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Abstract—The article outlines a contemporary method for 

creating software for multi-processor computers. It describes the 

identification of parallelizable sequential code structures. Three 

structures were found and then carefully examined. The 

algorithms used to determine whether or not certain parts of code 

may be parallelized result from static analysis. The techniques 

demonstrate how, if possible, existing sequential structures might 

be transformed into parallel-running programs. A dynamic 

evaluation is also a part of our process, and it can be used to assess 

the efficiency of the parallel programs that are developed. As a tool 

for sequential programs, the algorithms have been implemented in 

C#. All proposed methods were discussed using a common 

benchmark. 
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I. INTRODUCTION 

HE processor development is changing. Multi-core 

architectures were developed instead of trying to 

continuously increase clock speeds, which completely changed 

the market for personal computers. However, many 

programmers continue to create sequential solutions for single-

processor machines, ignoring the fact that a typical computer, 

even a laptop, is equipped with multiple computing units. As an 

effect, the application performance is similar regardless of the 

number of processors running within a computer, leaving most 

processors idle. Deep expertise is necessary to create parallel 

solutions, and many businesses find it time-consuming to 

deploy them. To help developers learn parallel processing, 

identify potential dangers, and help address them, practical 

assistance is required. While many existing application 

development frameworks support easy multithreading 

programming, there are neither integrated solutions that 

concentrate on both methodology and tools nor services that 

convert already-existing applications to new settings. 

Furthermore, there is a need for educational tools that would 

benefit both students and inexperienced cooperating engineers. 

As a result, the main objective of this project was to provide 

a methodology and tools to help programmers automatically 

transform current sequential applications into parallel ones. The 

provision of useful information for related academic and 

professional activity was the other objective. We have 

considered and tested two solutions: a Native Approach and 

the.NET Framework (Parallel Extensions [1]). C# programs can 
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use our technique and experimental tool [2]. The techniques, 

however, can be used with a broad class of high-level languages 

based on C syntax, such as C, C++, C#, and also VB. The 

following is a list of the contributions made by this article: 

1. Automated identification of sequential parts of a program 

that can be subject to parallelization.  

2. Algorithms for parallelization of sequential code. 

3. A methodology for dynamic analysis of the performance of 

parallelized programs to confirm their increased efficiency. 

4. Creation of procedures for evaluating the proposed 

parallelization dynamic analysis and recommending its 

adoption. 

5. Case study of mergesort C# code and various types of its 

parallelization. 

The literature overview, which covers the present situation 

and prospects for code parallelization using ML models, is 

found in Section II. The Parallel Extensions [1] tool for 

parallelization is discussed in Section III. The methodology and 

algorithms are described in Section IV. Common 

synchronization factors for suggested solutions are covered in 

Section V. Section VI covers a benchmark for applying all three 

methods. The article is concluded in Section VII. 

II. CURRENT WORK 

It is usually necessary to divide an issue into smaller, as 

independent of one another as possible subtasks in order to solve 

them in parallel and speed up their execution. The significant 

effort is required to synchronize dependent tasks. The literature 

has long discussed both the theoretical and practical parallel 

programming methods. Bernstein [3] provided one of the 

earliest explorations of parallel processing programs. He 

identified three key requirements for the independent and 

simultaneous execution of two instruction sequences. Amdahl 

investigated the theory of acceleration constraints in [4]. Later, 

Gustafson extended the Amdahl law [5] to situations involving 

significant parallelism. Numerous academics who were 

interested in the precise construction and functionality of 

massively parallel computers looked after this basic study [6].  

Another significant advancement was the addition of Parallel 

Extensions [1], a framework for a parallel runtime environment, 

to the.NET Framework. It includes a number of useful syntactic 

features, classes, and properties that aid in building highly 

scalable parallel applications and enable academics and 

practitioners to generate fresh solutions based on this 
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environment. The alternative solution is OpenMP (Open Multi-

Processing [7]), which contains a set of libraries, and generates 

compiler directives and environment variables that influence the 

execution of a parallel program. This guarantees the portability 

of the resulting application. 

Building an "optimal" parallel program remains a difficulty 

even with current frameworks. Programmers frequently have 

trouble figuring out which parts of the code may be made to 

execute simultaneously [8]. The requirement for tools to aid in 

the development of parallel programs is well acknowledged [8]. 

The development of methods to identify fragments of sequential 

programs subject to parallelization has been the subject of 

extensive research. Described methods concern static analysis 

[9], dynamic evaluation [10], or a combination of them [9]. The 

maximum amount of task parallelism can be captured by static 

analysis using a control dependence graph [11][12], and 

dynamic analysis can be used to assess the efficiency of 

parallelized programs [10]. Zhong et al. focuses on simply 

tackling particular sides of the issue, such as  description of how 

to find loops that can be parallelized in sequential programs 

[13]. More specific results concern  identification of loops 

subject to parallelization by finding the optimal affine partitions 

[14]. Some methods focus on the numerous sequential code 

segments that can be parallelized [15], while others stress task-

based, fine-grained parallelism [16]. Most tools depend on the 

language, frequently C++ [12]. Since most tools cannot 

automatically introduce parallelism to programs with 

complicated control and data flows, some methods focus on 

profiling information, to help the user in finding fragments 

susceptible to parallelization [17]. 

A different strategy is to create a new compiler based on the 

generated dependency network. It rewrites a program in a 

parallel task manner [18]. Another approach falls under the 

category of speculative strategies. This research is founded on 

the idea that we can execute consecutive iterations of a 

sequential loop concurrently, and it is unlikely that multiple data 

dependencies will arise during runtime [19]. If this assumption 

holds, it leads to achieving runtime parallelism [19]. In [20], 

which employs a similar approach, the state of speculative 

parallel threads is kept separate from the state of non-

speculative computation. 

