
10.24425/acs.2024.149650
Archives of Control Sciences

Volume 34(LXX), 2024
No. 1, pages 23–37

Stability margins for generalized fractional
two-dimensional state space models

Souad SALMI and Djillali BOUAGADAo

In this paper, a new class of bidimensional fractional linear systems is considered. The
stability radius of the disturbed system is described according to the H∞ norm. Sufficient
conditions to ensure the stability margins of the closed-loop system are offered in terms of
linear matrix inequalities. The concept of D stability region for these systems is also considered.
Examples are provided to verify the applicability of our main result.
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1. Introduction

The fractional calculus theory is a powerful tool for representing many prob-
lems in different areas, such as mechanics, physics, chemistry, biology, eco-
nomics, signal processing, and control theory; e.g. [3–5, 10–12, 15, 16, 19, 22].
The main reason for the success of fractional calculus theory is that these new
fractional-order models are more accurate than integer-order models. On the other
hand, significant attention has been focused on two-dimensional (2D) systems
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over the last few decades due to their involvement in many practical challenges.
Comprehensive details can be found in ( [2,7–9,14,23]). The importance of these
systems lies in their ability to simplify and accurately illustrate complex behav-
iors and interactions, providing a clearer picture of real-world processes. [13,20].
These two-dimensional systems are characterized by the spread of information in
two independent variables in two separate directions, such as time and distance
or length and width etc.

Recently, the study of systems stability in the field of control theory has
garnered significant interest from both researchers and practitioners [2, 21, 24].

Furthermore, recent research underscores that even minor disturbances in
the controller coefficients can render the closed-loop system unstable or fragile
relative to uncertainties that cannot be ignored.

Stability margins play a central role as an indicator, measuring disturbances
or uncertainties before a system loses its stability. In [1], the authors use the
stability radius to measure the instable distance of linear invariant systems. There
are certain stability and stabilization results of fractional uncertain systems of
order (0 < 𝛼 < 1) [18]. Sufficient conditions for robust asymptotic stability of
fractional closed loop systems with (0 < 𝛼 < 1) and (1 < 𝛼 < 2) through the
linear matrix inequalities (LMIs) approach have been developed in [17].

In this paper, we look at the extension of the work in ( [1]) to characterize
the stability margins and D-stability region conditions of fractional generalized
two dimensional state space systems for both continous and discrete time cases
expressed in a set of strict linear matrix inequalities. Numerical examples are
given to illustrate the proposed methods.

Notation: 𝐼 ( or 0) is the identity (resp. zero) matrix with appropriate dimen-
sion. 𝑋 ≻ 0 (𝑋 ≺ 0) indicates that the matrix 𝑋 is positive (negative) definite.
𝑋⊤ denote the matrix transposed with respect to the matrix 𝑋 . C and R are the
complex and the real spaces. The symbol ⊗ denotes the Kronecker product of
two matrices, 𝑒𝑖𝑔(𝐴) represente the eigenvalues of the matrix 𝐴.

2. Model description

Consider the fractional linear system described by the following form:

𝜆𝛼1𝜆
𝛼
2𝐸𝑥(𝑡1, 𝑡2) = 𝐴0𝑥(𝑡1, 𝑡2) + 𝜆𝛼2 𝐴1𝑥(𝑡1, 𝑡2) + 𝐵𝑢(𝑡1, 𝑡2),

𝑦(𝑡1, 𝑡2) = 𝐶𝑥(𝑡1, 𝑡2) + 𝐷𝑢(𝑡1, 𝑡2),
(1)

where, 𝛼 is the commensurate order (0 < 𝛼 < 1), 𝐸, 𝐴0, 𝐴1 ∈ R𝑛×𝑛, 𝐵 ∈ R𝑛×𝑚,
𝐶 ∈ R𝑝×𝑛, 𝐷 ∈ R𝑝×𝑚 are matrices of constants. 𝑥(𝑡1, 𝑡2) ∈ R𝑛, 𝑢(𝑡1, 𝑡2) ∈ R𝑚 and
𝑦(𝑡1, 𝑡2) ∈ R𝑝 are the state space, the input and the output vectors respectively,
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𝜆1 and 𝜆2 are the differential operators 𝑠1, 𝑠2 in the Laplace transform when (1)
is continuous-time and for the delay operators 𝑧1, 𝑧2 (in the transformed domain)
when (1) is discrete-time.

