IR detection module with integrated real-time FIR filter implemented in FPGA

Krzysztof Achtenberg, Janusz Mikołajczyk, and Zbigniew Bielecki

Abstract—Infrared detectors are usually characterized by 1/f noise when operating with biasing. This type of noise significantly reduces detection capabilities for low-level and slow signals. There are a few methods to reduce the influence of 1/f noise, like filtering or chopper stabilization with lock-in. Using the first one, a simple 1st-order analog low-pass filter built-in amplifier usually cuts off 1/f noise fluctuations at low frequencies. In comparison, the stabilization technique modulates the signal transposing to a higher frequency with no 1/f noise and then demodulates it back (lock-in amplifiers). However, the flexible tuned device, which can work precisely at low frequencies, is especially desirable in some applications, e.g., optical spectroscopy or interferometry. The paper describes a proof-of-concept of an IR detection module with an adjustable digital filter taking advantage of finite impulse response type. It is based on the high-resolution analog-to-digital converter, field-programmable gate array, and digital-to-analog converter. A microcontroller with an implemented user interface ensures control of such a prepared filtering path. The module is a separate component with the possibility of customization and can be used in experiments or applications in which the reduction of noises and unexpected interferences is needed.

Keywords—IR detector; FIR; FPGA; DSP; noise; filtering

I N recent years the rapid development of infrared technology is still observed. This applies to infrared detector production technology and its utilization in specific applications. Infrared IR sensors work in systems like fire detection, biometries, spectroscopy, thermography, motion control, or security [1–4]. In most cases, they should have high sensitivity. However, the fundamental limit depends on both sensitivity and noise levels determined by the detector’s construction and work conditions [5]. The shape of the noise spectrum can be divided into a low-frequency range where 1/f noise occurs (also named a flicker noise) and white noise at high frequencies. It can be seen that the fundamental way to minimize the noise influence is based on a selection of the operation frequency. Nevertheless, in many applications, there is no possibility to use high-frequency optical signals, e.g., optical spectroscopy, interferometry, crystal research and technology, infrared thermography, and laser wavelength stabilization [6].

That is why, some techniques are designed to reduce 1/f noise influence for low-frequency signals. For example, a stabilization technique with lock-in amplification can be used to extract a signal from the noise, but the modulation frequency and phase must be known [7, 8]. Moreover, the lock-in instrumentation is complex and expensive [9]. Analog filtering is an effective method, but it is challenging to project flexibly tunable in a wide frequency range bandpass filter which can take various forms. The detector cooling also restricts the 1/f noise component and increases detectivity. However, a decrease in its temperature to 200 K (using a multistage thermoelectric cooler) is still insufficient to detect signals that cause millivolts changes at detection module output.

Our paper presented a novel concept of an IR detection module architecture equipped with an integrated digital filtering block. The use of digital filters has a few advantages in comparison with analog ones. First, the attenuation in the band-stop frequency range and the rate of the frequency-response characteristics decrease are much better with digital filters. Moreover, the digital filter offers a better compromise between the ringing effect, signal attenuation in the band-stop range (ex., in the case of the Chebyshev type), and a simple reconfiguration procedure. Additionally, high-order analog filters are more complex and require strictly defined tolerances of passive components.

In comparison, the main limitations of digital filters are due to hardware capabilities (processing speed) and coefficient precision [10]. For example, the number of available multiplication blocks in the use of field-programmable gate arrays (FPGA) determines the filtering limits. Digital filters based on digital signal processing (DSP) techniques are widely used in many scenarios and applications like radio signal detection and ranging, e.g., in software-defined radio, cell phone communication systems, and satellite receivers [11–15]. Such filters can be implemented on various hardware like FPGA, microcontrollers (µC), system-on-chip (SoCs), or application-specific integrated circuits (ASICs) [16-19].

Applying a finite impulse response filter (FIR) in the IR module defines its desired frequency response and cut-off frequencies by the values of its coefficients. The prepared procedures and components configuration ensures both the detection of “low-level” optical signals and the reconstruction of their electrical shape.