III. FRAMEWORK USED FOR PARALLELIZATION 

A. Parallel Extensions 

Selecting the translation destination, whether a framework 

designed for parallel applications or a native approach, 

represents a pivotal choice when transforming sequential 

programs into parallel ones. We have contemplated and 

experimented with two options: Parallel Extensions for the.NET 

Framework and a Native Approach. 

The Microsoft-developed and promoted.NET Framework 

runtime environment includes Parallel Extensions [1]. 

Numerous useful syntactic elements, classes, and properties are 

added by the extension to aid in the development of parallel 

applications. The environment itself is also quite scalable, 

enabling full utilization of various multi-core machine types. 

Languages that support the .NET Framework 4.0 (or later), such 

as C++, C#, and VB.NET, can use Parallel Extensions. 

A task, an independent functional component of the program 

that can run in parallel with other tasks, is the main element of 

the program. Correct and efficient job allocation is managed by 

the environment, which controls resources (processors). To 

achieve this, a unique planner (scheduler) was created to balance 

the load distribution throughout the running computing units 

and optimize job allocation. The task-stealing method makes 

sure that tasks are carried out by all available processors. 

Every processor in the environment has a thread that is started 

with its own task queue. Requests distribute jobs from the 

application-filled thread queues in the global queue. Subsequent 

tasks that are created by a task are added to the top of the thread 

queue. Data caching is connected to this approach. When other 

threads (processors) have no jobs to complete, contained in their 

local queues or the global queue, they may run the tasks 

contained at the end of an appointed queue. 

A number of unique instructions, including parallel loops like 

Parallel.For. are introduced by Parallel Extensions. The 

portability of Parallel Extensions is another benefit; for 

example, code generated on a 4-core system can utilize all of the 

8, 16, or 24 cores on the machine on which it will be executed. 

This is not advantageous in programs where the number of 

threads is expressly stated. To illustrate, imagine a 

computational program designed with four threads hardcoded 

into the program. This program would function on computers 

with 1, 4, and 8 processor cores, but on the last one, it would 

only partially harness the capabilities of some of the available 

cores. 

B. OpenMP 

Another framework, OpenMP (Open Multi-Processing [7]), 

provides an alternative for languages like C++ and Fortran, the 

latter not integrated into the.NET framework. OpenMP 

comprises a collection of libraries, compiler directives, and 

environment settings that impact how programs run and ensure 

the adaptability of applications. This versatile system can be 

employed on both personal computers and supercomputers. The 

compiler includes parallel constructs, which can be invoked 

through compiler directives, making it easier to implement 

parallelism in the code. OpenMP does not offer language 

extensions. More control over parallelism is given to the 

programmer than with Parallel Extensions.  

Threading, work separation, data environment management, 

thread synchronization, and runtime measurement are the 

fundamental building blocks of OpenMP. Despite the fact that 

OpenMP uses shared memory, users can define private 

variables. Different data sharing attributes, such as private, 

shared, and default, are utilized for this purpose. Additional 

synchronization clauses introduced by OpenMP include crucial 

sections, atomic blocks, and the capacity to preserve the order 

of loop iterations. The scheduling of concurrent jobs is another 

option. There are several scheduling options: guided 

(dynamically, batches of iterations run simultaneously), static 

scheduling (each iteration has a thread assigned before the start), 

dynamic scheduling (assigning iterations to the thread, follows 

the progress of previous iterations), and auto (the system 

decides the scheduling). 

The #pragma compiler directive is used by OpenMP to 

identify the software fragments that should be parallelized. To 

spread loop iterations among the available processing units, the 

Parallel.For command should be used. 

Simplicity, transparency for a sequential compiler, and 

adaptability to both fine- and coarse-grained parallelism are 
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characteristics of OpenMP solutions. It is unable to reliably 

manage exceptions or assign running threads to certain 

processors because of its complexity. 

IV. CONVERTING OF A SEQUENTIAL PROGRAM INTO A 

PARALLEL ONE 

The objective of this project is to try and create algorithms 

that can autonomously identify sections of code within a 

sequential program and transform those sections into parallel 

threads. On a system with many processors (cores), such a 

customized program can run concurrently.  

In the realm of sequential code structures, there are three main 

categories that can be made parallel: function calls, instruction 

paths, and loops. A list of prerequisites for adding parallelism 

was established. This leads to the creation of algorithms that 

assess whether a particular occurrence of each of these 

structures satisfies the criteria for parallelism. These algorithms 

are distinctive and come with explanatory components that can 

be utilized in both academic and professional contexts. 

The examination relies on two approaches: a static evaluation 

of C# code and a dynamic comparison of the performance 

between sequential and parallel versions. 

A. Asynchronous function call 

In this section, we outline the invocations of a function, along 

with the conditions that must be fulfilled for such a structure to 

be executed concurrently alongside the code that follows the 

function call. 

1) Function calls.  

There are two sequences: during the function call and 

following the call, if a function is invoked. If any of the 

Bernstein conditions [3] are broken, they may become 

dependent on one another. Hence, by making use of the function 

result (if it provides the result), variables passed by reference, 

and variables affected by the function side effects (including 

those arising from nested function calls), we can identify the 

longest execution path after the function call that remains 

unaffected by all three of these characteristics. We call it 

deferred use when there is at least one statement with the 

aforementioned characteristics between the function call and the 

instruction. We have the option to execute the function 

concurrently with the code starting from the function call until 

the point where its first deferred usage occurs.  

2) Data structures.  

Each program statement must have a label that identifies 

explicitly it in order for the asynchronous call algorithm and 

subsequent algorithms to function. The algorithms employ the 

following data structures: 

• Call graph is a directed graph, where nodes and edges 

represent functions within the source code under analysis. 

When there is an edge connecting nodes X and Y, it signifies 

that function X calls function Y. In practice, it is more like a 

multigraph because every function call results in an edge, and 

multiple edges can exist between the same pair of nodes. The 

edges are marked with the function call number for 

identification and algorithmic reasons. 

• Collection of instructions Causing Side Effects (CSE). These 

instructions alter the value of a variable beyond their 

immediate scope or produce the program output. 

