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Optimization of a task schedule for teams with
members having various skills

Marek Bazan, Czesław Smutnicki, and Maciej E. Marchwiany

Abstract—We consider the real-life problem of planning tasks
for teams in a corporation, in conditions of some restrictions.
The problem takes into account various constraints, such as for
instance flexible working hours, common meeting periods, time
set aside for self-learning, lunchtimes and periodic performance
of tasks. Additionally, only a part of the team may participate in
meetings, and each team member may have their own periodic
tasks such as self-development. We propose an algorithm that is
an extension of the algorithm dedicated for scheduling on parallel
unrelated processors with the makespan criterion. Our approach
assumes that each task can be defined by a subset of employees or
an entire team. However, each worker is of a different efficiency,
so task completion times may differ. Moreover, the tasks are
prioritized. The problem is NP-hard. Numerical experiments
cover benchmarks with 10 instances of 100 tasks assigned to
a 5-person team. For all instances, various algorithms such as
branch-and-bound, genetic and tabu search have been tested.

Keywords—unrelated parallel machine scheduling problem;
task scheduling for corporation teams; genetic algorithms; tabu
search; branch and bound

I. INTRODUCTION

THE Task scheduling for teams with diverse skill sets,
working hours, and fixed activities is not a trivial chal-

lenge for any team and manager. The optimization of task
schedules benefits the organization, employees, and clients
alike. It reduces project implementation time, lowers costs,
and mitigates stress within the team. In this paper we describe
a solution of a scheduling problem with the following real-life
assumptions:

1) there are M members of the team,
2) there are N tasks that may be executed by various team

members
3) the m-th (m ∈ {1, . . . ,M} team member executes the

n-th task with a time tnm ,
4) tasks have their priorities such that tasks with higher

priorities have to be executed first.
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The objective is to find an assignment of tasks to the team
members so that the makespan of tasks within a week is the
least with the additional constraints that

1) groups of a certain number or all team members should
be synchronized on meetings during a workday,

2) each team member may work hours specific to him/her,
3) it should be possible to plan cyclical tasks specific to

each team member or to a group of members (such as
lunch breaks, self-development hours, foreign language
lessons etc.)

The important assumption about the executed tasks is that each
task may by interrupted by a meeting or the end of work for
a particular weekday.

The proposed method of solving the problem stated at
the beginning of the paper consists of two phases. At first,
we show how to define this problem as a R||Cmax [1] i.e.,
scheduling on unrelated parallel machines problem, where
machines correspond to team members and the execution times
for a specific task for various team members may model the
skills of each member. The minimization of the completion
time of the task, which is completed as the last, provides
the makespan minimization whereas sorting of the obtained
solution according to their priorities for each team member
allows preserving the task prioritization. Next, the schedule
obtained from R||Cmax problem is “cut” for groups of team
members to ensure the synchronization of groups of team
members at meetings. Additionally, cutting and expanding a
schedule allows us to model flexible working hours during
a week and to plan cyclical tasks such as self-development
hours, lunch breaks and in general flexible working hours.

The remainder of the paper is organized as follows. The
second section presents related work concerning algorithms
to solve unrelated machine scheduling problems. The third
section presents a proposed formulation of the problem. The
next section describes three methods to solve the problem,
classical and grouping genetic algorithms with several genetic
operators for crossover and mutation with grouping operators
for initial population generation, crossover and mutation, Tabu
Search method and finally, Branch and Bound method is
described.

II. RELATED WORK

Task scheduling is widely covered in the literature. How-
ever, authors have primarily focused on scheduling jobs in
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queue systems for HPC (High Performance Computing) clus-
ters and clouds [2]–[5], or scheduling work in factories [6]–
[8]. There is limited information in the literature regarding task
scheduling for human teams. One can find methodologies for
scheduling tasks for multiple robots [9], [10] or medical equip-
ment scheduling [11], the domain of human work schedul-
ing remains relatively unexplored. One commonly adopted
approach in human work scheduling is the ’shop of tasks’
methodology [12], [13]. However, this approach does not fit in
corporate workflow with ticket systems and modern efficiency-
focus team management.

Task-scheduling methods dedicated to an NP-hard problem
are diverse. The most commonly mentioned in this aim are:

• genetic algorithm [14]–[16],
• particle swarm optimization [17]–[20],
• ant colony optimization algorithms [21], [22],
• multi-processors-based algorithms [23],
• fuzzy algorithms [24], [25],
• cost-based algorithms [26].

Further, we implement only a few of these approaches.

III. THEORY

A. Proposed Method

In this section, we describe the adopted assumptions of the
model of organizing the work of the team and its formulation
as a job-scheduling problem:

1) The task may be stopped and resumed.
2) The task may not be stopped unfinished and handed to

another team member.
3) Each team member executes his/her tasks according to

a sequence of priorities.
4) The execution time of each task depends on the team

member who does it, which enables the modeling of
different skill levels to perform a given task.

It is worth noting that we avoid planning cyclical tasks as
tasks that are scheduled by the algorithm. They are planned
by cuts and shifts of the obtained schedule for any group of
team members.

The optimization criteria is the length of the schedule, which
is the maximum of an individual team member makespan,
which is the minimization of Cmax criterion. The usage of
this criterion provides a load balance for all team members and
also favors assigning a task to more competent team members,
i.e., to those having a shorter execution time for a given task.

For N tasks and M team members the problem may be
formulated as a linear programming problem

min
x∈RN×M

Cmax (1)

with constraints

zm +

N∑
n=1

xnmtnm ≤ Cmax, m ∈ {1, . . . ,M}, (2)

M∑
m=1

xnm = 1, n ∈ {1, . . . , N}, (3)

xnm ∈ {0, 1}, n ∈ {1, . . . , N},m ∈ {1, . . . ,M}, (4)

where tnm is the time required to execute the task n-th by
the m-th team member. The constraint (2) shows the load
of the m-th team member with tasks. The constraints (3) and
(4) correspond to the condition that the whole task may be
executed by only one team member.

The problem (1) – (4) is a mixed linear programming
task. It may be solved using the simplex method (see, e.g.,
[27]) or the interior point method (see e.g., [28]) for a small
N and M . The problem can also be perceived as a task
scheduling on unrelated parallel machines with the makespan
criterion. The problem is NP-hard (see e.g., [29]), which
inclines researchers to find approximation schemes. A short
overview of the results in this field can be found at [30].
Currently, the best approximation scheme with quality (1+ ϵ)
for the problem has the following complexity: N(M/ϵ)O(M),
[30]. For a constant number of machines, it provides a fully
polynomial-time approximation scheme, which computes for
any fixed ϵ > 0 an ϵ-approximate solution in O(N) time. In
a general case, the complexity versus quality of the scheme is
still not competitive with metaheuristics.