The module operation was simulated using calculated frequency responses and tested in a lab setup. Although generally available and low-cost components were used in the module prototype, the studies have shown its performance in detection of...
modulated signals in spectra range of 1/f noise with bandpass filtration (BPF). To our knowledge, no literature describes such a concept of an optical detection module with its possibilities and limitations.

II. MATERIALS AND METHODS

The main objective of this work was to define the performances of a “digitally filtered” IR detection module. Using this module, we read out the signal from the detector, sample it, provide the desired filtering operation, and send the result to the DAC block equipped with an output correction filter. The simplified schematic diagram of the module construction is shown in Fig. 1. In the photoreceiver, the mercury cadmium telluride (MCT) photoconductive detector optimized for 9 µm wavelength was used [20, 21]. An increase in detectivity was obtained using a four-stage thermoelectric cooler TEC and an immersion lens [22-24]. The intensity and specific corner frequency of 1/f noise depends on the applied bias and temperature. With a relatively low detector sheet resistance, the total photoreceiver noise is also contributed by designed read-out electronics.

![Simplified block diagram of the photoreceiver module](image)

The two-stage electronics are built using low-noise bipolar-input AD797 opamps, with voltage noise of 0.9 nV/√Hz at 1 kHz and about 110 dB of open-loop gain. It consists of a transimpedance amplifier TIA and voltage amplifier VA, respectively. An AC amplifiers’ coupling (filter R_C, f_c=10 Hz) was used to eliminate the DC detector bias signal ensuring the sensor’s dynamic range. The V_b bias voltage is filtered by a R_C low-pass filter LPF (f_c = 1 mHz). The gain G_V is set to 101 kV/A by TIA’s feedback resistor and the VA’s gain resistors (R_2 and R_3). All analog circuits use a linear power supply to avoid interferences from switching converters. The scheme of the read-out electronics is shown in Fig. 2.

![Schematic diagram of the detector read-out circuit](image)

The filtered output signal V_OUT is proportional to the infrared radiation power with the coefficient G:

\[V_{\text{OUT}} = i_{\text{ph}}G, \]

where \(i_{\text{ph}} \) is the registered photocurrent signal determined by beam power and detector responsivity. Assuming that noise from the VA is negligible (comparing high transimpedance of TIA) and DC voltage from bias (\(V_b/R_{\text{DET}} \)) is removed by the AC filter, the output noise voltage can be expressed as:

\[V_{n_{\text{out}}} = R_f G \left(\frac{i_{n_{\text{DET}}} + i_{n_{\text{OA}}} + i_{n_{\text{RF}}} + e_{n_{\text{VB}}}}{(R_{\text{DET}})(R_f)} + \frac{e_{n_{\text{VB}}}}{(R_{\text{DET}})(R_f)} \right), \]

where \(R_{\text{DET}} \) is detector resistance, \(e_{n_{\text{VB}}} \) is voltage noise of bias source \(V_b, i_{n_{\text{DET}}} \) is the detector noise current, \(i_{n_{\text{OA}}} \) is \(R_1 \) resistor noise current, \(i_{n_{\text{OA}}} \) and \(e_{n_{\text{OA}}} \) are current and voltage noises of the op amp used in the TIA, respectively.

In the developed IR detection module, we used precision data converters (analog-to-digital ADC and digital-to-analog DAC). Using the prepared structure, we digitized the amplified signal from the photoreceiver, filtered the digital signal, and converted it into the analog one at the detection module output.