• Collection of instructions Dependent on Side Effects (DSE). 

For example, these instructions may read a variable from 

outside their immediate scope, and that variable could 

potentially influence the result.  

 

Fig. 1. Example of a call graph, with the analysis levels given in distinct 

colors. Every CSE/DSE entry contains a list of non-local variables accessed or 

resources that have been written. 

3) Algorithm for asynchronous calls.  

The proposed method changes the source code after 

determining whether asynchronous calls are feasible. 

Call graph. The call graph is initially built using static 

analysis. Based on the documentation for the programming 

environment, only thread-safe library functions can be taken 

into consideration. The graph is created as follows: The initial 

set at level 0 in the analysis consists of the terminal functions 

within a call graph. Subsequent levels are defined as follows: 

The level i set includes all functions that directly invoke 

functions at level i-1 (and possibly levels below i-1) while 

excluding those within a call graph loop, except for recursive 

calls. 

In the call graph shown in Fig. 1, we can discern different 

levels of function calls. In the topmost level, level 0 (depicted 

in red), we find functions H, I, F, and K. However, Function B 

does not fall into any level, denoted as level -1, because it is part 

of a loop (the D-B loop). Moving down to level 1 (represented 

in blue), we encounter functions E and J. Function G is situated 

in level 2, marked in orange, while C resides in level 3, indicated 

by green. Functions A, B, and D, grey, do not belong to any 

specific level. This is because they are enclosed within loops or 

call functions with undetermined levels.  

When one function invokes another function (when the level 

is greater than 0), the CSE and/or DSE of the calling instructions 

rely on the CSE and/or DSE of the called function. If a function 

calls a library function, any documentation-based instructions 

related to the call are included in CSE. The level of a calling 

function that invokes a library function remains uncertain unless 

the library function is thread-safe (as described in [21] for 

.NET). Even when there are no observable side effects, using 

variables that are passed by reference can lead to their inclusion 

in the CSE or DSE. All such CSE and DSE are essentially 

"pulled" into the instructions that call the function. This is done 

because these symbols might undergo further analysis. 

However, there is an exception: local variables of the calling 
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function that are passed by reference are not included in this 

process. 

4) Dynamic evaluation.  

We can determine if enough parallelism is available until the 

deferred usage by looking at how long both parallel sequences 

take to run. We use three timestamps to evaluate this: Z1, Z2, Z3. 

Z1 marks the beginning of the function that will be 

asynchronously called, Z2 is set when this function finishes, and 

Z3 is placed at the point where the deferred usage occurs. We 

calculate the average differences between these timestamps 

across multiple program runs to get an accurate measure: 𝑍 =
𝑍1 − 𝑍2, 𝑆 = 𝑍3 − 𝑍2. We also need to determine the average 

thread-starting time, P, for asynchronous calls. Using 

asynchronous calls makes sense when the times it takes for two 

measures, Z and S, are similar, and both Z and S are substantially 

larger than a third value, P: 𝑍 ≈ 𝑆, 𝑍 ≫ 𝑃, 𝑆 ≫ 𝑃, the 

asynchronous call is reasonable. 

5) Introducing asynchronous call 

The transparent mode of the asynchronous function call, 

which means that it is identical to sequential execution, must be 

preserved in the program. We should store the result of a 

function in a local variable within the calling function (if the 

called function produces a result) because threads usually do not 

directly return results. 

B. Parallel statement paths 

To execute the instructions within a function concurrently, 

we can organize them into instruction paths. Imagine the current 

program state as Z and the next statement to be executed as I. 

Then, the program state after executing statement I, referred to 

as 𝑍{𝐼}, can be described as a function 𝐼(𝑍), where 𝑍{𝐼} = 𝐼(𝑍). 

If we have two consecutive statements to execute, say I1, I2, the 

resulting system state after executing both, denoted as 𝑍{𝐼1; 𝐼2}, 

can be expressed as: 𝑍{𝐼1; 𝐼2} =  𝐼1(𝐼2(𝑍)).  

For a program having state Y, if we can apply two statements: 

I0 and I1, then we can say that I1 directly depends on I0 when 

𝑌{𝐼0; 𝐼1}. differs from 𝑌{𝐼1; 𝐼0}. Indirect dependence of Ik on I0 

is in the case of an instruction sequence I0, I1, …, Ik-1, Ik, where 

every Ij directly depends on the previous Ij-1, j=1,…,k. 

Instructions that are independent of each other can be executed 

simultaneously in parallel because the order of their execution 

does not affect the final result. 

A series of dependent instructions that are organized 

according to the source program make up an instruction path. If 

two paths do not contain crosswise dependent assertions, then 

they are independent of one another. The maximum level of 

parallelism achievable for a specific sequence is determined by 

how many distinct independent paths can be identified within it. 

The example function in which parallel paths are present is 

shown below. The two paths are found, and one of them is 

highlighted. 
1. void fun() 

2. { 

3.  int k = 5; 
4.  int l = 10;  
5.  int p = fun_0(); 
6.  k = fun_1() ? p + 1 : p - 1; 
7.  fun_2(k); 
8.  l += 15; 
9.  for(int i = 0; i < MAX; ++i) 
10.  { 
11.   l += 1; 

12.  } 

13.  if (k == 22) 
14.  { 
15.   p = k * 8; 

16.  } 
17.  return; 
18. } 

The sets for individual instructions are: CSE(3)={k}, 

CSE(4)={l}, CSE{5}={p} (we assume that CSE(fun_0) is 

empty, and DSE(fun_0) contains only variables not used in fun), 

CSE(6)={k}, DSE(6)={p} (similar assumptions to fun_1), 

DSE(7)={k} (we assume that CSE(fun_2) contains only 

variables not used in fun, and DSE(fun_2) contains only k), 

CSE(8)={l}, DSE(9)={i,l}, CSE(9)={i,l} (l pulled in from 11), 

DSE(13)={k,p}, CSE(13)={p} (p pulled in from 15), 

DSE(15)={k}, CSE(15)={p}. 