After solving problem (1) – (4) the final solution is gener-
ated in the following steps:

1) Extract tasks assigned to m-th team member,
2) Sort the extracted tasks according to priorities pn in

descending order.
3) Construct a schedule that is shifted to the left on a

timeline. If a team member has an individual starting
time for a certain day or has some remaining tasks from
the previous day, then start from the earliest possible
starting time.

4) Cut each individual schedule according to working hours
in chosen days for each individual team member.

5) Synchronize cut blocks among team members so that
meetings start at the same time for all participants.

The overall approach is visualized in Figure 1 with the simple
example solved in [31]. A solution of an unrelated machine
scheduling problem is shown in Figure 1a. The optimal
solution lasts 15.6 hours and is plotted as one full day. The
execution will take almost two working days for the team
members. Figure 1b shows a two-day execution with additional
lunch breaks, achieved by cuts and shifts of the initial solution.
Figure 1c shows an example with additional team meetings
(for part of and the whole team). In Figures 1b and 1c, the
tasks when meetings or planned breaks begin are clear for the
reader.

B. Load balancing

The presented approach up till now does not work well
when the amount of time foreseen for meetings during a week
is not equal for all team members. If we count meeting time
as time at work, then employees with the highest duration of
meetings in the schedule work the longest, since meetings are
not added in the Cmax objective function but applied using
cuts and shifts after the optimization process is finished. One
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(a) The optimal solution - 15.6 hours,
placed in one full day (24h)

(b) Solution stretched to two days
with lunch breaks

(c) Solution stretched to two days with
lunch breaks, daily and status meetings

Fig. 1: An example solution for 4 machines and 9 tasks from [31]. The total (optimal) time is Cmax = 15.6 hours – two working
days. (a) The initial solution placed within one working day. (b) The solution cut and shifted according to the availability mask
of the employees. (c) The solution with personalized working hours of the employees and additional meeting cuts and shifts.

can say that optimization balances only core working time
spent on task execution – see Figure 2a.

The second issue to be resolved is balancing the workload
when one or more team members works only part-time. In
such a case, the algorithm allocates too much work for such
an employee. The example of such a situation is shown in
Figure 3a.

The solution in both of the aforementioned cases is adding
virtual tasks. In the case of unequal time spent on meetings
in a week, one adds virtual tasks for team members with
such long execution time as their amount of time spent on
meetings surpasses the time spent on meetings by a team
member with the shortest overall meeting time during a week.
These virtual tasks have to have the shortest execution time
for the team member to be chosen in the final timetable so that
this particular task is performed by this member. An example
of this solution is presented in Figure 2b.

The solution in the case of unequal work duration during the
week, i.e., some employees not working full-time, is analogue.
A virtual task is added to a team member who works part-
time. The duration of the execution of this task is for this
team member set equal to the difference of full-time working
and part-time working. An example of the balanced schedule
is presented in Figure 3b.

C. Optimization algorithms and feasibility of a solution

To solve our problem we use the following algorithms:
1) Genetic algorithm [32] with various crossover and mu-

tation operators [33],
2) Tabu Search [34],
3) Exact method based on the branch and bound approach

presented in [35].
We encoded the solution which for the main formulation Eq.
(1)-(4) is given by the matrix X = [xnm]1≤n≤N,1≤m≤M to a
vector s = [s1, . . . , sN ] where sn := m and m is an index of
the machine on which the n-th task is executed. The advantage
of such a representation is that as soon as sn ∈ [1, . . . ,m]
for 1 ≤ n ≤ N the solution is feasible. As one can see,
this representation does not store information on the sequence

of execution of tasks by an employee. If any sequence of
tasks execution is required, it has to be modeled by the vector
of priorities. Some details of the investigated algorithms are
given below. Note that sorting of the single employee tasks
execution order with respect to any priority will preserve the
feasibility of the solution. Moreover, the process of cuts and
shifts of tasks (described at the end of Section III-A) also still
maintains feasibility. This follows from the fact that a task may
be processed for a given time after which it can be stopped
and after a break, it is resumed.

To check if all meetings are within time slots when all
interested participants are available in the office is independent
of an optimization algorithm used. It is done beforehand.

The following optimization algorithms are then investigated:
Genetic algorithms. We have tested two procedures for
generating the initial population. First, this was a usual random
generation of the machine to execute the n-th task. The second
approach used initialization based on min operator from the
genetic grouping algorithm [33].

As a crossover operator, we present the results for four
different operators, such as

• min from [33] typical for grouping genetic algorithms,
• MSXF from [36],
• 2points which is similar to PMX [37] but two offsprings

are created by swapping a random subsequence and
leaving the rest unchanged, transferred from parents since
we do not work on permutations.

• OBX from [38].

Crossover probability was set to pcrossover = 0.8.
As a mutation operator, we used the ,,download” mu-

tation operator from [33] and a usual mutation performed
by a randomized change in a prefined number at randomly
chosen positions from one team member to another. Mutation
probability was set to pmutation = 0.2.

The survival mechanism was based on choosing the best
individuals out of offsprings and parents to form a new
generation.

The population size is set to 50. The number of iterations
was set to 200.
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(a) unbalanced tasks durations (b) balanced tasks durations

Fig. 2: Visualizations depicting task scheduling solutions for 100 tasks among 5 team members. The left-hand picture (a)
optimizes makespan (Cmax), in the right-hand picture (b), task durations are balanced.

(a) unbalanced tasks durations (b) balanced tasks durations

Fig. 3: An example of scheduling 100 tasks for 5 team members with unbalanced and balanced task duration. Team member
number 4 works 3/4 of the full-time but gets approximately the same amount of tasks to perform. This is an unwanted behavior.