High-resolution 16-bit ADC (AD7606) samples the output signal with +/-5V set input range (LSB=153 µV). This model is then characterized by 89 dB (typ.) of signal-to-noise ratio SNR and ±0.5 LSB of differential and integral nonlinearity (DNL and INL). It has also a built-in anti-aliasing filter (second-order Butterworth low-pass filter) with relatively flat response characteristics up to 10 kHz. When the input range is set to +/-5 V, this filter’s -3 dB cut-off frequency is equal to 15 kHz [25]. Low-noise linear voltage regulator (model ADM7150) sets the supply and reference voltage for ADC. It has 1.6 µV RMS of the total noise integrated from 10 Hz to 100 kHz and ±1% voltage accuracy. The main core of the processing system is implemented in FPGA. Our prototype used a chip belonging to the ARTIX™7 family (XC7A35T in FTG256 package) from Xilinx. It has 33,280 logic cells, 5,200 slices, 600 kB of maximum distributed RAM, and 90 DSP slices, which are especially useful for implementing filtering functions [26]. The logic architecture of filtering, conversion, and microcontroller communications was written in VHDL. The synthesis, simulations, implementation, and programming were performed using dedicated Vivado software. The FPGA works with a 50 MHz clock frequency and a 100 kHz sampling frequency defined by the 10 µs - limit of DAC settling time. The communications (FPGA – data converters, FPGA – microcontroller) use 16-bit parallel interfaces. The schematic diagram of the described DSP signal trace for the detection module is shown in Fig. 3.

The FIR structure implemented in the FPGA ensures a flexible and stable digital filter configuration [10, 27-28]. Its operation algorithm is visualized in Fig 4. The 16-bit two-complement format samples \(x(t) \) from the ADC are entering the 89-tap pipeline register in the FPGA. Each tap value is multiplied by a 16-bit fixed point \(b_8 \) coefficient. All multiplications’ products are summed, and the result \(y(t) \) is sent to the DAC.
In practice, the detection module can be equipped with a low-pass, high-pass, or bandpass filter. The selection of filter type directly defines the set of calculated coefficients. In our device, the coefficients are computed in 32-bit ARM® microcontroller STM32 (STM32F407VG) using DSP libraries (for sin and cos functions) and a built-in floating-point unit (FPU). The LPF discrete impulse response \(h[i] \) (number of filter coefficient) is calculated by a sinc-type Blackman windowed function from the formula [29]:

\[
h[i] = \begin{cases}
K \left(0.42 - 0.5 \cos \left(\frac{2\pi f_c i}{M} \right) \right) & \text{for } i \neq \frac{M}{2}, \\
0.08 \cos \left(\frac{4\pi i}{M} \right) & \text{for } i = \frac{M}{2},
\end{cases}
\]

where: \(M \) is the filter length (number of coefficients), and \(K \) is the constant selected to obtain a gain of 1 at the zero frequency. In the case of sinc windowed filters, the cut-off frequency \(f_c \) remains the gain of 0.5 (instead of 0.707). For a high-pass filter, the impulse response is created using spectrum inversion of the low-pass impulse response. The bandpass filter is formed by combining low-pass and high-pass impulse responses (which constitute a band-stop filter) and converting using the spectrum inversion method. In practice, this inversion is created by reversing the sign of all coefficients and modifying the middle \((M/2)\) coefficient. The calculated coefficients have a floating-point representation, and conversion is performed before sending to a 16-bit representation FPGA. Signal amplification is observed because the sum of the coefficients cannot be 1 for integer numbers. It is a significant effect for the LPF in which most integer type coefficients have high positive values, so the gain factor is also relatively high. We proposed two methods to minimize this effect. The first is based on rescaling the coefficients using calculated gain at the desired frequency value placed at the flat range of filter response characteristics and the FPGA bit-shifting. This method decreases precision by dividing all coefficients by the gain value as a specific number with a fraction, e.g., dividing an integer number by non-integer floating point one. Owing to numbers rounding, the impulse response characteristic can be distorted. The second method calculates gain at the desired frequency and considers the correct value after the DAC output signal examination. These methods use a Discrete Fourier Transform (DFT) of the filter impulse response to define the gain magnitude at the desired frequency \(f \) [30]:

\[
|H(f)| = \sqrt{(\sum_{i=0}^{M-1} h[i]\cos(2\pi f i))^2 + (\sum_{i=0}^{M-1} h[i]\sin(2\pi f i))^2},
\]

where \(f \) is expressed as a fractional sampling frequency. Then the coefficients are normalized to the frequency \(f \) (divided by the calculated \(|H(f)| \)):

\[
h[i] \leftarrow \frac{h[i]}{|H(f)|}
\]