The extraction of parallel paths is performed as follows: 

instruction 3 creates the set I (instruction 3, modified variable 

k), 4 creates the set II (instruction 4, modified variable l), 5 

creates the set III (instruction 5, modified variable p). 

Instruction 6 merges the sets I and III, as it is a read/write 

conflict on p and write/write conflict on k, so the resulting set I 

contains instructions 3,5,6 and variables k,p. Instruction 7 

enlarges set I by itself (accessed k), and 8 enlarges set II by itself 

(accessed and modified l). Instruction 9 adds itself and variable 

i to set II, and so on. Finally, set I contains instructions 

3,5,6,7,13,15 and variables k,p, while set II contains instructions 

4,8,9,11 and variables l,i. Therefore, two independent paths are 

identified that can be subject to parallelization. 

If we want to make a function capable of running in parallel 

with multiple instruction paths, it can only contain one return 

statement. This return statement must always ensure the 

function's complete execution. Otherwise, it might lead to the 

execution of instructions in parallel paths that would not occur 

in a sequential mode. 

1) Algorithm for independent paths 

It is necessary to build an independence graph, with the labels 

of the instructions and the employed variables (local and non-

local) serving as its nodes. The edges link the variable names 

used to the instruction labels. Furthermore, the content within a 

conditional statement is tied to the variables used in the 

condition itself, and the entire content within a loop is connected 

to the variables specified in the loop header. Code slicing 

techniques are the foundation of the independent path discovery 

algorithm  [22]. Function calls must have their CDE and CSE 

calculated in accordance with the asynchronous calls algorithm, 

if there are any. They serve as the foundation for joining local 

and non-local variables given via reference and function call 

parameters. Edges connected with variables that are only read 

are eliminated from the graph due to the Bernstein conditions. 

The possibility of parallelization exists within the 

independence graph when it consists of multiple separate 

components, with no edges connecting nodes between them. 

Each of these components represents the start of a unique path, 

and it is crucial to ensure synchronization at the end of each path 

within the function. 

If the independence graph does not have separate 

components, the potential for parallelization might still exist 

within a cohesive section of the function. This could be 

something like an if-else instruction, an if instruction 

alone, or the content of a loop for a single iteration. 
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2) Dynamic evaluation 

To make instructions run in parallel, we create individual 

threads for each independent path, execute them in parallel, and 

then synchronize their control flow. Parallelization becomes 

practical when we have at least two paths with similar execution 

times, which are much larger than the average time of starting 

parallel threads, denoted as P. It is a good idea to consolidate all 

paths with execution times close to or shorter than P, into longer 

paths. The same if their execution times are significantly shorter 

than the two (or more) longest ones. This helps optimize the 

parallel execution process.  

As the instructions within these paths can overlap and run 

concurrently, it is challenging to estimate the path execution 

times of the independent paths in a sequential program. As a 

result, we must apply the solution to as many paths as possible, 

assess their execution times, and then join any that do not 

comply with the timing criteria. 

3) Running the paths in parallel 

Parallel paths should originate from a common starting point. 

Subsequently, for each of these parallel paths, a thread 

comprising instructions from of the component in the graph in 

the original order should be initiated. 

C. Parallelized loops 

The loop is often considered the most conducive component 

for parallelism. If the following conditions hold, it is possible to 

parallelize loop iterations because of their repetitive nature and 

behavior (where the same piece of code is executed multiple 

times). 

1) Loops 

There are two primary types of loops in high-level languages: 

for (foreach can be transformed to for), and while (also 

including do-while). The examination of loops considers 

variables access (side effects, parameters, and iteration 

dependency), loop nesting, and the capacity to forecast the 

number of iterations. 

Number of iterations. The loop cannot be parallelized if it 

includes situations where the loop, its containing function, or 

the entire program terminates prematurely. Loop iterations that 

cannot be interrupted can be identified statically or dynamically.  

The most commonly used loops are for loops, where the 

number of iterations is either set as a fixed value or determined 

dynamically before the loop begins. For loops, whose size can 

be predetermined or fixed before the loop begins, are frequently 

used to iterate through elements of collections. The initializer, 

condition, and iterator are all contained in the header of for 

loop. In a for loop, the initializer runs before the loop starts, 

the iterator runs after each cycle, and the condition is checked 

before every iteration. If the condition is false, the loop is 

terminated, and any subsequent cycles are skipped. 

Loops while are commonly used when the number of 

iterations depends on an ongoing condition, and the exact 

number of iterations is uncertain. In such loops, it is typical for 

the values of variables used in the condition to change during 

the loop execution or for the loop to be terminated prematurely, 

as seen in loops like while(true). Due to this 

unpredictability, we primarily focus on analyzing for loops. 

Analysis of loop dependencies. Other loop iterations may be 

able to make use of side effects produced by each loop iteration. 

We consider any changes to function-local variables, like the 

loop counter, as side effects. It is important to note that 

modifying variables that are part of the loop condition is not 

allowed, as these variables are interdependent when one loop 

cycle triggers side effects that affect other iterations.  

Consider a loop that runs N times, with iterations numbered 

from 1 onwards, regardless of the actual values of the loop 

iterator. We define the following sets of variables for each 

iteration:  

• PIn: The variables read in the loop header iterator after 

iteration n, 

• POn: The variables modified in the loop header iterator after 

iteration n, 

• CIn: The variables that are read in the loop body in iteration 

n and also in the condition of the loop, 

• COn: The set of variables modified in the loop body in 

iteration n. 

If a variable read within the loop body is modified only in the 

loop iterator after each iteration, and its modification is not 

dependent on the variables modified in the loop body of any 

iteration (in other words, 𝑃𝑂𝑛 ∩  𝐶𝑂𝑛 = ∅ → 𝑃𝑂𝑛 ∩  𝐶𝐼𝑛 =
𝑃𝑛), and the variables 𝐶𝑂𝑛 do not influence any 𝑃𝑂𝑚 

(𝑃𝑂𝑛 ≠ 𝐹(𝐶𝑂𝑚) for any n and m), then the value of this 

variable for each iteration n can be computed before the loop 

cycle begins.. 