Tabu Search The tabu search that we employed is based
on [34]. To generate a starting point, we use min operator
[33] used to produce the initial population. However, we do
not use the best solution but the one closest to the median.
It comes from the observation that the min operator often
tends to generate a solution that is close to a certain local
minimum. When the optimization process is started from the
solution corresponding to the one with the objective function
close to the median, it gave us better results than genetic
algorithms, since the convergence to a lowr objective function
value was observed more often than for the genetic algorithm.
For the operators that are used to generate a solution in the
neighborhood, the following operators were used:

1) NH1 – demands that the tasks to be swapped are
executed by another team member,

2) NH2 – swaps tasks performed by different team members
if at least one of them has a different processing time
when executed by another team member,

3) NH3 – swaps tasks performed by different team members
if a swap improves the sum of the processing time for
these team members.

Our implementation does not include a combination of the
above operators. The number of iterations is set to 1000, and
the number of tries in the neighborhood is set to 150. Note
that all operators allow hill climbing since the conditions cover
only two machines.

Exact algorithm The exact algorithm that we have used
to calculate optimal solutions [35] is a branch and bound
algorithm for unrelated parallel machines using Lagrangian
relaxation suggested in [1]. The instances we exploited to
test the overall approach to schedule tasks for a team of
employees come from [35] and are hard for mixed-integer
linear programming algorithms – see [39]. The source code
published by the authors of [35] was exploited to find exact
solutions for the instances used for presentation in this paper.

IV. EXPERIMENTS

The aim of the experiments was to compare the quality of
the solutions obtained by various algorithms. We consider 10
test instances with 100 tasks to be scheduled for 5 employees
in the team. The instances were taken from [35]. The times
given in [35] are treated by us to be given in minutes. In all
tables in the present paper the values in the objective function
as well as inprovements are given in hours. On the solution, we
put the mask of team members’ availability – i.e., individual
working hours as well as meetings that are synchronized to
all or a chosen group of employees. The availability of team
members considered in this paper is given in Table I and
meetings are shown in Table II. The example of some correct
solutions are shown in Figures 2b, 3b and 4.
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TABLE I: Working hours for team members

Day Empl. 0 Empl. 1 Empl. 2 Empl. 3 Empl. 4

Mo 7:00-15:00 7:00-15:00 7:00-15:00 7:00-15:00 7:00-15:00
Tu 9:00-17:00 7:00-15:00 7:00-15:00 7:00-15:00 7:00-15:00
We 7:00-15:00 7:00-15:00 7:00-15:00 7:00-15:00 7:00-15:00
Th 7:00-15:00 7:00-15:00 7:00-15:00 7:00-15:00 7:00-15:00
Fri 7:00-15:00 7:00-15:00 7:00-15:00 7:00-15:00 7:00-15:00

Note that the availability for a given employee may be
represented by multiple intervals during the day as well – see
Figure 4. In the availability table, Employee number 2 begins
work at 9:00 on Tuesday and completes an 8-hour shift.

TABLE II: Meetings plan for a week

Day Time Title Participants

Mo 11:30-12:00 Daily Employees 0,1,2,3,4
13:00-14:00 English classes Employees 0,1,2

Tu 11:00-12:30 Meeting Employees 0,1,2,3,4
13:00-14:00 English classes Employees 0,1,2

We 11:00-12:15 Status 2 Employees 0,1,2

Fig. 4: An example solution of scheduling of 100 tasks for
5 team members. The team members with numbers 3 and 4
on Monday and Tuesday work in three different time slots,
respectively. Such slots have to be declared by the employees
before generating the schedule.

We tested three algorithms to solve the R||Cmax problem
to which our scheduling problem is reduced: a genetic algo-
rithm with various crossover, mutation and initial population
generation operators, tabu-search with different neighborhood
operators, and the branch and bound algorithm. Results are
presented in Tables III and IV for the genetic algorithm, in
Table V for tabu-search, and in Table VI for the branch and
bound algorithm. For the branch and bound algorithm, the
optimal schedule values were found. Only in instances 2 and
5, does the makespan exceeded three days i.e. it is greater than
72 hours (c.f. Table VI).

The tables for the genetic algorithm present the maximum
and mean differences in total execution time compared with
the achieved minimum for a selected setup. The results were
computed for all instances with 5 repeated runs (c.f . Tables
III and IV). Detailed results can be found in the Appendix.
As can be seen from Tables XVII-XXVI in the Appendix, the
three-day makespan was achieved for instances 1,7,8 and 9.

The conclusion is that the sophisticated initial population
operators (like min operator) generate a fairly good solution.
The metaheuristic algorithm does not significantly improve the
initial state. However, the unsophisticated initial population
(such as a random initialization) can be easily improved. In
all the cells where the value is greater than 12 hours, it
means that the initial schedule spanned to 4 days, and after
the optimization, the makespan was shortened to 3 days. It
is worth noting that all improvements that are greater than
1.75 hours mean more than one man-day of savings since the
schedule is balanced for 5 employees.

The table for the tabu search algorithm presents analogously
the maximum and mean differences in total execution time
compared with the achieved minimum for a selected setup.
The results were computed for all instances with 5 repeated
runs (c.f . Table V). Detailed results are listed in Tables VII-
XVI in the Appendix.

V. CONCLUSIONS

In this paper proposed an algorithm to solve the problem
of work scheduling of employees to minimize the makespan
of the overall work of the team. It is assumed that a given
task has a different execution time for a given team member
and may be executed only by one team member. The proposed
approach allows us

1) to model team members’ skills in executing certain tasks
– setting up the execution time of a certain task by a
particular team member for being much longer than the
execution time for the other members one can model
the situation that some members are not capable of
executing this task,

2) synchronization of meetings for the whole team or for
a subset of members of a team,

3) model individual working hours in any number of time
slots,

4) model that some team members work only part-time,
5) minimize the execution time of a set of tasks.

The latter feature is achieved by reducing the problem to
scheduling on unrelated parallel machines R||Cmax. There-
fore, any method to solve this problem may be used for sched-
ule calculation. In this paper we exploited for this purpose
Genetic Algorithms and Tabu Search as well as compared
results with the exact branch and bound method. The obtained
results show that starting from a fully random assignment of
tasks to team members the schedule can be optimized even up
to about 20% of the initial makespan when looking at the wall
time of the execution on instances that are difficult to MILP
methods. To our knowledge, the presented method can fully
model working time organization in corporations allowing for
its makespan optimization for whole teams.