The filter settings, e.g., filter type, cut-off frequencies, and gain, are defined by the user and visualized on the LCD. The register-based table prepared in the FPGA contains calculated coefficients. The utilization of available XC7A35T FPGA resources used for this project implementation is shown in Fig. 5.
During the designed final procedure, the filtered digital signal is converted into the analog one using a 16-bit resolution DAC8541 and buffered output voltage stage [31]. The DAC reference voltage is supplied by a low noise (3 µVpp in 0.1 to 10 Hz range), very-low drift (8 ppm/°C), and a precision (0.2 % accuracy) source, model REF5050. The applied two-stage output signal conditioning unit (SCU) consists of a voltage amplifier, low-pass anti-aliasing, and a restoring filter. The amplifier compensates the difference in data converter ranges (+/- 5 V vs. 0-5 V range) using JFET input opamp, model TL071HD (from Texas Instruments), in a non-inverting configuration. The filter is used to attenuate glitches and zero-order memory DAC phenomena [32]. It was built of OPA2140 opamps as the 4-th order Bessel type-LPF in the Sallen-Key configuration. Its -3dB cut-off frequency was set to 17 kHz with a stopband of -25 dB at 50 kHz. The schematic of the SCU is shown in Fig. 6.

The described detection module was tested by performing analyses of its components (photoreceiver and digitally-filtering unit) and examining the efficiency of signal filtering by reduction of the photoreceiver’s noise influence in the developed IR detection module.

III. RESULTS

A. Photoreceiver

Analyzing the FIR filter influence on the detection module features requires measuring the noise power spectral density (PSD) of the photoreceiver. The detector was not irradiated during this test, cooled to 200 K, and 1 V-biased. Measurements were performed using a high-precision FFT spectrum analyzer. The registered characteristics are shown in Fig. 7. Low-frequency noise (up to about 10 Hz) was attenuated due to the applied AC coupling (RcCa in Fig. 2). For higher frequencies, there is observed 1/f type noise. The integration of noise spectrum density can calculate the total noise signal:

\[v_{\text{rms}} = \sqrt{\int_{f_1}^{f_2} (e_n)^2 df}. \]

For example, we obtained a noise value of 7.3 mVrms from \(f_1 = 1 \text{ Hz to } f_2 = 100 \text{ kHz} \) (corresponding to about 17.5 mVpp).

B. FIR filter

The correct operation of the FIR filter was rated based on its coefficient calculations. It was performed by comparing results obtained from the STM32 µC with implemented equations (practical aspects) and MATLAB ones (theoretical aspects). All coefficients were simulated based on amplitude and phase responses using MATLAB (“custom debugging”). In the experimental part of the work, we measured the frequency and phase responses of some filters implemented in the FIR using the dedicated setup shown in Fig. 8. It consists of a tracking generator (Signal Hound TG44A) and a spectrum analyzer (Signal Hound SA44B).

Because of the spectral noise characteristics of the photoreceiver (high level of 1/f noise), the preliminary tests were performed for the LPF coefficients with the cut-off frequency (-6 dB) of 1 kHz [33]. This test’s results for three coefficient sets (impulse response) and without the gain normalization procedure are shown in Fig. 9.
The sets correspond to coefficients calculated in MATLAB using floating point representation without the normalization (red circles), in microcontroller using the floating point extended to a 16-bit integer without the normalization (black circles), and in STM32 µC using the floating point extended to a 16-bit integer with normalization (blue circles). A significant reduction in coefficient values is observed for the LPF with the normalization at 100 Hz. This procedure decreases precision by comparing results obtained by the maximum stretching to 16-bit representation. However, the input and output signal amplitudes should be equal at the normalization frequency, and the gain is calculated using the DFT algorithm implemented in the STM32 (eq. 3).

There is a high correlation between data obtained using both tools. A maximum relative difference is about 1.2% and results from the differentiation procedure in the range of rising edges of the sinc impulse response (Fig. 10).

Using MATLAB and STM32 µC tools, this procedure was performed with different number precision. Additionally, the sin and cos functions are more precise in MATLAB software. The microcontroller software uses standard DSP libraries (from STMmicroelectronics) to calculate trigonometric functions with 32-bit float representation results (“arm_sin_f32; arm_cos_f32”).