If the following criteria are true for 𝑖, 𝑗 ∈ (1, … , 𝑁): 𝐶𝐼𝑗 ∩

𝐶𝑂𝑖 = ∅, 𝐶𝐼𝑖 ∩ 𝐶𝑂𝑗 = ∅, 𝐶𝑂𝑖 ∩ 𝐶𝑂𝑗 = ∅, which are the 

modified Bernstein conditions, and if any variables changed by 

the loop iterator are loop parameters, then this for loop can be 

parallelized. In this context, for loops that use a counter 

iterated after each iteration can be parallelized.  

Nested loops. When working with multi-dimensional data, 

like the rows and columns of an image or matrix multiplication, 

we might encounter nested loops. These are loops within loops, 

and it's not very common to have four or more levels of nesting. 

We attempt to parallelize the outermost loop in nested loops 

because it offers the most parallelism. When a parallelized loop 

Z1 is nested inside loop Z0, note that during each iteration of Z0, 

many parallel Z1 cycles begin in parallel. In this scenario, Z0 has 

to wait for all the Z1 iterations to finish before it can begin the 

next iteration. However, if we parallelize Z0, the Z1 cycles from 

different Z0 iterations can run simultaneously. This means that 

parallelization and waiting for parallel threads to finish only 

occur once, making the process more efficient. 

2) Loop parallelism 

Parallelizing a loop is possible when these three conditions 

are satisfied: 

• We must know the values of loop parameters for each 

iteration before starting the loop. 

• Each iteration should be independent and not rely on others. 

• The total number of iterations should be known in advance. 

It is important to note that these criteria significantly limit the 

number of loops that can be parallelized.  

3) Parallelized loop algorithm 

Loop parameters analysis. A loop iterator is a variable read 

within the loop body but only modified in the loop header. 

Significantly, any changes made to this iterator in the header 



140 W.DASZCZUK, D.B.CZEJDO, W.GRZEŚKOWIAK 

 

 

must not be influenced by modifications occurring inside the 

loop. 

Since we cannot predict the iterator value before the loop 

starts, parallelization is not possible if the variables modified in 

the loop iterator intersect with the variables modified inside the 

loop. 

The next step is to check if altering the loop parameters is 

unrelated to changing any variables inside the loop. It is crucial 

for these two sets of variables, loop parameters and those 

updated inside the loop, to be distinct. Otherwise, parallelization 

of the loop is not feasible. 

Iteration independence analysis. Determining the sets of 

variables that are read and written involves examining the DSE 

and CSE of called functions. If a variable is both read and 

written within the loop, it creates the potential for a race 

condition between loop cycles. This situation aligns with what 

is known as the Bernstein condition, where a race can occur 

between two iterations. Here is an example of code where this 

race condition can happen.  
1. void count(int* data, int* result,  

           int number) 

2. { 

3.  const int constant = 5; 
4.  int lastResult = 0; 
5.  for(int i=0; i<number; ++i) 
6.  { 
7.   int temp = Math.Pow(data[i], 3); 

8.   temp += constant; 

9.   lastResult = temp + data[i]; 

10.   result[i] = lastResult; 

11.  } 
12. } 

The variable lastResult is read and changed in a single 

iteration. 

Iteration count analysis. Suppose we have a loop with a 

condition and iterator modification in a specific form, along 

with some additional conditions explained below. In that case, 

we can determine the number of iterations in advance. 

• The condition has the form: <w1><op><w2>, where w1 and 

w2 are either simple variable names or constant numbers, and 

op is an arithmetic operator. 

• One of (𝑤1, 𝑤2) must be the loop counter, whose value 

changes by the same amount in each iteration. 

• The other variable, either 𝑤1 or 𝑤2, should be a simple 

variable or a constant called limit. 

• We need to know the initial value of the loop counter before 

the loop starts. 

• The loop counter must be modified using one of the 

following operators: ++, --, +=, -= . The value added 

or subtracted must always be 1 in the first two cases. In the 

latter two cases, if it is a variable, its value must remain 

constant during the loop execution.  

• The operator op in the condition must be one of the 

following: ==, !=, <, >, <=, >=. 

We can determine the number of loop iterations based on the 

operator used in the loop condition, the counter modification 

operator, and the modifier value. To simplify this, let us 

consider that 𝑤1 represents the loop counter, 𝑤10
 is the initial 

value of the counter, and 𝑤2 is the limit. The exact analysis of 

this calculation can be quite extensive and detailed, so we will 

not delve into it here because it consumes too much space. 

However, it is possible to calculate the number of iterations by 

considering these variables and their interactions, for instance; 

when 𝑤1 = 𝑤2, 𝑝 = 0, op:+= infinitely many iterations; when 

𝑤1 ≠ 𝑤2, 𝑤2 < 𝑤10
, op:++ unknown number of iterations; and 

when 𝑤1 ≠ 𝑤2, 𝑤2 > 𝑤10
, 𝑝 > 0, op=++ → 

𝑤2−𝑤10

𝑝
 iterations. 

Only the latter scenario is viable. Out of the cases we examined, 

we identified 18 scenarios where the loop resulted in more than 

one iteration. In these cases, we were able to determine the 

number of iterations, as in the code (=number): 
1. void countShortcuts(FILE* files,  

                  MD5* shortcuts, int number) 

2. { 

3.    for(int i=0; i<number; ++i) 

4.    { shortcuts[i] = CountMD5(files[i]); } 

5. } 

6.  

7. MD5 CountMD5(FILE* file) 

8. { //long calculations } 

4) Dynamic evaluation 

A number of program runs using various data sets are 

required for evaluation, with the time taken for each loop cycle 

being recorded. A log must be output because there may be 

thousands of cycles. It is reasonable to use parallelization if, for 

the average situation, at least two iterations of a loop take a 

similar amount of time, and this time is significantly longer than 

the time it takes to create and synchronize threads, then 

parallelization makes sense.. 