We establish the partial derivative for fractional two-dimensional continuous-
time systems.

𝜆𝛼1𝜆
𝛼
2𝑥(𝑡1, 𝑡2) =

𝜕𝛼

𝜕𝑡𝛼1

𝜕𝛼

𝜕𝑡𝛼2
𝑥(𝑡1, 𝑡2)

=
1

(Γ(𝑛 − 𝛼))2

𝑡1∫
0

𝑡2∫
0

𝑥
(𝑛)
𝑡1

(𝜏)
(𝑡1 − 𝜏)𝛼+1−𝑛

𝑥
(𝑛)
𝑡2

(𝑠)
(𝑡2 − 𝑠)𝛼+1−𝑛 d𝑠d𝜏, (2)

Γ is the Euler Gamma function defined by the formula

Γ(𝑥) =
∞∫

0

𝑡𝑥−1𝑒−𝑡 d𝑡, R𝑒(𝑥) > 0. (3)

It is well known that the model (1) can be reduced to Roesser model in the
following form[

𝜆𝛼1𝐸 0
0 𝜆𝛼2 𝐼𝑛

]
𝑥(𝑡1, 𝑡2) =

[
𝐴1 𝐼𝑛

𝐴0 0

]
𝑥(𝑡1, 𝑡2) +

[
0
𝐵

]
𝑢(𝑡1, 𝑡2),

𝑦(𝑡1, 𝑡2) =
[
𝐶 0

]
𝑥(𝑡1, 𝑡2) + 𝐷𝑢(𝑡1, 𝑡2),

(4)

when 𝑥(𝑡1, 𝑡2) is defined as

𝑥(𝑡1, 𝑡2) =
[
𝑥ℎ (𝑡1, 𝑡2)
𝑥𝑣 (𝑡1, 𝑡2)

]
,

where, 𝑥ℎ (𝑡1, 𝑡2) and 𝑥𝑣 (𝑡1, 𝑡2) represent the horizontal and the vertical states in
R𝑛 for any 𝑡1, 𝑡2  0.

3. Stability margins for continuous and discrete fractional
two-dimensional systems

Inspired by [1], consider the system given by (4) and assume that the above
realization is minimal and strictly stable, which means that the model (4) has all
its eigenvalues in the open set Γ1 × Γ2 of the complex plane and satisfing the
condition �����arg

(
eig

([
𝐸 0
0 𝐼𝑛

]−1 [
𝐴1 𝐼𝑛

𝐴0 0

]))����� > 𝛼
𝜋

2
. (5)
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Now, if we close the loop with 𝑢 = Δ𝑦, we obtain[
𝜆𝛼1𝐸 0

0 𝜆𝛼2 𝐼𝑛

]
𝑥(𝑡1, 𝑡2) =

[
𝐴1 𝐼𝑛

𝐴0 0

]
𝑥(𝑡1, 𝑡2) +

[
0
𝐵

]
Δ𝑦(𝑡1, 𝑡2),

𝑦(𝑡1, 𝑡2) =
[
𝐶 0

]
𝑥(𝑡1, 𝑡2) + 𝐷Δ𝑦(𝑡1, 𝑡2),

(6)

After elimination of 𝑦(𝑡1, 𝑡2), we get[
𝜆𝛼1𝐸 0

0 𝜆𝛼2 𝐼𝑛

]
𝑥(𝑡1, 𝑡2) =

[
𝐴1 𝐼𝑛

𝐴(Δ) 0

]
𝑥(𝑡1, 𝑡2), (7)

where,
𝐴(Δ) = 𝐴0 + 𝐵 (𝐼𝑚 − Δ𝐷)−1 Δ𝐶,

or, (𝐼𝑚 − Δ𝐷)−1Δ = Δ(𝐼𝑝 − 𝐷Δ)−1 which is easily verified by the relation
Δ(𝐼𝑝 − 𝐷Δ) = (𝐼𝑚 − Δ𝐷)Δ.

