. 

Moreover, the process of learning can be more streamlined and 

automated when leveraging digital twins, offering a practical 

and cost-effective approach to model development and training. 

VII. CONCLUSIONS 

The obtained results show that digital twins built on the basis 

of basic 3D visualization environments can be used to generate 

training datasets. Even a simple digital twin built on polygons 

was able to generate a training dataset for a neural network. A 

YOLO v7 network trained on the generated images 

demonstrated the ability to recognize the state of vehicle 

headlights with an average probability of 80% during tests on 

110 real vehicle images. Although we attempted to improve the 

model's performance by generating more training images and 

increasing the number of training epochs, we did not observe a 

significant improvement in recognition accuracy. We assume 

that the limitation lies in the quality of computer-generated 

graphics used in our simulations. For the implementation of the 

digital twin application, we used the basic version of Unity 3D. 

The use of the pro version, which offers greater graphical 

capabilities, especially in the area of lighting generation, could 

further enhance the realism of the training images. Lighting 

conditions in simulations differ from real scenarios with 

headlights, where light is usually reflected in concave mirrors 

and refracted through a glass headlight cover. More accurate 

modeling of all aspects of automotive headlights' operation 

could also yield better results in terms of realism. Using ray 

tracing instead of polygon and normal methods, which requires 

increased image preparation costs, could lead to significant 

improvement. This approach would involve modeling the 

interior of headlights with a focus on details for each vehicle. 

By applying this improved graphics and refining our digital 

twins, we expect to achieve better overall prediction accuracy in 

the future. However, the question of the extent of accuracy 

improvement requires further empirical research. A drawback 

of the approach proposed in our research was also the use of a 

limited number of car models in the preparation of the digital 

twin. Due to the specific appearance features of individual car 

models and even groups of models, it would be necessary to 

expand the database of modeled objects when implementing an 

improved version of the digital twin. The preparation of a 

vehicle model is a time-consuming process, even when using 

reverse engineering methods based on photogrammetry. 

Therefore, in building an extended database of car models, we 

plan to use modern graphic hardware to digitize objects using 

photogrammetric methods and utilize cloud computing services 

that offer 3D object digitization based on a series of real object 

photographs. The database of vehicle models can also be 

expanded by acquiring ready-made car models from 

commercial platforms. When analyzing the progress and 

potential of continuous development of 3D visualization 

engines and digital twins, it is important to note that achieving 

a higher degree of realism in generated training images is 

possible. Through achieving better realism and expanding and 

diversifying the training image database while tuning neural 

network parameters, we plan to achieve even better prediction 

results for real-world images. 

REFERENCES 

[1] Home | NHTSA, https://www.nhtsa.gov/, last accessed 2023/01/17. 

[2] AAA | American Automobile Association, https://www.ace.aaa.com/, 
last ac-cessed 2023/01/17. 

[3] Z. Sun, G. Bebis, and R. Miller,"On-road vehicle detection: a review", 

IEEE Trans. Pattern Anal. Mach. Intell., vol 28, pp. 694–71, 2006. 
doi:10.1109/TPAMI.2006.104 

[4] A. Mukhtar, L. Xia, and T. Boon Tang,"Vehicle Detection Techniques 

for Collision Avoidance Systems: A Review", IEEE Trans. Intell. Transp. 
Syst. Vol 16, pp. 2318–2338,  2015. doi:10.1109/TITS.2015.2409109 

[5] A. Dawid, "PSR-based research of feature extraction from one-second 
EEG signals: a neural network study", SN Appl. Sci., vol. 1, article 
number 1536, 2019. doi:10.1007/s42452-019-1579-9 

[6] A. Bhattacharyya, M. Sharma, R. B. Pachori, P. Sircar, and U. R. 

Acharya, "A novel approach for automated detection of focal EEG 

signals using empirical wavelet transform.", Neural Comput. Appl., vol. 
29, pp. 47–57, 2018. doi:10.1007/s00521-016-2646-4 

[7] E.S. Madhan, S. Neelakandan, R. Annamalai, R., “A Novel Approach for 
Vehicle Type Classification and Speed Prediction Using Deep 

Learning.”, J. Comput. Theor. Nanosci. vol. 17, pp. 2237–2242, 2020. 
doi:10.1166/jctn.2020.8877 

[8] A. Dawid, P. Buchwald, B. Pawlak, "The Digital Twin to Train a Neural 

Network Detecting Headlamps Failure of Motor Vehicles", In: W. 
Zamojski, J. Mazurkiewicz, J. Sugier, T. Walkowiak, J. Kacprzyk (eds)  
 

https://www.nhtsa.gov/
https://doi.org/10.1109/TPAMI.2006.104
https://doi.org/10.1109/TITS.2015.2409109
https://doi.org/10.1007/s42452-019-1579-9
https://doi.org/10.1007/s00521-016-2646-4
https://doi.org/10.1166/jctn.2020.8877


58  A. DAWID, P. BUCHWALD 

 

Dependable Computer Systems and Networks. DepCoS-RELCOMEX 
2023. Lecture Notes in Networks and Systems. Springer, Cham., vol 737, 
pp. 29-38, 2023. doi:10.1007/978-3-031-37720-4_3 

[9] Regulation No 48 of the Economic Commission for Europe of the United 

Nations (UNECE) — Uniform provisions concerning the approval of 

vehicles with regard to the installation of lighting and light-signalling 
devices [2019/ 57]. 