5) Introducing loop parallelism 

Every iteration must begin with a separate variable that 

represents the counter in order to run the algorithm. By adding 

the modifier to 𝑤10
, and applying n-1 modifications, the 

assigned value comes. The condition is not required because 

parallelism consumes it.  

V. COMMON CONSIDERATIONS 

Even though we can use asynchronous calls as they are, 

sometimes we might end up creating many parallel threads 

simultaneously in parallel pathways or loops. This number 

could exceed the actual number of processors or cores, or the 

parallel threads that the operating system has assigned to the 

program. To manage this efficiently, creating threads in smaller 

groups closer to the system limits is a good idea. 

In parallelization, synchronization is a significant problem. 

Synchronization points are provided by environments like 

Parallel Extensions, where the thread ends are gathered before 

the beginning of the subsequent instruction. To ensure proper 

synchronization in asynchronous calls, we must establish 

synchronization points before a deferred usage occurs. These 

synchronization points are essential, especially when a function 

or a portion of it ends in parallel paths or if a loop is parallelized. 

In cases where a built-in synchronization mechanism is 

unavailable, we can utilize existing synchronization 

mechanisms. The instruction following the required 

synchronization point typically involves waiting on a lowered 

semaphore to coordinate the execution flow. Before the threads 

branch, a thread counter is set up, and each completed thread 

reduces the counter in a critical section. When the counter hits 

0, the semaphore is raised. The event mechanism is available in 

C#. 

Our techniques have some limits, including the use of virtual 

functions, exceptions, and nested function calls like 
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𝑓1(𝑓2()).The virtual function approach was discarded because 

it is impossible to predict which method, either from the base 

class or the inheriting class, will be called. This unpredictability 

stems from the limitations of static code analysis, which cannot 

determine the specific type of object that might be assigned to a 

given variable. 

A side effect is any alteration in an object or resource state 

that does not stem from the call parameters or interactions with 

the environment. When multiple statements induce side effects 

on the same resource, like a computer screen, they cannot be 

executed simultaneously without additional synchronization 

efforts. In simpler terms, if two actions mess with the same 

thing, they must be carefully coordinated to avoid conflicts. The 

developer should decide which resource operations can be 

carried out concurrently. 

A. Synchronization 

In specific high-level programming languages like C#, we 

have an alternative to using threads. Instead of manually 

managing threads, we can use language features or libraries that 

provide parallel processing capabilities. In the case of C#, we 

can swap out a traditional for loop with a parallelized version, 

specifically the Parallel.For loop found in the Parallel 

Extensions library. This allows for harnessing the power of 

parallel processing without getting into the details of thread 

management.  

For running the sets of instructions in parallel in our 

benchmark (see Section 6), we use C# threads with 

thread.Start() and thread.Join(). In Unix-like 

environments, processes can replace threads, using fork() 

and wait() operations, but we must remember that in this case 

the calculations are slower because the process data is 

duplicated in fork(). If the result of calculations is a single 

value, it can be passed as the exit code. The program is: 
1. int i = fork(); 

2. if (i==0)  

3. { 

4.    //do the child work  

5.    exit(EXIT_SUCCESS); 

6. } 

7. else 

8. { 

9.    int wstatus; 

10.    do  
11.    { 
12.       int w = waitpid(i, &wstatus,  

                   WUNTRACED | WCONTINUED); 

13.       if (w == -1) exit(EXIT_FAILURE); 
14.    } while (!WIFEXITED(wstatus)); 
15.    int result = WEXITSTATUS(wstatus); 
16. } 

If the results of the child program cannot be passed using the 

exit code, the data can be provided to the parent using a file, 

shared memory area, or a pipe. 

In other environments, a call of a child program from the 

parent program can be applied, and the programs should read 

the same input data. For synchronization, a simple semaphore 

initialized to 0 can be used. For example, if we want to run 6 

loop cycles, one of them can be performed by the main thread 

(say, cycle 0). All the other cycles 1..5 can be performed by the 

child programs. The results can be passed as above by files, 

shared memory area, or a pipe. The parent program: 

1. start semaphore s(0); 

2. for (int i=1; i<6; ++i)  

3. { startChildProgram(i); } 

4. loopContent(0); 

5. for (int i=1; i<6; ++i) s.P(); 

The child program i: 
1. loopcontent(i); 

2. s.V(); 

B. Nesting 

 
Fig. 2. Nesting independent paths 

The proposed methods can be hierarchically mixed. This 

means that, for example, parallel paths can comprise an 

asynchronous function call or a parallelized loop. Additionally, 

independent paths can be split into more detailed independent 

paths that concern subsets of variables accessed in the “parent” 

path. This is described graphically in Fig. 2, in which a set of 

variables is divided into subsets in a hierarchical way.  

The outer paths concern the sets of variables v1-v4 and v5-v8, 

respectively. The path concerning v1-v4 is split into shorter 

subpaths in which v1,v2 and v3,v4 are accessed independently, 

which do not occur in the starting and ending fragments of the 

parent path. More deeply, the subpath concerning v1 and v2 is 

split into shorter subpaths concerning individual variables v1 

and v2 separately. Fig. 3 shows symbolically how the cases can 

be nested. 

 
Fig. 3. Nesting the cases 
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VI. CASE STUDY 

We have developed an experimental tool designed for loop 

parallelization, and we have put it to the test on various 

programs, including tasks like matrix multiplication, N-

dimensional space point neighborhood search, image 

recognition, and information entropy computation. 

What is particularly noteworthy is that most of the loops we 

encountered could not be transformed into structures suitable 

for parallelization. These loops often relied on external 

resources, like images or data collections processed by the 

application. We observed similar challenges when examining 

the other two sequential constructs discussed in this article, 

namely asynchronous calls and parallel paths. 

