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A spherical fuzzy correlation coefficient based on
statistical viewpoint with its applications in

classification and bidirectional approximate reasoning

Abdul Haseeb GANIEo and Debashis DUTTAo

Spherical fuzzy sets are more powerful in modelling the uncertain situations than picture
fuzzy sets, fermatean fuzzy sets, Pythagorean fuzzy sets, intuitionistic fuzzy sets, and fuzzy sets.
In this paper, we first define the variance and covariance of spherical fuzzy sets. Then, using
variance and covariance, we define the unique spherical fuzzy set correlation metric in line with
the statistical coefficient of correlation. Two spherical fuzzy sets are correlated in both direction
and strength using the provided measure of correlation. We discussed its many characteristics.
We compared the measure of correlation with the current ones through linguistic variables. We
established its validity by showing its application in bidirectional approximate reasoning. We
also resolve a pattern identification issue in the spherical fuzzy environment using the provided
correlation function, and we compare the results with several current measurements.
Key words: correlation coefficient, fuzzy set, picture fuzzy set, spherical fuzzy set, pattern
recognition, bidirectional approximate reasoning

1. Introduction

Cuong and Kreinvoch [5] first proposed the idea of a picture fuzzy set (PFS)
in 2013 for handling queries that call for responses of the types no, abstain, yes,
and rejection. Each component of a PFS has the levels of membership, non-
membership, and neutrality that define it. The sum of the membership grades in
a PFS is at most one and due to this restriction, the scope of PFSs is limited.
Therefore, the idea of spherical fuzzy sets (SFSs) was developed by Mahmood et
al. [15] to handle the circumstances in which the sum of membership grades is

Copyright © 2024. The Author(s). This is an open-access article distributed under the terms of the Creative Com-
mons Attribution-NonCommercial-NoDerivatives License (CC BY-NC-ND 4.0 https://creativecommons.org/licenses/
by-nc-nd/4.0/), which permits use, distribution, and reproduction in any medium, provided that the article is properly
cited, the use is non-commercial, and no modifications or adaptations are made

A.H. Ganie (corresponding author, e-mail: pdf_2023_ma03@nitw.ac.in) and D. Dutta (e-mail:
ddutta@nitw.ac.in) are with Department of Mathematics, National Institute of Technology, Warangal
506004, Telangana, India.

Received 15.07.2023. Revised 24.01.2024.

https://orcid.org/0000-0002-0136-7758
https://orcid.org/0000-0002-4585-5497
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:pdf_2023_ma03@nitw.ac.in
mailto:ddutta@nitw.ac.in


64 A.H. GANIE, D. DUTTA

more than one. In an SFS, the square sum of membership grades is at most one.
Since the squared sum of the spherical parameters can only be at most 1.0 and
decision makers can define their hesitation information independently, the unique
idea of SFS gives decision makers a wider preference domain. A decision maker,
for instance, might indicate their preference for one possibility over another in
relation to a criterion with (0.8, 0.2, 0.4). It is obvious that the parameter sum is
greater than 1, although the squared sum is only 0.84. Some spherical fuzzy (SF)
measures of similarity based on cosine function and their usability in medical
diagnosis and problems of classification were introduced by Wei et al. [26].
Aydogdu and Gul [2] proposed an entropy measure for SFSs with its applicability
in decision-making. Applications of some novel SF similarity measures in green
supplier selection and medical diagnosis were shown by Shishavan et al. [17].
Gundogdu and Kahraman [13] extended the classical analytic hierarchy process
to the SF environment. Fatma and Cengiz [9] extended the VIKOR (classical
VlseKriterĳumska Optimizacĳa I Kompromisno Resenje) method to SF setting
and demonstrated its application in the selection of warehouse site. Zhang et
al. [28] proposed some SF aggregation operators and their application in decision-
making. The correlation coefficient of SFSs is the subject of the current paper.

A coefficient of correlation is a statistical tool that can be used in a number
of analytical and experimental studies. In fuzzy and its various generalizations,
the correlation coefficient has been utilized in many fields like classification,
decision-making, clustering, medical diagnosis, etc. Many studies [1,4,8,10–12,
16, 18–20, 24] concerning the fuzzy/non-standard fuzzy functions of correlation
and their applications are available in the literature.

The primary reasons we were inspired to conduct this study are listed below.

• The correlation coefficients in the SF environment have not been properly
investigated.

• The current correlation measures are unable to handle the linguistic hedges
properly.

• The available correlation functions are not based on statistical viewpoint.
• The applicability of correlation functions in bidirectional approximate rea-

soning has not been discussed yet.

The following list outlines this paper’s contribution:

• We defined the variance and co-variance for SFSs.
• We proposed a novel correlation measure for SFSs based on variance and

co-variance.
• We discussed the properties of the proposed correlation metric.
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• We contrasted its performance with the available ones in terms of linguistic
variables.

• We established its applicability in bidirectional approximate reasoning.
• We solved a classification problem in SF area with the aid of developed cor-

relation function and compared the findings with the current compatibility
functions.

The structure of the paper is as: The preliminary part of this paper is Section 2.
In Section 3, we offer a novel function of correlation for SFSs along with its
characteristics. An assessment of the offered SFS correlation metric with the
existing compatibility metrics through linguistic hedges is shown in Section 4. In
Section 5, the recommended correlation measure’s application to bidirectional ap-
proximate reasoning and pattern recognition is demonstrated. Section 6 presents
the conclusion along with future studies.