Now, we want to know conditions to guarantee that the closed loop system (7)
is also strictly stable.

We therefore define the corresponding stability radius of the perturbed sys-
tem (7) as the smallest perturbation Δ destabilizing the system,

𝑟𝐶 (𝐸, 𝐴0, 𝐴1, 𝐵, 𝐶, 𝐷)

:= inf
Δ

{
∥Δ∥2 :

[
𝜆𝛼1𝐸 − 𝐴1 −𝐼𝑛
−𝐴(Δ) 𝜆𝛼2 𝐼𝑛

]
has unstable eigenvalues

}
. (8)

The stability will be lost only when one of the eigenvalues crosses the bound-
ary 𝜕Γ1 × 𝜕Γ2 of the stability region Γ1 × Γ2. An equivalent formulation of this
stability radius is thus given by

𝑟𝐶 (𝐸, 𝐴0, 𝐴1, 𝐵, 𝐶, 𝐷)

:= inf
(𝜆𝛼

1 ,𝜆
𝛼
2 )∈𝜕Γ1×𝜕Γ2

{
inf
Δ

{
∥Δ∥2 : det

[
𝜆𝛼1𝐸 − 𝐴1 −𝐼𝑛
−𝐴(Δ) 𝜆𝛼2 𝐼𝑛

]
= 0

}}
. (9)

So,

det
(
𝜆𝛼1𝐸 − 𝐴1 −𝐼𝑛
−𝐴(Δ) 𝜆𝛼2 𝐼𝑛

)
= 0, (10)

is equivalent to testing

det
( [
𝜆𝛼1𝐸 − 𝐴1 −𝐼𝑛

−𝐴0 𝜆𝛼2 𝐼𝑛

]
−

[
0
𝐵

]
(𝐼𝑚 − Δ𝐷)−1 [

Δ𝐶 0
] )

= 0, (11)
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which can be rewritten as

det
©«
𝜆𝛼1𝐸 − 𝐴1 −𝐼𝑛 0

−𝐴0 𝜆𝛼2 𝐼𝑛 𝐵

Δ𝐶 0 𝐼𝑚 − Δ𝐷

ª®®¬ = 0. (12)

where, [
𝜆𝛼1𝐸 − 𝐴1 −𝐼𝑛

−𝐴0 𝜆𝛼2 𝐼𝑛

]
−

[
0
𝐵

]
(𝐼𝑚 − Δ𝐷)−1 [

Δ𝐶 0
]
,

is the Schur complement of
𝜆𝛼1𝐸 − 𝐴1 −𝐼𝑛 0

−𝐴0 𝜆𝛼2 𝐼𝑛 𝐵

Δ𝐶 0 𝐼𝑚 − Δ𝐷

 .
Thus, the condition (12) can be written as

det
©«

𝜆𝛼1𝐸 − 𝐴1 −𝐼𝑛 0

−𝐴0 𝜆𝛼2 𝐼𝑛 𝐵

0 0 𝐼𝑚

 +


0
0
𝐼𝑚

 Δ
[
𝐶 0 −𝐷

]ª®®¬ = 0. (13)

The matrix
[
𝜆𝛼1𝐸 − 𝐴1 −𝐼𝑛

−𝐴0 𝜆𝛼2 𝐼𝑛

]
is invertible. So, testing (13) is equivalent to

testing

det
©«𝐼2𝑛+𝑚 +

−
(
𝜆𝛼1𝐸 − 𝐴1 −𝐼𝑛

−𝐴0 𝜆𝛼2 𝐼𝑛

)−1 (
0
𝐵

)
𝐼𝑚

 Δ
[
𝐶 0 −𝐷

]ª®®¬ = 0,

since, det(𝐼 + 𝑅𝑆) = 0 implies that det(𝐼 + 𝑆𝑅) = 0 for all conformable matrices
𝑅 and 𝑆, this finally gives

det
(
𝐼𝑚 − Δ𝐺 (𝜆𝛼1 , 𝜆

𝛼
2 )