ACKNOWLEDGMENT

The authors would like to thank Mr. Tomasz Gniazdowski
who helped to implement an optimization framework. This
work was partially financed from the grant POIR.01.01.01-
00-1831/20 entitled ”Development of the NEULA Personal



64 M. BAZAN, CZ. SMUTNICKI, M.E. MARCHWIANY

TABLE III: The mean differences in total task execution time between the initial population and results from Grouping
Genetic Algorithm [33] using various crossover operations, i.e., min, MSXF, 2 points, OBX and mutation operators such as
download and usual random mutation. The initial populations were generated using min and random methods. These
results encompass all instances.

min random
usual mutation download mutation usual mutation download mutation

Inst min MSXF 2p OBX min MSXF 2p OBX min MSXF 2p OBX min MSXF 2p OBX
1 0,00 0,00 0,00 0,00 6,58 3,36 6,53 0,06 3,92 0,70 1,58 1,00 3,89 4,00 6,37 3,58
2 0,01 0,00 0,00 0,00 0,17 0,43 0,07 0,04 2,90 1,44 2,34 1,81 4,40 3,46 3,72 4,17
3 0,00 0,00 0,00 0,00 0,09 0,19 0,05 0,05 2,69 1,47 1,14 0,70 3,63 3,54 3,18 3,90
4 0,00 0,00 0,00 0,00 0,09 0,03 0,07 0,06 1,73 1,04 0,94 1,44 3,77 4,09 2,97 4,32
5 0,00 0,00 0,00 0,00 0,18 0,07 0,53 0,08 1,89 1,52 0,17 2,34 4,26 3,39 3,79 3,52
6 0,00 0,00 0,00 0,00 0,23 0,09 0,09 0,16 3,38 -0,06 0,49 0,55 3,14 2,97 3,65 3,49
7 0,04 0,00 0,00 0,00 0,27 0,07 0,10 0,05 18,94 7,60 7,01 -2,64 20,63 19,59 19,70 16,16
8 0,00 0,00 0,00 0,00 0,13 3,30 3,63 0,01 2,60 0,15 1,80 1,48 19,86 17,11 7,12 9,27
9 0,00 0,00 0,00 0,00 0,13 0,06 0,02 0,09 16,50 4,90 4,53 4,72 20,39 19,25 15,83 19,79

10 0,00 0,37 0,00 0,00 0,23 0,11 0,05 0,03 2,56 1,78 2,14 1,51 4,35 3,86 2,13 2,68

TABLE IV: The maximum differences in total task execution time between the initial population and results from Grouping
Genetic Algorithm [33] using various crossover operations, i.e., min, MSXF, 2 points, OBX and mutation operators such as
download and usual random mutation. The initial populations were generated using min and random methods. These
results encompass all instances.

min random
usual mutation download mutation usual mutation download mutation

Inst min MSXF 2p OBX min MSXF 2p OBX min MSXF 2p OBX min MSXF 2p OBX
1 0,00 0,00 0,00 0,00 16,40 16,40 16,45 0,15 4,70 2,17 2,82 2,15 4,47 4,87 19,83 4,70
2 0,07 0,00 0,00 0,00 0,27 1,83 0,23 0,15 5,10 3,67 3,87 2,18 5,63 5,23 5,70 4,75
3 0,00 0,00 0,00 0,00 0,13 0,45 0,27 0,25 4,60 3,13 3,07 1,08 4,85 4,92 4,35 4,63
4 0,00 0,00 0,00 0,00 0,20 0,08 0,20 0,15 3,08 2,73 1,92 3,88 5,12 5,17 5,32 5,40
5 0,00 0,00 0,00 0,00 0,28 0,18 1,93 0,25 4,48 3,28 2,17 4,50 5,90 5,08 4,52 5,38
6 0,00 0,00 0,00 0,00 0,30 0,18 0,32 0,28 5,02 1,10 2,58 2,07 3,68 4,13 4,55 4,68
7 0,18 0,00 0,00 0,00 0,45 0,17 0,27 0,12 20,78 18,47 17,97 1,13 21,55 20,68 20,60 20,63
8 0,00 0,00 0,00 0,00 0,22 16,18 18,10 0,05 4,27 2,82 3,85 2,67 21,53 21,15 18,17 19,08
9 0,00 0,00 0,00 0,00 0,25 0,17 0,10 0,20 21,35 19,63 18,80 18,68 21,32 20,68 20,08 20,80
10 0,00 1,83 0,00 0,00 0,33 0,32 0,10 0,08 4,68 3,72 3,77 2,82 5,33 4,87 3,88 3,52

TABLE V: The maximal and mean differences in total
task execution time between the Tabu Search and Solution
using Hybrid Tabu Search algorithm from [34] using various
operators for generating neighborhood i.e. NH1, NH2, NH3 –
see Section III-C. The results encompass all instances.

maximal mean
Inst NH1 NH2 NH3 NH1 NH2 NH3

1 17,13 17,07 18,12 13,72 13,72 13,91
2 1,05 2,48 1,00 0,84 1,12 0,85
3 1,22 1,20 1,03 0,99 0,97 0,75
4 2,05 2,70 0,90 1,06 1,24 0,81
5 1,00 1,87 1,80 0,86 1,04 1,03
6 2,00 1,92 2,08 1,15 0,97 1,10
7 18,72 0,97 0,82 4,35 0,78 0,70
8 17,80 17,12 18,78 17,06 16,74 17,30
9 1,03 18,17 18,85 0,93 4,27 4,42
10 2,65 1,03 2,12 1,91 0,87 1,13

TABLE VI: Solution obtained by the exact algorithm [35]

Instance No. 1 2 3 4 5
Cmax 61,52 79,23 62,77 62,03 79,10

Instance No. 6 7 8 9 10
Cmax 62,38 58,40 61,33 58,85 62,20

Assistant with artificial intelligence enabling autonomous task
definition and user efficiency Management based on deep
learning of neural networks”.
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APPENDIX

The results presented in Tables XVII-XXVI are for the
genetic algorithm and in Tables VII-XVI for the tabu-search
algorithm. In the tables for the genetic algorithm in each
cell there are two numbers. The first is the minimum value
within the initial population and for the tabu search is the
median of the initial population generated by min operator
from the genetic algorithm. The median value formed a better
starting point, giving a better solution. The second number is
the achieved minimum for a chosen setup. The results present
the hours count starting from the first task execution. It is
a wall time, since the time outside work is also added to the
objective function presented. In all the tables in the Appendix,
the bold results represent the best results in each column, from
five runs. As one can see for the grouping generic algorithm,
all the bold results have been achieved when the population
initialization is performed with the min operator. For the
branch and bound algorithm, the final solution is presented
in Table VI.