2. Preliminaries

Let 𝐵 = {𝑏1, 𝑏2, . . . , 𝑏𝑝} denote the set of universe.

Definition 1. [27] A fuzzy set 𝐶1 in 𝐵 is given by

𝐶1 = {(𝑏𝑡 , 𝜎𝐶1 (𝑏𝑡)), 𝑏𝑡 ∈ 𝐵},

where 0 ¬ 𝜎𝐶1 (𝑏𝑡) ¬ 1 is the grade of satisfaction of 𝑏𝑡 ∈ 𝐵 in the set 𝐶1.

Definition 2. [5] A picture fuzzy set 𝐶1 in 𝐵 is given by

𝐶1 = {(𝑏𝑡 , 𝜎𝐶1 (𝑏𝑡), 𝜁𝐶1 (𝑏𝑡), 𝜂𝐶1 (𝑏𝑡))𝑏𝑡 ∈ 𝐵},

where 0 ¬ 𝜎𝐶1 (𝑏𝑡) ¬ 1, 0 ¬ 𝜁𝐶1 (𝑏𝑡) ¬ 1, and 0 ¬ 𝜂𝐶1 (𝑏𝑡) ¬ 1 are the
grades of satisfaction, non-satisfaction, and neutrality respectively of 𝑏𝑡 ∈ 𝐵

in the set 𝐶1 such that 0 ¬ 𝜎𝐶1 (𝑏𝑡) + 𝜁𝐶1 (𝑏𝑡) + 𝜂𝐶1 (𝑏𝑡) ¬ 1. Also, 𝜃𝐶1 (𝑏𝑡) =

1 − (𝜎𝐶1 (𝑏𝑡) + 𝜁𝐶1 (𝑏𝑡) + 𝜂𝐶1 (𝑏𝑡)) is the refusal degree for the element 𝑏𝑡 ∈ 𝐵 in
the set 𝐶1.

Definition 3. [15] A SFS 𝐶1 in 𝐵 is given by

𝐶1 = {(𝑏𝑡 , 𝜎𝐶1 (𝑏𝑡), 𝜁𝐶1 (𝑏𝑡), 𝜂𝐶1 (𝑏𝑡))𝑏𝑡 ∈ 𝐵},

where 0 ¬ 𝜎𝐶1 (𝑏𝑡) ¬ 1, 0 ¬ 𝜁𝐶1 (𝑏𝑡) ¬ 1, and 0 ¬ 𝜂𝐶1 (𝑏𝑡) ¬ 1 are the
grades of satisfaction, non-satisfaction, and neutrality respectively of 𝑏𝑡 ∈ 𝐵

in the set 𝐶1 such that 0 ¬ 𝜎2
𝐶1
(𝑏𝑡) + 𝜁2

𝐶1
(𝑏𝑡) + 𝜂2

𝐶1
(𝑏𝑡) ¬ 1. Also, 𝜃𝐶1 (𝑏𝑡) =√︃

1 − (𝜎2
𝐶1
(𝑏𝑡) + 𝜁2

𝐶1
(𝑏𝑡) + 𝜂2

𝐶1
(𝑏𝑡)) is the refusal degree for the element 𝑏𝑡 ∈ 𝐵

in the set 𝐶1.



66 A.H. GANIE, D. DUTTA

3. A novel SF correlation coefficient

We first give the definition of the variance and covariance of SFSs. Let SFS(𝐵)
denote the set of all SFSs on 𝐵.

Definition 4. For any 𝐶1 ∈ SFS(𝐵), the variance is given by

VAR(𝐶1) =
1
𝑝

𝑝∑︁
𝑡=1


( (
𝜎𝐶1 (𝑏𝑡)

)2 − (𝜎𝐶1)2
)2

+
( (
𝜁𝐶1 (𝑏𝑡)

)2 − (𝜁𝐶1)2
)2

+
( (
𝜂𝐶1 (𝑏𝑡)

)2 − (𝜂𝐶1)2
)2

 ,
where 𝜎𝐶1 =

1
𝑝

𝑝∑︁
𝑡=1

𝜎𝐶1 (𝑏𝑡), 𝜁𝐶1 =
1
𝑝

𝑝∑︁
𝑡=1

𝜁𝐶1 (𝑏𝑡) and 𝜂𝐶1 =
1
𝑝

𝑝∑︁
𝑡=1

𝜂𝐶1 (𝑏𝑡).

Definition 5. For any 𝐶1, 𝐶2 ∈ SFS(𝐵), the covariance is given by

COV(𝐶1, 𝐶2) =
1
𝑝

𝑝∑︁
𝑡=1



( (
𝜎𝐶1 (𝑏𝑡)

)2 − (𝜎𝐶1)2
) ( (

𝜎𝐶2 (𝑏𝑡)
)2 − (𝜎𝐶2)2

)
+
( (
𝜁𝐶1 (𝑏𝑡)

)2 − (𝜁𝐶1)2
) ( (

𝜁𝐶2 (𝑏𝑡)
)2 − (𝜁𝐶2)2

)
+
( (
𝜂𝐶1 (𝑏𝑡)

)2 − (𝜂𝐶1)2
) ( (

𝜂𝐶2 (𝑏𝑡)
)2 − (𝜂𝐶2)2

)

.