Figure 11 visualizes the measured and simulated magnitude response of the designed LPF filter (a) and their phase characteristics (b). The simulations were provided with coefficients calculated using MATLAB and STM32 µC and considering the influence of the normalization. The results of MATLAB simulation (without normalization) were calculated as the original frequency response curve (black line). Then the same response shape with coefficients extracted from the microcontroller memory was determined (red line). The obtained curves are similar indicating the correctness of the coefficient calculation process. They are characterized by -3 dB signal attenuation at 900 Hz and -6 dB at 1100 Hz. The small difference results from finite impulse response length, integer formats, and rounding limitations. In the case of the unnormalized impulse response, a 122 dB gain of the FIR is observed. This gain is determined by 89 operations demanding bit number standardization and by bit shifting in the FPGA (causing around 90.3 dB attenuation). Using the normalization, the nearly 0 dB gain is measured in the passband range (green curve). If the normalization is disabled, the resultant gain of this filter is about 32 dB (pink curve). Nevertheless, in many cases, there is no need to use auto normalization, and only information of gain value can be useful. In the designed module, the STM32 µC continuously calculates gain at the desired frequency and displays it. The phase response is linear up to about 3 kHz and fluctuates above this frequency. There are no significant differences between MATLAB simulation results and values calculated using the microcontroller’s coefficients. The measurement of the filter frequency response shows attenuation of about 55 dB in the band-stop range.

C. BPF filter

The same analysis was performed for the BPF with impulse responses designed for high-pass and low-pass cut-off frequencies of 2 kHz and 5 kHz, respectively. The calculated coefficients are presented in Fig. 12.

Positive and negative values are observed with the sinc function contour. The frequency response is symmetrical around the middle (f=M/2) coefficient, and the normalization strongly reduces the values of the coefficients (blue triangles). The integral value of the normalized pulse response is close to 0. There were also determined relative differences between...
impulse responses calculated in MATLAB and STM32 µC (Fig. 13). The difference changes are also defined by the differentiation procedure of the pulse response with a maximum value of about 0.7%.

![Fig. 13. Difference error between coefficients calculated in MATLAB and STM32 µC as a percent of maximum value](image)

The calculated impulse response (coefficients) determines the magnitude and phase responses of the BFP filter (Fig. 14). Like the LPF filter, a significant normalization effect was also observed. The relatively high gain is obtained in MATLAB simulations without consideration of the attenuation by bit shifting and truncating.

![Fig. 14. The frequency response of the BFP filter](image)

For BFP’s cut-off frequencies, the top of the frequency characteristics is around 3 kHz. The measured filter response showed its attenuation around 50 dB in the low-frequency range. The high-pass frequency slope is 40 dB/dec., but distortion due to the rounding and sampling errors above 8 kHz and independent of the normalization are observed. In practice, it does not significantly affect the output signal. For phase response (Fig. 15) at high frequencies, the characteristics determined by the coefficient from STM32 µC differ from the MATLAB simulation one.

![Fig. 15. The phase response of the BFP filter](image)

D. LPF and BPF step response

The designed filter operation analyses were also performed for their step responses. In this procedure, we used the normalized coefficients. Figure 16 shows that the step response of the LPF has a rise time of about 400 µs (40 samples with a period of 10 µs). The HPF is a differentiation of step signal and takes about 400 µs. It means practically that the LPF can slow down the slope rise time for operation at high frequencies well above its f_c. On the other hand, the BPF differs signals with frequencies well below its f_c. To summarize, the analyzed FIR will work best with sinusoidal or similar signals.

![Fig. 16. Step responses of the implemented LPF and BPF](image)

E. IR detection module

The main research task was to define the detection module filtering performances in the case of noise influence. In the experimental setup (Fig. 17), the photodetector was illuminated by a mechanically modulated IR beam from a thermal radiation source (Thorlabs, model SLS303).