In the cases of matrix multiplication and neighborhood 

search, we found that out of the 16 loops available, only 8 could 

be effectively parallelized. However, it is essential to note that 

in the case of matrix multiplication, introducing parallelism led 

to a notable efficiency boost of approximately 40% for the 

corresponding code. The multiplication program contains 3 

hierarchical loops. The tool replaced the outer loop for (int 

i = 0; i < matARows; i++) {…} with the parallel loop 

Parallel.For (0; matARows; i => {…}). 

In some instances, the loop iterations were very brief, and 

when we attempted to implement parallelization, it actually 

extended the overall execution time of the loop. Therefore, we 

decided to elaborate a benchmark common for all three 

techniques of parallelization, and show how to write the code 

that is tractable for introducing parallelism. 

A. The benchmark 

To illustrate the application, we prepared a benchmark of a 

sequential process in C# that can be parallelized in different 

ways. We chose the mergesort algorithm, as it is tractable to be 

cut into independent subprocedures. The basic C# code is: 
1. string[] mergeSort(string[] v) 

2. { 

3.    if (v.Length <= 1) return v; 

4.    int middle = v.Length / 2; 

5.    string[] v1 = 

       v.Skip(0).Take(middle).ToArray(); 

6.    v1 = mergeSort(v1); 

7.    string[] v2 = v.Skip(middle) 

8.       .Take(v.Length - middle).ToArray(); 

9.    v2 = mergeSort(v2); 

10.    return merge(v1, v2); 
11. } 

The sets of individual instructions are: DSE(3)={v}, 

CSE(4)={middle}, DSE(4)={v}, CSE(5)={v1}, 

DSE(5)={v,middle}, CSE(6)={v1}, DSE(6)={v1}, 

CSE(7)={v2}, DSE(7)={v,middle}, CSE(9)={v2}, 

DSE(9)={v2}, DSE(10)={v1,v2}. The function mergeSort is 

recursive, but it does not produce any side effect other than 

modifying the variable that holds the result, so we can define 

CSE(vi=mergeSort(vi))={vi}.  

B. Asynchronous call 

We can apply an asynchronous call to the first invocation of 

mergeSort in line 6. The variable v1 receiving the result is 

used in line 10, so we have a deferred use effect. In C#, a thread 

must execute a function, so we define the first execution of the 

sort as the separate function mergeSortParallel and 

extract the first nested call of mergeSort to the new function 

mergeSortThread. The thread cannot pass a result; thus, the 

nonlocal variable v1s is used instead of the local variable v1. 

The function mergeSort remains unchanged. The 

parallelized function containing asynchronous call is given 

below. 
1. string[] v1s; 

2. void mergeSortThread() 

3. { v1s = mergeSort(v1s); } 

4.  

5. string[] mergeSortParallel(string[] v) 

6. { 

7.    if (v.Length <= 1) return v; 

8.    int middle = v.Length / 2; 

9.    v1s = v.Skip(0).Take(middle).ToArray(); 

10.    Thread thread = new Thread(new  
              ThreadStart(mergeSortThread)); 

11.    thread.Start(); 
12.    string[] v2 = v.Skip(middle) 
13.       .Take(v.Length - middle).ToArray(); 
14.    v2 = mergeSort(v2); 
15.    thread.Join(); 
16.    return merge(v1s, v2); 
17. }  

C. Parallel paths 

To apply parallelization of independent paths, we need the sets 

of instructions not in conflict (read/write or write/write). Of 

course, it could be continued to sort two parts in parallel, but 

here, we decided to create four parallel paths performing partial 

sorts of the array quarters. For parallelization, we must extract 

the calculation of quarters size to the calling function, as this 

variable is modified in the sorting function and used in every 

partial sort. This causes all partial sorts to be in read/write 

conflict with the quarters size calculation. A similar situation 

applies to merging the quarters, so the merging is extracted to 

the calling function. Like previously, the independent paths are 

extracted as the separate function mergeSortMemberGang. 

Generally, every path should have its own function, but we use 

a common function because sorting the quarters is performed 

identically. The parameter is passed as an object because such 

is the requirement for a parametrized thread start. The function 

prepared for parallelization is: 
1. string[][] vg = new string[4][]; 

2. void mergeSortMemberGang(object i) 

3. { vg[(int)i] = mergeSort(vg[(int)i]); } 

4.  

5. void mergeSortGang(string[] v, int part) 

6. { 

7.    vg[0] = v.Skip(0).Take(part).ToArray(); 

8.    mergeSortMemberGang((object)0); 

9.    vg[1] = v.Skip(part).Take(part).ToArray(); 

10.    mergeSortMemberGang((object)1); 
11.    vg[2] =  

         v.Skip(part*2).Take(part).ToArray(); 

12.    mergeSortMemberGang((object)2); 
13.    vg[3] = v.Skip(part*3).Take(v.Length- 

                           3*part).ToArray(); 

14.    mergeSortMemberGang((object)3); 
15. } 
16.   
17. string[] mergeSortControl(string[] v) 
18. { 
19.    if (v.Length <= 1) return v; 
20.    if (v.Length <= 3) return mergeSort(v); 
21.    int part = v.Length / 4; 
22.    mergeSortGang(v, part); 
23.    vg[0] = merge(vg[0], vg[1]); 
24.    vg[2] = merge(vg[2], vg[3]); 
25.    return merge(vg[0], vg[2]); 
26. } 
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The parallelized code of four independent paths is: 
1. mergeSortGang(string[] v, int part) 

2. { 

3.     Thread[] threads = new Thread[4]; 

4.     object[] obj = new object[4] { 0,1,2,3 }; 

5.     vg[0] = v.Skip(0).Take(part).ToArray(); 

6.     threads[0] = new Thread( 

7.        new ParameterizedThreadStart 

                      (mergeSortMemberGang)); 

8.     threads[0].Start(obj[0]); 

9.     vg[1] =  

           v.Skip(part).Take(part).ToArray(); 

10.     threads[1] = new Thread( 
11.        new ParameterizedThreadStart 

                      (mergeSortMemberGang)); 

12.     threads[1].Start(obj[1]); 
13.     vg[2] =  

         v.Skip(part*2).Take(part).ToArray(); 

14.     threads[2] = new Thread( 
15.        new ParameterizedThreadStart 

                      (mergeSortMemberGang)); 

16.     threads[2].Start(obj[2]); 
17.     vg[3] = v.Skip(part*3). 