Now, we define the correlation coefficient for SFSs.

Definition 6. For any 𝐶1, 𝐶2 ∈ 𝐵, a correlation coefficient is given by

𝐶𝐺𝐷 (𝐶1, 𝐶2) =
COV(𝐶1, 𝐶2)√︁

VAR(𝐶1) × VAR(𝐶2)
. (1)

Now, we discuss some essential properties of the suggested correlation coef-
ficient 𝐶𝐺𝐷 given in Eq. (1).

Theorem 1. For any 𝐶1, 𝐶2 ∈ SFS(𝐵), we have

(1) 𝐶𝐺𝐷 (𝐶1, 𝐶2) = 𝐶𝐺𝐷 (𝐶2, 𝐶1),
(2) −1 ¬ 𝐶𝐺𝐷 (𝐶1, 𝐶2) ¬ 1,
(3) if 𝐶1 = 𝑐𝐶2 for some 𝑐, then 𝐶𝐺𝐷 (𝐶1, 𝐶2) = 1.
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Proof. (1)

COV(𝐶1, 𝐶2) =
1
𝑝

𝑝∑︁
𝑡=1



( (
𝜎𝐶1 (𝑏𝑡)

)2 − (𝜎𝐶1)2
) ( (

𝜎𝐶2 (𝑏𝑡)
)2 − (𝜎𝐶2)2

)
+
( (
𝜁𝐶1 (𝑏𝑡)

)2 − (𝜁𝐶1)2
) ( (

𝜁𝐶2 (𝑏𝑡)
)2 − (𝜁𝐶2)2

)
+
( (
𝜂𝐶1 (𝑏𝑡)

)2 − (𝜂𝐶1)2
) ( (

𝜂𝐶2 (𝑏𝑡)
)2 − (𝜂𝐶2)2

)


=
1
𝑝

𝑝∑︁
𝑡=1



( (
𝜎𝐶2 (𝑏𝑡)

)2 − (𝜎𝐶2)2
) ( (

𝜎𝐶1 (𝑏𝑡)
)2 − (𝜎𝐶1)2

)
+
( (
𝜁𝐶2 (𝑏𝑡)

)2 − (𝜁𝐶2)2
) ( (

𝜁𝐶1 (𝑏𝑡)
)2 − (𝜁𝐶1)2

)
+
( (
𝜂𝐶2 (𝑏𝑡)

)2 − (𝜂𝐶2)2
) ( (

𝜂𝐶1 (𝑏𝑡)
)2 − (𝜂𝐶1)2

)


= COV(𝐶2, 𝐶1).

So,

𝐶𝐺𝐷 (𝐶1, 𝐶2) =
COV(𝐶1, 𝐶2)√︁

VAR(𝐶1) × VAR(𝐶2)

=
COV(𝐶2, 𝐶1)√︁

VAR(𝐶2) × VAR(𝐶1)
= 𝐶𝐺𝐷 (𝐶2, 𝐶1).

(2) Using Cauchy-Schwartz inequality, we have

(COV(𝐶1, 𝐶2))2 =

©«
1
𝑝

𝑝∑︁
𝑡=1



( (
𝜎𝐶1 (𝑏𝑡)

)2 − (𝜎𝐶1)2
) ( (

𝜎𝐶2 (𝑏𝑡)
)2 − (𝜎𝐶2)2

)
+
( (
𝜁𝐶1 (𝑏𝑡)

)2 − (𝜁𝐶1)2
) ( (

𝜁𝐶2 (𝑏𝑡)
)2 − (𝜁𝐶2)2

)
+
( (
𝜂𝐶1 (𝑏𝑡)

)2 − (𝜂𝐶1)2
) ( (

𝜂𝐶2 (𝑏𝑡)
)2 − (𝜂𝐶2)2

)

ª®®®®®¬

2

¬
1
𝑝

𝑝∑︁
𝑡=1


( (
𝜎𝐶1 (𝑏𝑡)

)2 − (𝜎𝐶1)2
)2

+
( (
𝜁𝐶1 (𝑏𝑡)

)2 − (𝜁𝐶1)2
)2

+
( (
𝜂𝐶1 (𝑏𝑡)

)2 − (𝜂𝐶1)2
)2


× 1
𝑝

𝑝∑︁
𝑡=1


( (
𝜎𝐶2 (𝑏𝑡)

)2 − (𝜎𝐶2)2
)2

+
( (
𝜁𝐶2 (𝑏𝑡)

)2 − (𝜁𝐶2)2
)2

+
( (
𝜂𝐶2 (𝑏𝑡)

)2 − (𝜂𝐶2)2
)2


= VAR(𝐶1) × VAR(𝐶2).



68 A.H. GANIE, D. DUTTA

So,

|COV(𝐶1, 𝐶2) | ¬
√︁
𝑉𝐴𝑅(𝐶1) ×𝑉𝐴𝑅(𝐶2)

or −
√︁
𝑉𝐴𝑅(𝐶1) ×𝑉𝐴𝑅(𝐶2) ¬ 𝐶𝑂𝑉 (𝐶1, 𝐶2) ¬

√︁
𝑉𝐴𝑅(𝐶1) ×𝑉𝐴𝑅(𝐶2)

or − 1 ¬
𝐶𝑂𝑉 (𝐶1, 𝐶2)√︁

𝑉𝐴𝑅(𝐶1) ×𝑉𝐴𝑅(𝐶2)
¬ 1

or − 1 ¬ 𝐶𝐺𝐷 (𝐶1, 𝐶2) ¬ 1.