)
= 0,

where,

𝐺 (𝜆𝛼1 , 𝜆
𝛼
2 ) =

[
𝐶 0 −𝐷

] −
(
𝜆𝛼1𝐸 − 𝐴1 −𝐼𝑛

−𝐴0 𝜆𝛼2 𝐼𝑛

)−1 (
0
𝐵

)
𝐼𝑚

 .
We can reformulate the stability radius as follows

𝑟𝐶 (𝐸, 𝐴0, 𝐴1, 𝐵, 𝐶, 𝐷)

:= inf
(𝜆𝛼

1 ,𝜆
𝛼
2 )∈𝜕Γ1×𝜕Γ2

{
inf
Δ

{
∥Δ∥2 : det

(
𝐼𝑚 − Δ𝐺 (𝜆𝛼1 , 𝜆

𝛼
2 )

)
= 0

}}
,
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which is equal to,

𝑟𝐶 (𝐸, 𝐴0, 𝐴1, 𝐵, 𝐶, 𝐷) :=

[
sup

(𝜆𝛼
1 ,𝜆

𝛼
2 )∈𝜕Γ1×𝜕Γ2

𝐺 (𝜆𝛼1 , 𝜆
𝛼
2 )


2

]−1

= ∥𝐺 (., .)∥−1
∞ . (14)

For continuous-time fractional 2D systems

𝜕Γ1 = |𝜔1 |𝛼
[
cos

(
𝛼

(𝜋
2
+ arg (𝜔1)

))
+ 𝑗 sin

(
𝛼

(𝜋
2
+ arg (𝜔1)

))]
,

𝜕Γ2 = |𝜔2 |𝛼
[
cos

(
𝛼

(𝜋
2
+ arg (𝜔2)

))
+ 𝑗 sin

(
𝛼

(𝜋
2
+ arg (𝜔2)

))]
,

where, 𝜔1, 𝜔2 ∈ R− {0}. Therefore, the stability radius obtained by Eq. (14) can
be written as

𝑟𝐶 (𝐸, 𝐴0, 𝐴1, 𝐵, 𝐶, 𝐷)

:=


sup

(𝜔1,𝜔2)∈R2−{0}


𝐺

©«

|𝜔1 |𝛼


cos
(
𝛼

(𝜋
2
+ arg (𝜔1)

))
+ 𝑗 sin

(
𝛼

(𝜋
2
+ arg (𝜔1)

)) ,
|𝜔2 |𝛼


cos

(
𝛼

(𝜋
2
+ arg (𝜔2)

))
+ 𝑗 sin

(
𝛼

(𝜋
2
+ arg (𝜔2)

))

ª®®®®®®®®®®¬


2



−1

,

and for the discrete-time systems

𝜕Γ1 = 𝑒 |𝜔1 |𝛼 [cos(𝛼( 𝜋
2 +arg(𝜔1)))+ 𝑗 sin(𝛼( 𝜋

2 +arg(𝜔1)))] ,

𝜕Γ2 = 𝑒 |𝜔2 |𝛼 [cos(𝛼( 𝜋
2 +arg(𝜔2)))+ 𝑗 sin(𝛼( 𝜋

2 +arg(𝜔2)))] ,

where, 𝜔1, 𝜔2 ∈ R − {0}.
Then,

𝑟𝐶 (𝐸, 𝐴0, 𝐴1, 𝐵, 𝐶, 𝐷)

:=


sup

(𝜔1,𝜔2)∈R2−{0}


𝐺

©«
𝑒

|𝜔1 |𝛼


cos
(
𝛼

(
𝜋
2 + arg (𝜔1)

) )
+ 𝑗 sin

(
𝛼

(
𝜋
2 + arg (𝜔1)