![Fig. 17. Experimental setup for testing the described IR detection module](image)

The radiation was shaped and power-tuned using a diaphragm and optical filters. The modulation frequency was set to ~3 kHz with a mechanical chopper (Stanford Research Systems, model SR554). The detection module output signal (unfiltered) and its digitally filtered format were registered and spectrally analyzed using FFT algorithm. During the experiment, the optical power was set to obtain a very low photocurrent’s output signal compared to its output noise. In the detection module, we set the gain normalization and the BFP configuration with the passband range from 2 kHz to 5 kHz. Figure 18a presents the oscillograms of both signals. The filtration procedure clears the “photocurrent signal” from others, e.g., noises, interferences, etc. We also analyzed the spectra of these signals (Fig. 18b) to compare noise. The measured signal attenuation was 40 dB at 100 Hz, corresponding to the simulation value (Fig. 14). The measured RMS voltage of the photoreceiver (unfiltered) and the reception module (digitally filtered) output signals in the frequency range 1 Hz - 2.9 kHz are 5.7 mVrms and 0.6 mVrms, respectively.
Moreover, the fixed frequency is significantly lower than the sampling frequency. HPF regarding attenuation and frequency ranges. It is critical for the for multiplications operation) that reduced the possibilities of ensuring new functionality for IR photoreceivers equipped with a digital filtering option. They also defined some works based on the module architecture that extend its parameters, and add other functionalities by using, e.g., FPGA with greater potential dedicated to DSP purposes (multiplication blocks). In this way, a higher number of coefficients (more extended impulse response) allows stronger damping and a “faster” falling slope of the frequency characteristics, thus designing filters with narrower passbands. Applying the high-resolution ADC and DAC with higher sampling frequency rates may lead to obtaining a precision IR detection module operating in a range of MHz frequencies. In some cases, variable sampling frequency and time windowing can help obtain high performance in different applications by adapting to specific requirements.

Our paper proved that the digital filter built-in IR detection module can be used instead of the analog one. Such a solution has advantages like more flexibility, easily adjustable, and better attenuation at stopband frequencies. These virtues define new possibilities for universal IR detection modules, which can be easily adapted to many applications.

CONCLUSION

In this paper, we presented an advanced mixed-signal IR detection module. The novelty is a built-in analog-digital-analog conversion signal with an adjustable digital filter. The proposed architecture is a flexible solution to analyze signals in the time domain, and it allows the selection of filter type and operating frequency depending on the specific application. This functionality was implemented in the IR detection module, characterized by a high level of flicker noises. For low-frequency operation, it limits this type of noise and potentially interfering signals. The main purpose of our work was to define the features of designing an analog IR detection module with an implemented fast (real-time) digital filtering procedure. However, the obtained results are not “the best” because the tested prototype of the “digitally filtered” detection module has several limitations resulting from hardware components that influence the precision of the obtained frequency response characteristics.

The first was the amount of DSP blocks (in FPGA - mainly for multiplications operation) that reduced the possibilities regarding attenuation and frequency ranges. It is critical for the HPF design, in which a long impulse response when the cut-off frequency is significantly lower than the sampling frequency. Moreover, the fixed-point integer coefficient representation complicates the filter gain normalization. The floating-point fraction representation resolves this problem because it is much more flexible and easier to use. The simulation and experimental results confirm the possibility of ensuring new functionality for IR photoreceivers equipped with a digital filtering option. They also defined some works based on the module architecture that extend its parameters, and add other functionalities by using, e.g., FPGA with greater potential dedicated to DSP purposes (multiplication blocks). In this way, a higher number of coefficients (more extended impulse response) allows stronger damping and a “faster” falling slope of the frequency characteristics, thus designing filters with narrower passbands. Applying the high-resolution ADC and DAC with higher sampling frequency rates may lead to obtaining a precision IR detection module operating in a range of MHz frequencies. In some cases, variable sampling frequency and time windowing can help obtain high performance in different applications by adapting to specific requirements.

Our paper proved that the digital filter built-in IR detection module can be used instead of the analog one. Such a solution has advantages like more flexibility, easily adjustable, and better attenuation at stopband frequencies. These virtues define new possibilities for universal IR detection modules, which can be easily adapted to many applications.

REFERENCES

Communications, Signal Processing and Networking (WiSPNET). IEEE, pp 2118–2122. doi:10.1109/WiSPNET.2016.7566516