TABLE VII: Solution using the Hybrid Tabu Search algorithm
from [34] using various operators for generating the neighbor-
hood, i.e. nh1, nh2, nh3 – see Section III-C. Results show
5 runs for instance no. 1.

nh1 nh2 nh3
1 79,72/79,03 79,81/62,83 79,93/62,95
2 79,83/62,70 79,78/62,85 81,43/81,00
3 79,68/62,90 79,87/62,80 79,88/62,72
4 79,73/62,65 79,80/79,17 81,05/62,93
5 79,89/62,88 79,73/62,75 79,73/62,90
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TABLE VIII: Solution using the Hybrid Tabu Search algo-
rithm from [34] using various operators for generating the
neghbourhood, i.e. nh1, nh2, nh3 – see Section III-C. Results
show 5 runs for instance no. 2.

nh1 nh2 nh3
1 81,50/80,63 83,28/80,80 81,48/80,82
2 81,47/80,80 81,48/81,02 81,52/80,73
3 81,42/80,71 81,47/80,67 81,45/80,53
4 81,52/80,60 81,55/80,56 81,58/80,68
5 81,53/80,48 81,53/80,65 81,58/80,58

TABLE IX: Solution using the Hybrid Tabu Search algorithm
from [34] using various operators for generating the neghbour-
hood, i.e. nh1, nh2, nh3 – see Section III-C. Results show
5 runs for instance no. 3.

nh1 nh2 nh3
1 81,07/79,85 81,10/80,28 80,95/80,30
2 81,08/80,13 80,98/80,02 81,10/80,33
3 81,07/80,03 81,10/80,08 81,13/80,10
4 80,95/80,08 81,10/80,27 80,98/80,48
5 80,88/80,02 81,12/79,92 81,05/80,23

TABLE X: Solution using the Hybrid Tabu Search algorithm
from [34] using various operators for generating the neghbour-
hood, i.e. nh1, nh2, nh3 – see Section III-C. Results show
5 runs for instance no. 4.

nh1 nh2 nh3
1 80,23/79,50 80,35/79,43 80,18/79,45
2 81,22/79,17 80,27/79,42 80,32/79,47
3 80,22/79,35 80,27/79,48 80,27/79,37
4 82,28/81,80 80,43/79,48 80,35/79,57
5 80,42/79,27 82,05/79,35 80,32/79,53

TABLE XI: Solution using the Hybrid Tabu Search algorithm
from [34] using various operators for generating the neghbour-
hood, i.e. nh1, nh2, nh3 – see Section III-C. Results show
5 runs for instance no. 5.

nh1 nh2 nh3
1 81,45/80,62 81,37/80,60 81,35/80,33
2 81,52/80,67 81,37/80,37 81,38/80,45
3 81,43/80,43 81,40/80,63 81,28/80,65
4 81,37/80,47 81,40/80,58 81,52/80,77
5 81,43/80,72 82,40/80,53 82,38/80,58

TABLE XII: Solution using the Hybrid Tabu Search algorithm
from [34] using various operators for generating the neghbour-
hood, i.e. nh1, nh2, nh3 – see Section III-C. Results show
5 runs for instance no. 6.

nh1 nh2 nh3
1 81,58/79,58 80,58/79,78 80,48/79,78
2 80,50/79,60 81,62/79,70 80,63/79,78
3 80,50/79,60 80,48/79,88 81,82/79,73
4 80,62/79,62 80,55/79,83 80,55/79,57
5 80,55/79,60 80,60/79,78 80,53/79,63

TABLE XIII: Solution using the Hybrid Tabu Search algo-
rithm from [34] using various operators for generating the
neghbourhood, i.e. nh1, nh2, nh3 – see Section III-C. Results
show 5 runs for instance no. 7.

nh1 nh2 nh3
1 61,67/60,82 61,70/60,77 61,65/61,10
2 61,58/60,85 61,65/61,02 61,53/60,72
3 61,58/60,97 61,58/60,93 61,63/60,87
4 61,65/60,82 61,67/60,70 61,72/61,03
5 79,50/60,78 61,53/60,83 61,72/61,02

TABLE XIV: Solution using the Hybrid Tabu Search algo-
rithm from [34] using various operators for generating the
neghbourhood i.e. nh1, nh2, nh3 – see Section III-C. Results
show 5 runs for instance no. 8.

nh1 nh2 nh3
1 79,52/62,55 79,47/62,92 81,40/62,62
2 79,50/62,67 79,45/62,85 79,55/62,62
3 79,43/62,63 79,47/62,78 79,47/62,63
4 79,60/62,68 79,60/62,83 79,42/62,48
5 80,48/62,68 79,65/62,53 79,53/62,53

TABLE XV: Solution using the Hybrid Tabu Search algorithm
from [34] using various operators for generating the neghbour-
hood i.e. nh1, nh2, nh3 – see Section III-C. Results show 5
runs for instance no. 9.

nh1 nh2 nh3
1 62,25/61,33 62,23/61,43 80,38/61,53
2 62,33/61,37 62,25/61,42 62,22/61,48
3 62,32/61,53 80,35/79,78 62,30/61,47
4 62,22/61,18 79,53/61,35 62,20/61,33
5 62,28/61,35 62,22/61,18 62,25/61,42

TABLE XVI: Solution using the Hybrid Tabu Search algo-
rithm from [34] using various operators for generating the
neghbourhood, i.e. nh1, nh2, nh3 – see Section III-C. Results
show 5 runs for instance no. 10.

nh1 nh2 nh3
1 82,07/79,45 80,57/79,70 80,40/79,57
2 82,27/79,62 80,47/79,62 80,43/79,65
3 81,85/79,53 80,45/79,55 81,58/79,47
4 80,38/79,31 80,63/79,60 80,52/79,58
5 80,40/79,50 80,55/79,85 80,53/79,55
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TABLE XVII: Solution using the Grouping Genetic algorithm from [33] using various crossover operators, i.e. min, MSXF, 2
points, OBX and mutations operators such as download, min and initial population creation random and min. Results
show 5 runs for instance no. 1.

usual mutation download mutation
min MSXF 2points OBX min MSXF 2points OBX

1 min 79,08/79,08 79,20/79,20 79,18/79,18 79,12/79,12 79,32/79,05 79,27/79,15 79,18/79,15 79,17/79,17
random 82,30/79,83 84,98/82,82 83,58/82,58 83,02/80,93 82,80/79,12 83,90/79,07 83,75/81,58 82,05/79,35