) )  ,
𝑒

|𝜔2 |𝛼


cos
(
𝛼

(
𝜋
2 + arg (𝜔2)

) )
+ 𝑗 sin

(
𝛼

(
𝜋
2 + arg (𝜔2)

) ) 
ª®®®®®®¬


2



−1

.
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For the continuous and the discrete time cases we have,

arg (𝜔𝑖) =
{

2𝑘𝜋 if 𝜔𝑖 ∈ R+ − {0},
𝜋 + 2𝑘𝜋 if 𝜔𝑖 ∈ R− − {0},

𝑘 ∈ Z, 𝑖 = 1, 2.
For 𝐸 = 𝐼𝑛 these connections is standard, based on [1] we recall them in the

following theorem given for arbitrary 𝐸 .

Theorem 1. Assume that the open loop sytem (4) is strictly stable. Then the
closed loop system (7) is strictly stable if and only if Δ ∈ C𝑚×𝑝 verifiesΔ

2 < 𝜇−1
★ , (15)

where,
𝜇★ := ∥𝐺 (., .)∥∞ := sup

(𝜆𝛼
1 ,𝜆

𝛼
2 )∈𝜕Γ1×𝜕Γ2

𝐺 (𝜆𝛼1 , 𝜆
𝛼
2 )


2 . (16)

𝜕Γ𝑖 = 𝑗𝛼R in the continuous-time case and 𝜕Γ𝑖 = 𝑒 𝑗
𝛼Rin the discrete-time case,

for all 𝑖, 𝑖 = 1, 2.

We note that if we impose the condition that Δ is real, (15) and (16) only be-
come sufficient conditions of stability. However, the theorem asserts that stability
is ensured for any Δ (whether real or complex) which satisfies (15) and (16). The
key issue for computing 𝜇★ is to construct computable conditions for an upper
bound 𝜇 of 𝜇★. Such 𝜇 > 𝜇★ must satisfy

𝜇2𝐼𝑚 − 𝐺★

(
𝜆𝛼1 , 𝜆

𝛼
2
)
𝐺

(
𝜆𝛼1 , 𝜆

𝛼
2
)
≻ 0, ∀

(
𝜆𝛼1 , 𝜆

𝛼
2
)
∈ 𝜕Γ1 × 𝜕Γ2 , (17)

where, 𝐺★(𝜆𝛼1 , 𝜆
𝛼
2 ) is equal to

𝐺★

(
𝜆𝛼1 , 𝜆

𝛼
2
)

:= 𝐺

©«

|𝜔1 |𝛼


cos
(
𝛼

(𝜋
2
+ arg (𝜔1)

))
− 𝑗 sin

(
𝛼

(𝜋
2
+ arg (𝜔1)

))  ,
|𝜔2 |𝛼


cos

(
𝛼

(𝜋
2
+ arg (𝜔2)

))
− 𝑗 sin

(
𝛼

(𝜋
2
+ arg (𝜔2)

)) 

ª®®®®®®®®®®®¬

⊤
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in the continuous-time, and

𝐺★

(
𝜆𝛼1 , 𝜆

𝛼
2
)
= 𝐺

©«
𝑒

|𝜔1 |𝛼


cos
(
𝛼

(
𝜋
2 + arg (𝜔1)

) )
− 𝑗 sin

(
𝛼

(
𝜋
2 + arg (𝜔1)

) )  ,
𝑒

|𝜔2 |𝛼


cos
(
𝛼

(
𝜋
2 + arg (𝜔2)

) )
− 𝑗 sin

(
𝛼

(
𝜋
2 + arg (𝜔2)

) ) 