(3) Let 𝐶1 = 𝑐𝐶2, then 𝜎𝐶1 (𝑏𝑡) = 𝑐𝜎𝐶2 (𝑏𝑡), 𝜁𝐶1 (𝑏𝑡) = 𝑐𝜁𝐶2 (𝑏𝑡), 𝜂𝐶1 (𝑏𝑡) =

𝑐𝜂𝐶2 (𝑏𝑡),∀𝑡 = 1, 2, ..., 𝑝.

𝐶𝑂𝑉 (𝐶1, 𝐶2) =
1
𝑝

𝑝∑︁
𝑡=1


( (
𝜎𝐶1 (𝑏𝑡)

)2 − (𝜎𝐶1)2
) ( (

𝜎𝐶2 (𝑏𝑡)
)2 − (𝜎𝐶2)2

)
+
( (
𝜁𝐶1 (𝑏𝑡)

)2 − (𝜁𝐶1)2
) ( (

𝜁𝐶2 (𝑏𝑡)
)2 − (𝜁𝐶2)2

)
+
( (
𝜂𝐶1 (𝑏𝑡)

)2 − (𝜂𝐶1)2
) ( (

𝜂𝐶2 (𝑏𝑡)
)2 − (𝜂𝐶2)2

)


=
1
𝑝

𝑝∑︁
𝑡=1


( (
𝑐𝜎𝐶2 (𝑏𝑡)

)2 − (𝑐𝜎𝐶2)2
) ( (

𝜎𝐶2 (𝑏𝑡)
)2 − (𝜎𝐶2)2

)
+
( (
𝑐𝜁𝐶2 (𝑏𝑡)

)2 − (𝑐𝜁𝐶2)2
) ( (

𝜁𝐶2 (𝑏𝑡)
)2 − (𝜁𝐶2)2

)
+
( (
𝑐𝜂𝐶2 (𝑏𝑡)

)2 − (𝑐𝜂𝐶2)2
) ( (

𝜂𝐶2 (𝑏𝑡)
)2 − (𝜂𝐶2)2

)


=
𝑐2

𝑝

𝑝∑︁
𝑡=1


( (
𝜎𝐶2 (𝑏𝑡)

)2 − (𝜎𝐶2)2
)
+
( (
𝜁𝐶2 (𝑏𝑡)

)2 − (𝜁𝐶2)2
)

+
( (
𝜂𝐶2 (𝑏𝑡)

)2 − (𝜂𝐶2)2
) 

= 𝑐2𝑉𝐴𝑅(𝐶2).
Also,

VAR(𝐶1) =
1
𝑝

𝑝∑︁
𝑡=1


( (
𝜎𝐶1 (𝑏𝑡)

)2 − (𝜎𝐶1)2
)2

+
( (
𝜁𝐶1 (𝑏𝑡)

)2 − (𝜁𝐶1)2
)2

+
( (
𝜂𝐶1 (𝑏𝑡)

)2 − (𝜂𝐶1)2
)2


=

1
𝑝

𝑝∑︁
𝑡=1


( (
𝑐𝜎𝐶2 (𝑏𝑡)

)2 − (𝑐𝜎𝐶2)2
)2

+
( (
𝑐𝜁𝐶2 (𝑏𝑡)

)2 − (𝑐𝜁𝐶2)2
)2

+
( (
𝑐𝜂𝐶2 (𝑏𝑡)

)2 − (𝑐𝜂𝐶2)2
)2


=
𝑐4

𝑝

𝑝∑︁
𝑡=1


( (
𝜎𝐶2 (𝑏𝑡)

)2 − (𝜎𝐶2)2
)2

+
( (
𝜁𝐶2 (𝑏𝑡)

)2 − (𝜁𝐶2)2
)2

+
( (
𝜂𝐶2 (𝑏𝑡)

)2 − (𝜂𝐶2)2
)2


= 𝑐4𝑉𝐴𝑅(𝐶2).
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So,

𝐶𝐺𝐷 (𝐶1, 𝐶2) =
𝐶𝑂𝑉 (𝐶1, 𝐶2)√︁

𝑉𝐴𝑅(𝐶1) ×𝑉𝐴𝑅(𝐶2)

=
𝑐2𝑉𝐴𝑅(𝐶2)√︁

𝑐4𝑉𝐴𝑅(𝐶2) ×𝑉𝐴𝑅(𝐶2)
= 1.

4. A comparative study based on Linguistic hedges

Definition 7. For any 𝐶1 ∈ 𝑆𝐹𝑆(𝐵), 𝐶𝜇1 is defined as

𝐶
𝜇

1 =


©«
𝑓𝑡 ,

(
𝜎𝐶1 ( 𝑓𝑡) + 𝜂𝐶1 ( 𝑓𝑡)

)𝜇 − (
𝜂𝐶1 ( 𝑓𝑡)

)𝜇
,√︂

1 −
(
1 −

(
𝜁𝐶1 ( 𝑓𝑡)

)2)𝜇
,
(
𝜂𝐶1 ( 𝑓𝑡)

)𝜇 ª®®¬ , 𝑓𝑡 ∈ 𝐵
 , 𝜇 > 0.