2 min 79,13/79,13 79,30/79,30 79,28/79,28 79,12/79,12 79,17/79,15 79,22/79,08 79,33/62,88 79,15/79,13
random 84,15/79,60 82,20/81,90 83,88/82,62 84,85/82,70 82,32/79,08 82,80/79,05 82,28/79,43 82,37/79,27

3 min 79,07/79,07 79,18/79,18 79,12/79,12 79,48/79,48 79,32/79,03 79,22/79,08 79,08/62,90 79,18/79,03
random 84,18/79,48 82,37/81,78 84,98/82,17 81,63/82,82 83,55/79,20 83,33/79,37 82,53/79,35 83,93/79,23

4 min 79,33/79,33 79,20/79,20 79,22/79,22 79,27/79,27 79,40/63,00 79,30/62,90 79,10/79,10 79,02/79,02
random 83,27/79,45 82,00/82,17 82,88/82,53 82,78/81,53 83,67/79,20 81,70/79,13 82,80/62,97 82,97/79,32

5 min 79,22/79,22 79,13/79,13 79,03/79,03 79,22/79,22 79,13/62,92 79,05/79,05 62,85/62,85 79,23/79,08
random 83,60/79,52 82,93/82,30 82,95/80,48 83,07/82,38 82,78/79,07 84,12/79,25 83,20/79,37 82,97/79,23

TABLE XVIII: Solution using the Grouping Genetic algorithm from [33] using various crossover operators i.e. min, MSXF, 2
points, OBX and mutations operators such as download, min and initial population creation random and min. Results
show 5 runs for instance no. 2.

usual mutation download mutation
min MSXF 2points OBX min MSXF 2points OBX

1 min 80,93/80,87 80,70/80,70 80,88/80,88 80,85/80,85 80,80/80,75 80,90/80,87 80,82/80,77 80,83/80,78
random 83,92/81,30 86,30/82,63 85,73/81,87 85,52/84,15 85,08/80,83 84,52/81,07 86,57/80,87 85,38/81,12

2 min 80,87/80,87 80,90/80,90 80,75/80,75 80,82/80,82 80,88/80,63 80,88/80,83 80,82/80,82 80,82/80,82
random 84,45/81,43 83,20/84,13 82,83/84,20 86,40/84,22 85,10/80,68 84,93/80,98 85,82/80,92 85,18/81,20

3 min 80,63/80,63 80,90/80,90 81,07/81,07 80,92/80,92 80,83/80,78 80,78/80,73 80,88/80,65 80,97/80,97
random 84,33/81,37 84,90/83,62 85,50/82,43 83,87/82,22 84,63/80,85 86,20/80,97 83,88/81,15 85,28/80,98

4 min 80,82/80,82 80,90/80,90 80,92/80,92 80,93/80,93 80,90/80,63 82,60/80,77 80,82/80,82 80,70/80,70
random 86,57/81,47 85,60/83,13 86,67/84,17 84,42/82,70 86,58/80,95 83,73/80,97 83,58/81,08 85,88/81,13

5 min 80,75/80,75 81,03/81,03 80,73/80,73 80,98/80,98 80,77/80,53 80,93/80,77 80,90/80,82 80,85/80,70
random 83,98/83,20 83,02/82,30 86,02/82,37 84,78/82,63 84,75/80,83 82,83/80,93 84,00/81,22 84,55/81,00

TABLE XIX: Solution using the Grouping Genetic algorithm from [33] using various crossover operators, i.e. min, MSXF, 2
points, OBX and mutations operators such as download, min and initial population creation random and min. Results
show 5 runs for instance no. 3.

usual mutation download mutation
min MSXF 2points OBX min MSXF 2points OBX

1 min 80,55/80,55 80,50/80,50 80,53/80,53 80,33/80,33 80,47/80,33 80,58/80,13 80,47/80,47 80,38/80,38
random 83,62/80,78 83,35/82,50 85,33/82,27 83,40/83,00 82,97/80,30 85,07/80,33 85,05/80,70 84,45/80,60

2 min 80,42/80,42 80,28/80,28 80,45/80,45 80,35/80,35 80,37/80,35 80,42/80,42 80,68/80,42 80,40/80,40
random 84,38/80,75 85,78/82,65 82,80/82,30 83,65/83,57 85,28/80,43 82,50/80,43 85,57/82,70 84,27/80,53

3 min 80,38/80,38 80,57/80,57 80,55/80,55 80,50/80,50 80,28/80,23 80,37/80,37 80,07/80,07 80,38/80,38
random 83,98/82,48 83,50/81,45 85,18/83,95 84,95/83,88 84,43/80,38 83,72/80,37 84,00/80,38 84,40/80,48

4 min 80,30/80,30 80,32/80,32 80,50/80,50 80,52/80,52 80,52/80,38 80,55/80,25 80,32/80,32 80,37/80,37
random 83,73/82,83 82,32/82,28 83,13/83,62 83,83/82,95 83,78/80,35 82,97/80,32 84,00/82,43 83,92/80,55

5 min 80,50/80,50 80,50/80,50 80,57/80,57 80,22/80,22 80,50/80,38 80,43/80,25 80,37/80,37 80,60/80,35
random 85,63/81,03 83,05/81,77 83,27/81,87 83,75/82,67 83,42/80,28 85,57/80,65 84,12/80,62 85,53/80,90

TABLE XX: Solution using the Grouping Genetic algorithm from [33] using various crossover operators, i.e. min, MSXF, 2
points, OBX and mutations operators such as download, min and initial population creation random and min. Results
show 5 runs for instance no. 4.

usual mutation download mutation
min MSXF 2points OBX min MSXF 2points OBX

1 min 79,63/79,63 79,77/79,77 79,77/79,77 79,62/79,62 79,63/79,63 79,72/79,63 79,53/79,53 79,68/79,53
random 83,25/80,17 84,07/81,90 84,02/82,55 82,35/83,15 82,12/79,43 83,67/79,78 81,48/79,78 84,43/79,75

2 min 79,63/79,63 79,63/79,63 79,80/79,80 79,78/79,78 79,72/79,52 79,67/79,65 79,85/79,65 79,67/79,58
random 81,58/80,27 82,70/83,07 83,47/83,02 82,13/82,87 84,63/79,52 83,10/79,58 83,78/79,97 85,18/79,78