[10] Y. Kim, H. Gwak, J. Oh, M. Kang., J. Kim, H. Kwon, and S. Kim, 
“CloudNet: A LiDAR-Based Face Anti-Spoofing Model That Is Robust 

Against Light Variation.” IEEE Access. vol. 11, pp. 16984–16993, 2023. 
doi:10.1109/ACCESS.2023.3242654. 

[11] D. Palka, M. Sobota, P. Buchwald, "3D Object Digitization Devices in 
Manufacturing Engineering Applications and Services.", Multidiscip. 

Asp. Prod. Eng., vol. 3, pp. 450–463,  2020. doi:10.2478/mape-2020-
0038 

[12] C-Y Wang, A. Bochkovskiy, and Hong-Yuan Mark Liao, "YOLOv7: 

Trainable bag-of-freebies sets new state-of-the-art for real-time object 
detectors", http://arxiv.org/abs/2207.02696, 2022. 
doi:10.48550/arXiv.2207.02696 

[13] C. Goutte, E. Gaussier, "A Probabilistic Interpretation of Precision, 

Recall and F-Score, with Implication for Evaluation", In: Losada, D.E. 

and Fernández-Luna, J.M. (eds.) Advances in Information Retrieval.. 

Springer, Berlin, Heidelberg, pp. 345–359,  (2005). doi:10.1007/978-3-
540-31865-1_25 

[14] K. Szyc, "An Impact of Data Augmentation Techniques on the 

Robustness of CNNs", In: W. Zamojski, J. Mazurkiewicz, J. Sugier, T. 

Walkowiak, and J. Kacprzyk, (eds.) “New Advances in Dependability of 
Networks and Systems.”, Springer International Publishing, Cham, pp. 
331–339, 2022. doi:10.1007/978-3-031-06746-4_32 

[15] C. Shorten and T. M. Khoshgoftaar, "A survey on Image Data 
Augmentation for Deep Learning", J. Big Data., vol 6, article number 60, 
2019. doi:10.1186/s40537-019-0197-0 

[16] A. Pilch and H. Maciejewski, "Labeling Quality Problem for Large-Scale 

Image Recognition", In: W. Zamojski, J. Mazurkiewicz, J. Sugier, T. 

Walkowiak, and J. Kacprzyk, (eds.) “New Advances in Dependability of 
Networks and Systems.”, Springer International Publishing, Cham, pp. 
206–216, 2022. doi:10.1007/978-3-031-06746-4_20 

[17] K. Szyc, "Determining the Minimal Number of Images Required to 

Effectively Train Convolutional Neural Networks". In: Zamojski, W., 

Mazurkiewicz, J., Sugier, J., Walkowiak, T., Kacprzyk, J. (eds) Theory 
and Applications of Dependable Computer Systems. DepCoS-

RELCOMEX 2020. Advances in Intelligent Systems and Computing, 
Springer, Cham. vol 1173. pp 652–661, 2022, doi:10.1007/978-3-030-
48256-5_64 

[18] A. Rusiecki, "Standard Dropout as Remedy for Training Deep Neural 

Networks with Label Noise.", In: Zamojski, W., Mazurkiewicz, J., 

Sugier, J., Walkowiak, T., Kacprzyk, J. (eds) Theory and Applications of 
Dependable Computer Systems. DepCoS-RELCOMEX 2020. Advances 

in Intelligent Systems and Computing, Springer, Cham. Vol 1173, pp 
534–542, 2020.  doi:10.1007/978-3-030-48256-5_52 

[19]  J. Mazurkiewicz and A. Cybulska, (2020). Softcomputing Art Style 

Identification System. In: Zamojski, W., Mazurkiewicz, J., Sugier, J., 
Walkowiak, T., Kacprzyk, J. (eds) Engineering in Dependability of 

Computer Systems and Networks. DepCoS-RELCOMEX 2019. 

Advances in Intelligent Systems and Computing, Springer, Cham., vol 
987., pp  321–330, 2019, doi:10.1007/978-3-030-19501-4_32 

https://doi.org/10.1007/978-3-031-37720-4_3
https://doi.org/10.1109/ACCESS.2023.3242654
https://doi.org/10.2478/mape-2020-0038
https://doi.org/10.2478/mape-2020-0038
https://doi.org/10.48550/arXiv.2207.02696
https://doi.org/10.1007/978-3-540-31865-1_25
https://doi.org/10.1007/978-3-540-31865-1_25
https://doi.org/10.1007/978-3-031-06746-4_32
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1007/978-3-031-06746-4_20
https://doi.org/10.1007/978-3-030-48256-5_64
https://doi.org/10.1007/978-3-030-48256-5_64
https://doi.org/10.1007/978-3-030-48256-5_52
https://doi.org/10.1007/978-3-030-19501-4_32