Example 1. Consider SFS 𝐶1 ∈ 𝐵 = { 𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5} given as

𝐶1 =

{ ( 𝑓1, 0.7, 0.1, 0.1), ( 𝑓2, 0.2, 0.3, 0.4), ( 𝑓3, 0.2, 0.1, 0.5),
( 𝑓4, 0.1, 0.5, 0.2), ( 𝑓5, 0.2, 0.2, 0.2)

}
.

With the help of above Definition, we define the SFSs More or less LARGE
= 𝐶

1
2
1 , Not very LARGE = (𝐶2

1 )
𝑐, very very LARGE = 𝐶4

1 , very LARGE = 𝐶2
1 ,

and LARGE = 𝐶1, as follows.

𝐶1 =

{ ( 𝑓1, 0.7, 0.1, 0.1), ( 𝑓2, 0.2, 0.3, 0.4), ( 𝑓3, 0.2, 0.1, 0.5),
( 𝑓4, 0.1, 0.5, 0.2), ( 𝑓5, 0.2, 0.2, 0.2)

}
,

𝐶2
1 =


( 𝑓1, 0.6300, 0.1411, 0.0100), ( 𝑓2, 0.2000, 0.4146, 0.1600),
( 𝑓3, 0.2400, 0.1411, 0.2500), ( 𝑓4, 0.0500, 0.6614, 0.0400),

( 𝑓5, 0.1200, 0.2800, 0.0400)

 ,
𝐶4

1 =


( 𝑓1, 0.4095, 0.1985, 0), ( 𝑓2, 0.1040, 0.5606, 0.0256),

( 𝑓3, 0.1776, 0.1985, 0.0625), ( 𝑓4, 0.0065, 0.8268, 0.0016),
( 𝑓5, 0.0240, 0.3881, 0.0016)

 ,
𝐶

1
2
1 =


( 𝑓1, 0.5782, 0.0708, 0.3162), ( 𝑓2, 0.1421, 0.2146, 0.6325),
( 𝑓3, 0.1296, 0.0708, 0.7071), ( 𝑓4, 0.1005, 0.3660, 0.4472),

( 𝑓5, 0.1852, 0.1421, 0.4472)

 ,



70 A.H. GANIE, D. DUTTA

(𝐶2
1 )
𝑐 =


( 𝑓1, 0.1411, 0.6300, 0.0100), ( 𝑓2, 0.4146, 0.2000, 0.1600),
( 𝑓3, 0.1411, 0.2400, 0.2500), ( 𝑓4, 0.6614, 0.0500, 0.0400),

( 𝑓5, 0.2800, 0.1200, 0.0400)

 .
We compare our suggested method with a few other ones for estimating the
correlation coefficients using these SFSs. Tables 1–3 show the results and utilize
the following notations.

Not very LARGE: N.V.L., more or less LARGE: M.L.L., very very LARGE:
V.V.L., very LARGE: V.L., LARGE: L.

Table 1: Correlation coefficients using 𝐶𝑈𝐺𝑀𝐽𝐴1 [25]

M.L.L. L. V.L. V.V.L. N.V.L.
M.L.L. 1.0000 0.8991 0.6519 0.4339 0.4768
L. 0.8991 1.0000 0.9045 0.7167 0.5995
V.L. 0.6519 0.9045 1.0000 0.9307 0.5866
V.V.L. 0.4339 0.7165 0.9307 1.0000 0.4950
N.V.L. 0.4768 0.5995 0.5866 0.4950 1.0000

Table 2: Correlation coefficients using 𝐶𝑈𝐺𝑀𝐽𝐴2 [25]

M.L.L. L. V.L. V.V.L. N.V.L.
M.L.L. 1.0000 0.8361 0.6476 0.3822 0.4737
L. 0.8361 1.0000 0.8467 0.5870 0.5612
V.L. 0.6476 0.8467 1.0000 0.8144 0.5866
V.V.L. 0.3822 0.5870 0.8144 1.0000 0.4332
N.V.L. 0.4737 0.5612 0.5866 0.4332 1.0000

Table 3: Correlation coefficients using 𝐶𝐺𝐷

M.L.L. L. V.L. V.V.L. N.V.L.
M.L.L. 1.0000 0.9129 0.6862 0.4026 –0.1484
L. 0.9129 1.0000 0.8947 0.6006 –0.2789
V.L. 0.6862 0.8947 1.0000 0.8710 –0.3732
V.V.L. 0.4026 0.6006 0.8710 1.0000 –0.3481
N.V.L. –0.1484 –0.2789 –0.3732 –0.3481 1.0000
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A coefficient of correlation 𝐶 should satisfy the following conditions due to
the characterization of linguistic variables.

𝐶 (𝑀.𝐿.𝐿., 𝑉 .𝑉.𝐿.) < 𝐶 (𝑀.𝐿.𝐿., 𝑉 .𝐿.) < 𝐶 (𝑀.𝐿.𝐿., 𝐿.)
𝐶 (𝑉.𝑉.𝐿., 𝑀.𝐿.𝐿.) < 𝐶 (𝑉.𝑉.𝐿., 𝐿.) < 𝐶 (𝑉.𝑉.𝐿., 𝑉 .𝐿.)