3 min 79,70/79,70 79,78/79,78 79,62/79,62 79,77/79,77 79,60/79,58 79,58/79,58 79,58/79,58 79,57/79,57
random 82,83/80,08 81,58/80,97 81,10/81,10 84,00/82,87 83,15/79,60 84,80/79,63 81,88/82,00 83,80/79,62

4 min 79,62/79,62 79,68/79,68 79,85/79,85 79,55/79,55 79,75/79,62 79,60/79,55 79,63/79,48 79,62/79,62
random 83,00/82,10 83,58/80,85 84,43/82,52 85,37/81,48 83,02/79,45 85,22/80,13 83,85/79,72 84,35/79,60

5 min 79,72/79,72 79,73/79,73 79,58/79,58 79,67/79,67 79,65/79,55 79,40/79,40 79,78/79,78 79,68/79,60
random 80,78/80,18 82,35/82,28 81,80/80,92 84,52/80,80 83,63/79,70 84,62/81,80 85,28/79,97 82,38/79,78
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TABLE XXI: Solution using the Grouping Genetic algorithm from [33] using various crossover operators, i.e. min, MSXF, 2
points, OBX and mutations operators such as download, min and initial population creation random and min. Results
show 5 runs for instance no. 5.

usual mutation download mutation
min MSXF 2points OBX min MSXF 2points OBX

1 min 80,67/80,67 80,70/80,70 80,82/80,82 80,68/80,68 80,83/80,63 80,75/80,57 82,73/80,80 80,47/80,47
random 83,80/81,38 86,42/83,13 83,77/84,63 84,18/84,03 84,17/80,63 83,15/80,85 85,20/80,70 84,10/83,07

2 min 80,72/80,72 80,82/80,82 80,65/80,65 80,73/80,73 80,75/80,55 80,68/80,68 80,80/80,53 80,73/80,67
random 83,28/82,85 86,02/84,02 82,70/83,80 86,47/82,10 83,47/80,60 85,88/80,80 85,32/80,80 83,58/81,02

3 min 80,72/80,72 80,92/80,92 80,68/80,68 80,72/80,72 80,70/80,47 80,77/80,67 80,90/80,53 80,62/80,55
random 84,50/83,25 83,52/84,13 86,00/83,83 85,40/82,88 85,52/80,72 84,10/80,62 83,30/80,73 85,38/80,92

4 min 80,82/80,82 80,75/80,75 80,83/80,83 80,85/80,85 80,82/80,53 80,62/80,62 80,68/80,68 80,80/80,80
random 84,13/83,27 84,17/83,80 82,98/82,40 82,35/82,20 86,60/80,70 84,32/80,93 84,60/80,92 86,25/80,87

5 min 80,67/80,67 80,78/80,78 80,88/80,88 80,87/80,87 80,57/80,57 80,83/80,75 80,78/80,70 80,80/80,55
random 85,65/81,17 84,85/82,27 84,17/84,12 86,43/81,93 84,93/80,72 85,20/82,52 84,55/80,87 85,17/81,02

TABLE XXII: Solution using the Grouping Genetic algorithm from [33] using various crossover operators, i.e. min, MSXF, 2
points, OBX and mutations operators such as download, min and initial population creation random and min. Results
show 5 runs for instance no. 6.

usual mutation download mutation
min MSXF 2points OBX min MSXF 2points OBX

1 min 79,90/79,90 80,07/80,07 79,82/79,82 80,00/80,00 79,92/79,75 79,98/79,80 79,92/79,60 80,00/79,75
random 82,50/80,32 81,97/83,18 83,25/83,07 85,25/83,18 83,42/79,77 81,53/80,07 83,18/80,03 84,98/80,30

2 min 79,93/79,93 80,02/80,02 79,90/79,90 79,82/79,82 79,90/79,72 79,97/79,78 79,83/79,83 80,08/79,80
random 82,73/80,52 83,37/82,90 81,93/82,38 81,97/82,35 82,78/79,82 83,95/79,82 84,37/79,82 82,32/80,20

3 min 79,85/79,85 80,00/80,00 79,90/79,90 79,93/79,93 80,02/79,72 79,88/79,88 80,00/79,90 79,90/79,90
random 82,90/80,40 84,38/83,28 84,50/83,55 82,50/83,13 82,60/79,90 82,13/80,10 82,43/80,00 83,00/80,12

4 min 79,98/79,98 79,98/79,98 79,78/79,78 80,03/80,03 79,97/79,75 79,90/79,90 79,88/79,83 79,97/79,97
random 85,52/80,52 81,68/81,32 85,00/82,42 84,30/82,62 83,63/79,95 83,15/79,98 84,77/80,25 83,62/79,98

5 min 79,85/79,85 80,05/80,05 79,98/79,98 79,83/79,83 80,00/79,70 80,00/79,90 79,82/79,82 80,05/79,78
random 85,18/80,17 82,35/83,38 82,65/83,48 82,78/82,78 82,55/79,83 83,98/79,93 83,82/80,23 86,08/81,93

TABLE XXIII: Solution using the Grouping Genetic algorithm from [33] using various crossover operators, i.e. min, MSXF,
2 points, OBX and mutations operators such as download, min and initial population creation random and min. Results
show 5 runs for instance no. 7.

usual mutation download mutation
min MSXF 2points OBX min MSXF 2points OBX

1 min 61,22/61,22 61,25/61,25 61,18/61,18 61,03/61,03 61,08/60,82 61,03/61,03 61,15/61,08 61,08/61,05
random 82,30/61,52 82,80/80,80 79,72/79,88 81,50/80,40 81,88/61,02 81,90/61,22 79,30/61,12 80,87/61,25

2 min 61,12/61,12 61,15/61,15 61,05/61,05 61,02/61,02 61,17/60,90 61,02/61,02 61,32/61,13 61,05/61,05
random 79,92/61,62 79,70/62,45 79,83/80,15 62,92/79,92 80,82/61,00 80,47/61,27 81,90/61,30 81,92/61,28

3 min 61,20/61,02 61,08/61,08 61,02/61,02 61,18/61,18 61,05/60,93 61,03/60,93 61,07/61,07 60,98/60,98
random 80,53/61,53 80,38/80,10 62,75/62,58 81,20/80,25 82,00/61,03 79,43/61,33 81,42/61,18 82,07/61,78

4 min 61,12/61,12 61,22/61,22 60,95/60,95 61,05/61,05 61,07/60,83 61,08/60,98 61,03/61,03 61,15/61,03
random 79,58/61,43 80,48/80,48 79,72/62,33 81,25/80,12 80,97/61,02 80,50/61,17 81,45/61,25 79,87/61,33