ª®®®®®®¬

⊤

,

in the discrete-time.
It was shown in [1] that for continuous time systems, 𝜇 > 𝜇★  0, if and

only if 
−𝐸⊤𝑌1𝐴1 − 𝐴⊤

1𝑌1𝐸 −𝐸⊤𝑌1 − 𝐴⊤
0𝑌2 0

−𝑌2𝐴0 − 𝑌1𝐸 0 −𝑌2𝐵

0 −𝐵⊤𝑌2 𝜇2𝐼𝑚


−


𝐶⊤

0
𝐷⊤


[
𝐶 0 𝐷

]
≻ 0, (18)

where,

𝑌 =

[
𝑌1 0
0 𝑌2

]
, 𝑌 = 𝑌⊤,

and for the discrete time, 𝜇 > 𝜇★  0 if and only if
𝐸⊤𝑌1𝐸 − 𝐴⊤

1𝑌1𝐴1 − 𝐴⊤
0𝑌2𝐴0 −𝐴⊤

1𝑌1 −𝐴⊤
0𝑌2𝐵

−𝑌1𝐴1 𝑌2 − 𝑌1 0

−𝐵⊤𝑌2𝐴0 0 𝜇2𝐼𝑚 − 𝐵⊤𝑌2𝐵


−


𝐶⊤

0
𝐷⊤


[
𝐶 0 𝐷

]
≻ 0, (19)

where,

𝑌 =

[
𝑌1 0
0 𝑌2

]
, 𝑌 = 𝑌⊤.

If (𝐸 = 𝐼𝑛), then the state space system will be standard. So, other linear matrix
inequalities were established in [1].
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For the continuous-time case

−𝑋1𝐴1 − 𝐴⊤
1 𝑋1 −𝑋1 − 𝐴⊤

0 𝑋2 0 𝐶⊤

−𝑋2𝐴0 − 𝑋1 0 −𝑋2𝐵 0

0 −𝐵⊤𝑋2 𝜇𝐼𝑚 𝐷⊤

𝐶 0 𝐷𝜇𝐼𝑝


≻ 0, (20)

where,

𝑋 =

[
𝑋1 0
0 𝑋2

]
], 𝑋 = 𝑋⊤.

For the discrete-time

𝑋1 − 𝐴⊤
1 𝑋1𝐴1 − 𝐴⊤

0 𝑋2𝐴0 −𝐴⊤
1 𝑋1 −𝐴⊤

0 𝑋2𝐵 𝐶⊤

−𝑋1𝐴1 𝑋2 − 𝑋1 0 0

−𝐵⊤𝑋2𝐴0 0 𝜇𝐼𝑚 − 𝐵⊤𝑋2𝐵 𝐷⊤

𝐶 0 𝐷 𝜇𝐼𝑝


≻ 0, (21)

where,

𝑋 =

[
𝑋1 0
0 𝑋2

]
, 𝑋 = 𝑋⊤.

If the matrix 𝐸 as a full rank then, we substitute 𝑋 by
[
𝐸⊤𝑌1𝐸 0

0 𝑌2

]
. Subse-

quently, new conditions are defined for the standard state-space realization
𝐸−1𝐴1 𝐸−1 0
𝐴0 0 𝐵

𝐶 0 𝐷

 ,
for the continuous-time systems,

©«

−𝐸⊤𝑌1𝐴1 − 𝐴⊤
1𝑌1𝐸 −𝐸⊤𝑌1 − 𝐴⊤

0𝑌2 0 𝐶⊤

−𝑌2𝐴0 − 𝑌1𝐸 0 −𝑌2𝐵 0

0 −𝐵⊤𝑌2 𝜇𝐼𝑚 𝐷⊤

𝐶 0 𝐷 𝜇𝐼𝑝

ª®®®®®®®®¬
≻ 0, (22)
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𝑌 =

[
𝑌1 0
0 𝑌2

]
, 𝑌 = 𝑌⊤ (23)

and for the discrete time©«

𝐸⊤𝑌1𝐸 − 𝐴⊤
1𝑌1𝐴1 − 𝐴⊤

0𝑌2𝐴0 −𝐴⊤
1𝑌1 −𝐴⊤

0𝑌2𝐵 𝐶⊤

𝑌1𝐴1 𝑌2 − 𝑌1 0 0

−𝐵⊤𝑌2𝐴0 0 𝜇𝐼𝑚 − 𝐵⊤𝑌2𝐵 𝐷⊤

𝐶 0 𝐷 𝜇𝐼𝑝

ª®®®®®®®®¬
≻ 0,

𝑌 =

[
𝑌1 0
0 𝑌2

]
, 𝑌 = 𝑌⊤.