𝐶 (𝐿.,𝑉 .𝑉.𝐿.) < 𝐶 (𝐿.,𝑉 .𝐿.) < 𝐶 (𝐿., 𝑀.𝐿.𝐿.)
𝐶 (𝑉.𝐿., 𝑀.𝐿.𝐿.) < 𝐶 (𝑉.𝐿.,𝑉 .𝑉.𝐿.) < 𝐶 (𝑉.𝐿, 𝐿.)

(2)

From Tables 1–3, we find out that the correlation coefficients 𝐶𝑈𝐺𝑀𝐽𝐴1 [25] and
𝐶𝑈𝐺𝑀𝐽𝐴2 [25] do not satisfy all the conditions of Eq. (2) whereas our suggested
correlation fulfills all the required conditions as shown in Figs. 1–4. Also because

Figure 1: Condition first of Eq. (2)

Figure 2: Condition second of Eq. (2)
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of the characterization of linguistic variables, the correlation of N.V.L. with all
other linguistic hedges should be negative and this is shown by only the offered
correlation measure.

Figure 3: Condition third of Eq. (2)

Figure 4: Condition fourth of Eq. (2)

5. Applications

Here we establish the utility of the developed metric in bidirectional approx-
imate reasoning and pattern investigation.
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5.1. Bidirectional approximate reasoning

Here, we apply the proposed correlation function to a bidirectional approxima-
tive reasoning system for SFSs to check the accuracy of the correlation function.
Let us start by taking a look at the single-input, single-output, forward approxi-
mate reasoning scheme:

𝑃1 : If 𝐴 is 𝐶1, then 𝐸 is 𝐷1.

𝑃2 : If 𝐴 is 𝐶2, then 𝐸 is 𝐷2.

𝑃3 : If 𝐴 is 𝐶3, then 𝐸 is 𝐷3.

...

𝑃𝑝 : If 𝐴 is 𝐶𝑝, then 𝐸 is 𝐷 𝑝 .

Fact : 𝐴 is 𝐶∗.

Consequence : 𝐸 is 𝐷∗.

In this model, 𝐶𝑡 and 𝐶∗ are SFSs of the Universe 𝐵 = {𝑏1, 𝑏2, . . . , 𝑏𝑝} and
𝑃𝑡 (1 ¬ 𝑡 ¬ 𝑝) is the 𝑡-th output rule and 𝐷𝑡 and 𝐷∗ are SFSs of the Universe
𝐹 = { 𝑓1, 𝑓2, . . . , 𝑓𝑞}. With the help of the Chen et al. [3], we have the following:
𝐶𝐺𝐷 (𝐶1, 𝐶

∗) = 𝑙1 =⇒ “𝐸 is 𝐷∗
1” is the derived result of the Rule 𝑃1, where

𝐶𝐺𝐷 (𝐶1, 𝐶
∗) indicates the correlation between 𝐶1 and 𝐶∗, and

𝐷∗
1 = |𝑙1 | × 𝐷1 =


(
𝑓1, |𝑙1 |𝜎𝐷1 ( 𝑓1), 1 − |𝑙1 | + |𝑙1 |𝜁𝐷1 ( 𝑓1), |𝑙1 |𝜂𝐷1 ( 𝑓1)

)
,(

𝑓2, |𝑙1 |𝜎𝐷1 ( 𝑓2), 1 − |𝑙1 | + |𝑙1 |𝜁𝐷1 ( 𝑓2), |𝑙1 |𝜂𝐷1 ( 𝑓2)
)
, ...,(

𝑓𝑞, |𝑙1 |𝜎𝐷1 ( 𝑓𝑞), 1 − |𝑙1 | + |𝑙1 |𝜁𝐷1 ( 𝑓𝑞), |𝑙1 |𝜂𝐷1 ( 𝑓𝑞)
)
.


𝐶𝐺𝐷 (𝐶2, 𝐶

∗) = 𝑙2 =⇒ “𝐸 is 𝐷∗
2” is the desired result of the Rule 𝑃2, where

𝐷∗
2 = |𝑙2 | × 𝐷2 =


(
𝑓1, |𝑙2 |𝜎𝐷2 ( 𝑓1), 1 − |𝑙2 | + |𝑙2 |𝜁𝐷2 ( 𝑓1), |𝑙2 |𝜂𝐷2 ( 𝑓1)

)
,(

𝑓2, |𝑙2 |𝜎𝐷2 ( 𝑓2), 1 − |𝑙2 | + |𝑙2 |𝜁𝐷2 ( 𝑓2), |𝑙2 |𝜂𝐷2 ( 𝑓2)
)
, ...,(

𝑓𝑞, |𝑙2 |𝜎𝐷2 ( 𝑓𝑞), 1 − |𝑙2 | + |𝑙2 |𝜁𝐷2 ( 𝑓𝑞), |𝑙2 |𝜂𝐷2 ( 𝑓𝑞)
)
.