             Take(v.Length-3*part).ToArray(); 

18.     threads[3] = new Thread( 
19.        new ParameterizedThreadStart 

                      (mergeSortMemberGang)); 

20.     threads[3].Start(obj[3]); 
21.     for (int i = 0; i < threads.Length; ++i) 
22.        threads[i].Join(); 
23. } 

D. Parallel loop 

The solution prepared for loop parallelization is quite similar 

to that with independent paths; the difference is in calling the 

quarter sort inside the loop rather than in the instruction 

sequence. As we work with the fragment of the function, the 

calculation of the quarter size and merging can be restored: 
1. string[][] vf = new string[4][]; 

2. void mergeSortMemberFor(object i) 

3. { vf[(int)i] = mergeSort(vf[(int)i]); } 

4.  

5. string[] mergeSortFor(string[] v) 

6. { 

7.    if (v.Length <= 1) return v; 

8.    if (v.Length <= 3) return mergeSort(v); 

9.    int part = v.Length / 4; 

10.    for (int i = 0; i < 4; ++i) 
11.    { 
12.        if (i < 3) vf[i] = v.Skip(i*part). 

                      Take(part).ToArray(); 

13.        else vf[3] = v.Skip(3*part). 
           Take(v.Length-3*part).ToArray();                 

14.        mergeSortMemberFor((object)i); 
15.    } 
16.    vf[0] = merge(vf[0], vf[1]); 
17.    vf[2] = merge(vf[2], vf[3]); 
18.    return merge(vf[0], vf[2]); 
19. } 

The loop can be parallelized using Parallel.For, but 

here we show how it can be converted to explicit threads. 
1. string[] mergeSortFor(string[] v) 

2. { 

3.    if (v.Length <= 1) return v; 

4.    if (v.Length <= 3) return mergeSort(v); 

5.    int part = v.Length / 4; 

6.    Thread[] threads = new Thread[4]; 

7.    for (int i = 0; i < 4; ++i) 

8.    { 

9.        if (i < 3) vf[i] = v.Skip(i*part). 

                       Take(part).ToArray(); 

10.        else vf[3] = v.Skip(3*part). 
            Take(v.Length-3*part).ToArray();  

11.        threads[i] = new Thread( 

12.           new ParameterizedThreadStart 
                      (mergeSortMemberFor));                

13.        threads[i].Start((object)i); 
14.    } 
15.    vf[0] = merge(vf[0], vf[1]); 
16.    vf[2] = merge(vf[2], vf[3]); 
17.    return merge(vf[0], vf[2]); 
18. }  

E. Tests results 

We tested the four parallelized solutions compared with the 

sequential ones on the text files downloaded from the Gutenberg 

database at https://zenodo.org/record/3360392 : 6MB, 72MB, 

and the later one repeated three times (215MB). For all those 

files, the run time reduction was independent on the file size. 

The asynchronous call solution took approx. 60% of sequential 

program, and for both independent paths and parallelized loop, 

it was around 45%. The tests were run on 4-core processor. This 

environment somehow disturbs the tests, because we have 

totally five threads (including the main one) and the operating 

system running in parallel, but it shows the potential of 

parallelization. 

On the base of the presented cases, we can formulate the hints 

for building the functions that are tractable for parallelization. 

For asynchronous call, the deferred use should be as far from 

the function call as possible. For independent paths, initial write 

operations on common data (that are only read along the rest of 

the function) and aggregation of results should be extracted to 

the calling function, leaving sets of instructions more 

independent. For parallel loop, the loop cycles should be 

independent between themselves, and independent of loop 

control variables. Additionally, among loop control 

instructions, only continue can be applied to preserve the 

total number of cycles. If there are exceptions that can be raised, 

they should be extracted to the calling function. 

VII. SUMMARY AND FUTURE WORK 

This article primarily focuses on the practical methodology 

for transforming sequential programs written in C-like 

languages into parallel programs. It delves into a comprehensive 

analysis of three fundamental components in sequential code: 

function calls, instruction paths, and loops. Through this in-

depth exploration, the article introduces algorithms designed to 

identify and parallelize these code constructs, along with the 

necessary conditions for introducing parallelism within them. 

The analysis can go deeper and discover nested cases, as shown 

in Fig. 3. Especially, identifying nested independent subpaths 

requires additional steps in the algorithm (Fig. 2). 

Our approach enables parallelism without the need for extra 

resource synchronization methods. Instead, it achieves this by 

thoroughly analyzing relevant program structures and assessing 

their independence. Future research might involve investigating 

dependencies and using these findings to automatically 

introduce parallelism along with resource synchronization. Such 

an approach could potentially expand the range of structures that 

can be parallelized. 

To sum it up, automating the integration of parallelism is a 

highly complex subject that demands a comprehensive analysis 

of numerous aspects and components. Future solutions might 

avoid this requirement by using completely different machine 

learning techniques. New data-driven approaches, using ML 

customized deep learning models [23] or large language models 



144 W.DASZCZUK, D.B.CZEJDO, W.GRZEŚKOWIAK 

 

 

trained on cross-lingual keywords [24], are emerging. We have 

conducted initial experiments using a general-purpose language 

model in ML to convert sequential code into parallel code. 

However, our early experiments show limitations in direct 

model use, and further model training is needed. Additionally, 

the explanation of the transformations made by these models, 

would assist in identifying limitations of ML approach and thus 

lead to further improvements [25]. 
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