(24)

4. D-Stability region of fractional two-dimensional systems

We first define the LMI region which we will need later.

Definition 1. A subsetD in the complex plan associated to bidimensional systems
is called an LMI region if there exist a symmetric matrices 𝑅𝑖0 ∈ R𝑑×𝑑 and
𝑅𝑖1 ∈ R𝑑×𝑑 , 𝑖 = 1, 2, such that

D =

{
(𝑧1, 𝑧2) ∈ C2 :

2∑︁
𝑖=1

𝑅𝑖0 + 𝑧𝑖𝑅𝑖1 + 𝑧∗𝑖 𝑅
⊤
𝑖1 ≺ 0

}
. (25)

Definition 2. The fractional 2-D sytem (4) is D-stable if and only if all its poles
are in the D region.

In what follows, we present our second main result.

Theorem 2. The sytem (4) with 𝑟𝑎𝑛𝑘 (𝐸) = 𝑛 isD-stable if there exist a symmetric
positive definite matrix 𝑌 such that

MD :=
(
𝑅10 0
0 𝑅20

)
⊗

(
𝐸⊤𝑌1𝐸 0

0 𝑌2

)
+
(
𝑅11 0
0 𝑅21

)
⊗

(
𝐸⊤𝑌1𝐸 𝐸⊤𝑌1
𝑌2𝐴0 0

)
+

(
𝑅⊤

11 0
0 𝑅⊤

21

)
⊗

(
𝐴⊤

1𝑌1𝐸 𝐴⊤
0𝑌2

𝑌1𝐸 0

)
≺ 0,

𝑌 =

(
𝑌1 0
0 𝑌2

)
.

(26)

Proof. Its readily from applying the result obtained in [6] to the eigenvalue

problem
(
𝐸−1𝐴1 𝐸−1

𝐴0 0

)
and replacing 𝑋 by

(
𝐸⊤𝑌1𝐸 0

0 𝐼𝑛

)
.
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Now, we will analyze the location of eigenvalues of the closed loop system (7)
in the complex plan. We will suppose that the open loop system (4) is D stable
and we will search sufficient conditions that the system (7) is D stable for given
subset D included in C−.

Theorem 3. The system (7) with uncertainty

Δ ∈ C𝑝×𝑚, ∥Δ∥2 < 𝜇−1

is D-stable if there exist a symmetric definite positive matrices 𝑌 ∈ R2𝑛×2𝑛 and
𝑃 ∈ R𝑟×𝑟 such that

©«
MD (𝑌 )

0

𝑄⊤
1 ⊗ 𝑌2𝐵

𝑄⊤
2 𝑃 ⊗ 𝐶⊤

0

0 𝑄1 ⊗ 𝐵⊤𝑌2 −𝜇𝑃 ⊗ 𝐼𝑛 𝑃 ⊗ 𝐷⊤

𝑃𝑄2 ⊗ 𝐶 0 𝑃 ⊗ 𝐷 −𝜇𝑃 ⊗ 𝐼𝑛

ª®®®®®®®¬
≺ 0, (27)

𝑌 =

(
𝑌1 0
0 𝑌2

)
,

or, 𝑅1 = 𝑄⊤
1 𝑄2 is a factorization with 𝑄1 and 𝑄2 complete row rank 𝑟 .

Proof. It comes easily from the application of the result of [6] to the standard
state space realization 

𝐸−1𝐴1 𝐸−1 0
𝐴0 0 𝐵

𝐶 0 𝐷

 ,
then we substitute 𝑋 by

[
𝐸⊤𝑌1𝐸 0

0 𝑌2

]
. 2

5. Examples

We end this work by giving some examples for the above results. We then
present a numerical simulation to illustrate the theoretical results.