𝐶𝐺𝐷 (𝐶𝑝, 𝐶∗) = 𝑙𝑝 =⇒ “𝐸 is 𝐷∗

𝑝” is the desired result of the Rule 𝑃𝑝, where

𝐷∗
𝑝 = |𝑙𝑝 | ×𝐷 𝑝 =



(
𝑓1, |𝑙𝑝 |𝜎𝐷 𝑝

( 𝑓1), 1 − |𝑙𝑝 | + |𝑙𝑝 |𝜁𝐷 𝑝
( 𝑓1), |𝑙𝑝 |𝜂𝐷 𝑝

( 𝑓1)
)
,(

𝑓2, |𝑙𝑝 |𝜎𝐷 𝑝
( 𝑓2), 1 − |𝑙𝑝 | + |𝑙𝑝 |𝜁𝐷 𝑝

( 𝑓2), |𝑙𝑝 |𝜂𝐷 𝑝
( 𝑓2)

)
, ...,(

𝑓𝑞, |𝑙𝑝 |𝜎𝐷 𝑝
( 𝑓𝑞), 1 − |𝑙𝑝 | + |𝑙𝑝 |𝜁𝐷 𝑝

( 𝑓𝑞), |𝑙𝑝 |𝜂𝐷 𝑝
( 𝑓𝑞)

)
.


.
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So, the desired result of the approximate reasoning method is “𝐸 is 𝐷∗”, where

𝐷∗ = 𝐷∗
1 ∪ 𝐷

∗
2 ∪ . . . ∪ 𝐷

∗
𝑝

=



(
𝑓1,max

𝑡

(
|𝑙𝑡 |𝜎𝐷𝑡

( 𝑓1)
)
,min

𝑡

(
1 − |𝑙𝑡 | + |𝑙𝑡 |𝜁𝐷𝑡

( 𝑓1)
)
,min

𝑡

(
|𝑙𝑡 |𝜂𝐷𝑡

( 𝑓1)
) )(

𝑓2,max
𝑡

(
|𝑙𝑡 |𝜎𝐷𝑡

( 𝑓2)
)
,min

𝑡

(
1 − |𝑙𝑡 | + |𝑙𝑡 |𝜁𝐷𝑡

( 𝑓2)
)
,min

𝑡

(
|𝑙𝑡 |𝜂𝐷𝑡

( 𝑓2)
) )(

𝑓𝑞,max
𝑡

(
|𝑙𝑡 |𝜎𝐷𝑡

( 𝑓𝑞)
)
,min

𝑡

(
1 − |𝑙𝑡 | + |𝑙𝑡 |𝜁𝐷𝑡

( 𝑓𝑞)
)
,min

𝑡

(
|𝑙𝑡 |𝜂𝐷𝑡

( 𝑓𝑞)
) )

,

and ∪ denotes the union operator between SFSs, 1 ¬ 𝑡 ¬ 𝑝.

Example 2. Let us have a look at the following SFS-based forward approximation
reasoning system.

𝑃1 :If 𝐴 is 𝐶1, then 𝐸 is 𝐷1.

𝑃2 :If 𝐴 is 𝐶2, then 𝐸 is 𝐷2.

𝑃3 :If 𝐴 is 𝐶3, then 𝐸 is 𝐷3.

Fact : 𝐴 is 𝐶∗.

Consequence : 𝐸 is 𝐷∗.

In this system

𝐶1 = {(𝑏1, 0.2, 0.1, 0.4), (𝑏2, 0.3, 0.5, 0.1), (𝑏3, 0.7, 0, 0.2)},
𝐶2 = {(𝑏1, 0.5, 0.1, 0.3), (𝑏2, 0.8, 0, 0.1), (𝑏3, 0.4, 0.5, 0)},
𝐶3 = {(𝑏1, 0.7, 0.2, 0.1), (𝑏2, 1, 0, 0), (𝑏3, 0.1, 0.3, 0.5)},
𝐶∗ = {(𝑏1, 0.8, 0, 0.1), (𝑏2, 0.4, 0.5, 0), (𝑏3, 0.2, 0.3, 0.3)},
𝐷1 = {( 𝑓1, 0.1, 0.3, 0.4), ( 𝑓2, 0.1, 0.4, 0.2), ( 𝑓3, 0.3, 0.4, 0.2)}
𝐷2 = {( 𝑓1, 0.1, 0.9, 0), ( 𝑓2, 0, 0.5, 0), ( 𝑓3, 0.1, 0, 0.1)},
𝐷3 = {( 𝑓1, 0.3, 0.1, 0.4), ( 𝑓2, 0.5, 0.3, 0.1), ( 𝑓3, 0.4, 0, 0.3)}.

Using the suggested correlation metric, we have 𝐶𝐺𝐷 (𝐶1, 𝐶
∗) = −0.3071,

𝐶𝐺𝐷 (𝐶2, 𝐶
∗) = −0.1073, and 𝐶𝐺𝐷 (𝐶3, 𝐶

∗) = 0.2335. So, we obtain

𝐷∗
1 =

{
( 𝑓1, 0.0307, 0.7850, 0.1228), ( 𝑓2, 0.0307, 0.8158, 0.0614),

( 𝑓3, 0.0921, 0.8158, 0.0614)

}
𝐷∗

2 =
{
( 𝑓1, 0.0104, 0.9896, 0), ( 𝑓2, 0, 0.9482, 0), ( 𝑓3, 0.0104, 0.8963, 0.0104)

}
𝐷∗

3 =

{
( 𝑓1, 0.0700, 0.7899, 0.0934), ( 𝑓2, 0.1167, 0.8366, 0.0233),

( 𝑓3, 0.0934, 0.7665, 0.0700)

}
.
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So,

𝐷∗ = 𝐷∗
1 ∪ 𝐷

∗
2 ∪ . . . ∪ 𝐷

∗
𝑝 =

{
( 𝑓1, 0.0700, 0.7850, 0), ( 𝑓2, 0.1167, 0.8158, 0),

( 𝑓3, 0.0934, 0.7665, 0.0104)

}
.