5 min 61,25/61,25 61,02/61,02 61,08/61,08 60,87/60,87 61,18/60,73 61,13/60,97 61,27/61,00 61,05/60,97
random 79,83/61,37 81,45/62,98 80,17/62,20 81,40/80,80 82,58/61,03 81,77/61,15 80,58/61,28 62,87/61,15

TABLE XXIV: Solution using the Grouping Genetic algorithm from [33] using various crossover operators, i.e. min, MSXF,
2 points, OBX and mutations operators such as download, min and initial population creation random and min. Results
show 5 runs for instance no. 8.

usual mutation download mutation
min MSXF 2points OBX min MSXF 2points OBX

1 min 62,82/62,82 62,95/62,95 62,97/62,97 62,75/62,75 62,67/62,58 62,88/62,77 62,72/62,72 62,88/62,88
random 81,48/81,30 81,40/82,02 83,90/80,05 82,93/82,33 84,17/62,63 82,65/62,90 82,15/79,17 80,47/79,08

2 min 62,67/62,67 62,88/62,88 62,88/62,88 63,00/63,00 62,97/62,77 63,00/62,88 80,92/62,82 62,50/62,50
random 83,12/79,17 84,28/81,47 83,35/80,50 83,73/81,23 82,17/62,93 81,57/62,90 83,73/79,03 81,42/62,98

3 min 62,78/62,78 62,77/62,77 62,75/62,75 79,02/79,02 62,85/62,70 62,90/62,88 62,73/62,73 62,87/62,85
random 82,93/81,07 80,30/82,20 81,72/82,08 84,65/81,98 83,48/62,88 84,07/62,92 84,27/79,03 82,28/79,05

4 min 62,98/62,98 62,88/62,88 79,03/79,03 79,07/79,07 62,97/62,75 79,03/62,85 62,90/62,90 62,85/62,85
random 82,03/79,30 82,85/82,10 82,83/81,80 83,65/82,42 81,92/62,87 83,93/62,88 83,58/79,07 83,40/79,20

5 min 62,78/62,78 62,83/62,83 79,05/79,05 62,85/62,85 62,72/62,72 62,78/62,72 62,87/62,83 62,85/62,80
random 83,53/79,27 82,08/82,38 82,20/80,58 81,68/81,30 81,62/62,72 84,07/79,13 81,08/62,92 82,07/62,98
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TABLE XXV: Solution using the Grouping Genetic algorithm from [33] using various crossover operators, i.e. min, MSXF, 2
points, OBX and mutations operators such as download, min and initial population creation random and min. Results
show 5 runs for instance no. 9.

usual mutation download mutation
min MSXF 2points OBX min MSXF 2points OBX

1 min 61,60/61,60 61,77/61,77 61,65/61,65 61,68/61,68 61,53/61,47 61,68/61,57 61,65/61,65 61,68/61,68
random 81,20/79,95 80,85/79,87 82,97/80,87 81,88/79,20 82,87/61,55 82,42/61,88 79,78/61,78 82,20/61,85

2 min 61,67/61,67 61,60/61,60 61,62/61,62 61,68/61,68 61,67/61,42 61,57/61,57 61,58/61,58 61,65/61,58
random 83,47/62,12 82,23/80,93 79,90/81,13 80,10/80,97 82,03/61,72 79,60/61,90 80,18/61,78 81,72/61,77

3 min 61,35/61,35 61,70/61,70 61,72/61,72 61,72/61,72 61,62/61,45 61,53/61,53 61,70/61,60 61,53/61,53
random 80,75/62,12 81,82/62,18 79,55/79,20 82,23/79,12 81,67/61,50 82,33/61,65 81,88/61,95 82,10/61,80

4 min 61,58/61,58 61,70/61,70 61,53/61,53 61,50/61,50 61,75/61,60 61,75/61,58 61,72/61,72 61,67/61,47
random 82,48/62,13 82,00/80,35 82,85/80,20 79,05/79,05 81,52/61,70 79,73/61,77 82,23/79,52 79,67/62,13

5 min 61,70/61,70 61,68/61,68 61,65/61,65 61,63/61,63 61,45/61,45 61,53/61,52 61,43/61,43 61,73/61,57
random 83,02/62,12 81,83/80,92 81,35/62,55 81,65/62,97 81,80/61,45 80,93/61,58 81,72/61,63 82,53/61,73

TABLE XXVI: Solution using the Grouping Genetic algorithm from [33] using various crossover operators, i.e. min, MSXF,
2 points, OBX and mutations operators such as download, min and initial population creation random and min. Results
show 5 runs for instance no. 10.

usual mutation download mutation
min MSXF 2points OBX min MSXF 2points OBX

1 min 79,77/79,77 81,83/80,00 79,90/79,90 79,73/79,73 79,92/79,58 79,78/79,78 79,80/79,78 79,82/79,82
random 83,45/79,97 84,50/83,17 83,60/82,20 85,03/82,22 84,20/79,78 82,88/80,07 82,62/82,28 82,40/80,12

2 min 79,83/79,83 79,90/79,90 79,72/79,72 79,67/79,67 79,98/79,73 79,88/79,82 79,90/79,82 79,77/79,68
random 84,83/80,15 84,23/83,32 84,97/81,28 84,02/81,78 84,10/79,82 84,18/79,90 84,13/80,25 83,05/79,85

3 min 79,70/79,70 79,90/79,90 79,78/79,78 79,88/79,88 79,88/79,73 79,60/79,60 79,90/79,90 79,80/79,80
random 82,97/82,47 84,30/80,58 83,77/82,07 82,40/82,13 83,27/79,83 84,95/80,08 84,53/82,15 84,83/82,28

4 min 79,97/79,97 79,87/79,87 79,82/79,82 79,55/79,55 79,83/79,65 80,03/79,72 79,85/79,78 79,80/79,80
random 82,50/80,13 85,48/82,93 85,08/81,32 82,03/81,28 85,02/79,68 83,65/80,00 82,52/81,68 81,53/79,70

5 min 80,03/80,03 79,80/79,80 79,92/79,92 79,60/79,60 79,90/79,65 79,95/79,80 79,98/79,88 79,85/79,80
random 82,25/80,48 81,72/81,35 83,03/82,88 84,52/83,02 84,18/79,88 83,57/79,90 85,12/81,92 83,67/80,15
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