Example 1. Consider the fractional two-dimensional discrete-time system with
the following matrices

𝐸 =

[
1 0
0 1

]
; 𝐴0 =

[
0 0
0 0.1

]
; 𝐴1 =

[
0.2 0
0 0

]
;
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𝐵 =

[
1 2 0
0 0 1

]
; 𝐶 =

[
1 0

]
; 𝐷 =

[
0.4 0 0

]
.

In [25], Zou et al. showed that the system in question is stable. In our case, by
comparing the results with our approach and by applying the LMI (21), we find
a feasible solution given by

𝑋1 =

[
0.4504 0

0 1.0094

]
, 𝑋2 =

[
0.5630 0

0 1.9613

]
, 𝜇 = 2.9954,

which show that the closed-loop system is strictly stable.

Example 2. Consider the fractional continuous state-space system described
by (4) with 𝛼 = 0.4 as follows,[

0.02𝜆0.4
1 0

0 𝜆0.4
2

]
𝑥(𝑡1, 𝑡2) =

[
−0.0055 1
−0.114 0

]
𝑥(𝑡1, 𝑡2) +

[
0

0.001

]
𝑢(𝑡1, 𝑡2),

𝑦(𝑡1, 𝑡2) =
[
−1 0

]
𝑥(𝑡1, 𝑡2) + 0.4 𝑢(𝑡1, 𝑡2).

(28)

It can be easily verified that the sytem (28) is stable, as its eigenvalues are−0.2750
and −0.1140, satisfying the condition (5). Additionally, by applying LMI (22), a
feasible solution is found

𝑌1 = 4.2173; 𝑌2 = 0.7399; 𝜇 = 1.2138 × 103.

This implies that the closed-loop system is strictly stable.

Example 3. Consider the fractional-order linear sytem (4) with𝛼 = 0.5 as follows[
𝜆0.5

1 𝑥ℎ (𝑡1, 𝑡2)
𝜆0.5

2 𝑥𝑣 (𝑡1, 𝑡2)

]
=

[
−0.89 1
−142.6 0

] [
𝑥ℎ (𝑡1, 𝑡2)
𝑥𝑣 (𝑡1, 𝑡2)

]
+

[
0

178.25

]
𝑢(𝑡1, 𝑡2),

𝑦(𝑡1, 𝑡2) =
[
−1 0

] [
𝑥ℎ (𝑡1, 𝑡2)
𝑥𝑣 (𝑡1, 𝑡2)

]
.

(29)

We consider the LMI region (25) with

𝑅10 =


−2 cos

𝜋

3
0

0 −2 cos
𝜋

3

 , 𝑅11 =


cos

𝜋

3
2 sin

𝜋

3
−2 sin

𝜋

3
cos

𝜋

3


𝑅20 =

[
−150 0

0 −150

]
, 𝑅21 =

[
0 1
0 0

]
,
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which means that the region associated by the first direction represents a disk
with center zero and radius 150 and the second region associated by the second
direction is a conic sector with angle

𝜋

6
.

By using our method on the open loop sytem (29) we find that the LMI given
in Theorem 2 is feasible and a feasible solution is

𝑌1 = 1.1709 × 10−16, 𝑌2 = 7.2167 × 10−19,

which shows that is strictly stable in the region D.
By applying the result given in Theorem 3 of the closed loop system we find

that the LMI is feasible and is feasible solution is as follows

𝜇 = 1.6440, 𝑌1 = 5.2940 × 10−23, 𝑌2 = 1.5510 × 10−25,

we can take 𝑃 = 𝐼2×2.
Hence, we can conclude that the closed loop system is also strictly D-stable.

6. Concluding remarks

In this paper, a new fractional generalized 2D model is presented. Extended
results on the stability margins conditions of the perturbed system are derived.
A new D region in the complex plan associated to such system is introduced.
D stability region of the considered problem using the Kronecker product and
LMIs are studied. Some numerical examples are shown the effectiveness of our
main results.
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