Now, using the suggested correlation metric 𝐶𝐺𝐷 , we have
𝐶𝐺𝐷 (𝐷1, 𝐷

∗) = 0.0612, 𝐶𝐺𝐷 (𝐷2, 𝐷
∗) = 0.1471, and 𝐶𝐺𝐷 (𝐷3, 𝐷

∗) = 0.4562.
The results indicate that 𝐶𝐺𝐷 (𝐶1, 𝐶

∗) < 𝐶𝐺𝐷 (𝐶2, 𝐶
∗) < 𝐶𝐺𝐷 (𝐶3, 𝐶

∗)
and 𝐶𝐺𝐷 (𝐷1, 𝐷

∗) < 𝐶𝐺𝐷 (𝐷2, 𝐷
∗) < 𝐶𝐺𝐷 (𝐷3, 𝐷

∗), i.e., 𝐶𝐺𝐷 (𝐶1, 𝐶
∗) and

𝐶𝐺𝐷 (𝐶3, 𝐶
∗) have the smallest and maximum values respectively among the

values of 𝐶𝐺𝐷 (𝐶1, 𝐶
∗), 𝐶𝐺𝐷 (𝐶2, 𝐶

∗), and 𝐶𝐺𝐷 (𝐶3, 𝐶
∗), whereas 𝐷1 and 𝐷3

share the least and greatest correlation with 𝐷∗ respectively (see Fig. 5).

Figure 5: Forward approximate reasoning

On the other hand, consider the following backward approximation-based
reasoning model:

𝑃1 : If 𝐴 is 𝐶1, then 𝐸 is 𝐷1.

𝑃2 : If 𝐴 is 𝐶2, then 𝐸 is 𝐷2.

𝑃3 : If 𝐴 is 𝐶3, then 𝐸 is 𝐷3.

. . .

𝑃𝑝 : If 𝐴 is 𝐶𝑝, then 𝐸 is 𝐷 𝑝 .

Fact : 𝐸 is 𝐷∗.

Consequence : 𝐴 is 𝐶∗.
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In this model, 𝐶𝑡 and 𝐶∗ are SFSs of the Universe 𝐵 = {𝑏1, 𝑏2, . . . , 𝑏𝑝} and
𝑃𝑡 (1 ¬ 𝑡 ¬ 𝑝) is the 𝑡-th output rule and 𝐷𝑡 and 𝐷∗ are SFSs of the Universe
𝐹 = { 𝑓1, 𝑓2, . . . , 𝑓𝑞}. With the help of the Chen et al. [3], we have the following:
𝐶𝐺𝐷 (𝐷1, 𝐷

∗) = 𝑘1 =⇒ “𝐴 is 𝐶∗
1” is the derived result of the Rule 𝑃1, where

𝐶𝐺𝐷 (𝐷1, 𝐷
∗) indicates the correlation between 𝐷1 and 𝐷∗, where

𝐶∗
1 = |𝑘1 | × 𝐶1 =


(
𝑏1, |𝑘1 |𝜎𝐶1 (𝑏1), 1 − |𝑘1 | + |𝑘1 |𝜁𝐶1 (𝑏1), |𝑘1 |𝜂𝐶1 (𝑏1)

)
,(

𝑏2, |𝑘1 |𝜎𝐶1 (𝑏2), 1 − |𝑘1 | + |𝑘1 |𝜁𝐶1 (𝑏2), |𝑘1 |𝜂𝐶1 (𝑏2)
)
, . . . ,(

𝑏𝑞, |𝑘1 |𝜎𝐶1 ( 𝑓𝑞), 1 − |𝑘1 | + |𝑘1 |𝜁𝐷1 ( 𝑓𝑞), |𝑘1 |𝜂𝐷1 ( 𝑓𝑞)
)
.


𝐶𝐺𝐷 (𝐷2, 𝐷

∗) = 𝑘2 =⇒ “𝐴 is 𝐶∗
2” is the desired result of the Rule 𝑃2, where

𝐶∗
2 = |𝑘2 | × 𝐶2 =


(
𝑏1, |𝑘2 |𝜎𝐶2 ( 𝑓1), 1 − |𝑘2 | + |𝑘2 |𝜁𝐶2 (𝑏1), |𝑘2 |𝜂𝐶2 (𝑏1)

)
,(

𝑏2, |𝑘2 |𝜎𝐶2 (𝑏2), 1 − |𝑘2 | + |𝑘2 |𝜁𝐶2 (𝑏2), |𝑘2 |𝜂𝐶2 (𝑏2)
)
, . . . ,(

𝑏𝑞, |𝑘2 |𝜎𝐶2 (𝑏𝑞), 1 − |𝑘2 | + |𝑘2 |𝜁𝐶2 (𝑏𝑞), |𝑘2 |𝜂𝐶2 (𝑏𝑞)
)
.


𝐶𝐺𝐷 (𝐷 𝑝, 𝐷

∗) = 𝑘 𝑝 =⇒ “𝐴 is 𝐶∗
𝑝” is the desired result of the Rule 𝑃𝑝, where

𝐶∗
𝑝 = |𝑘 𝑝 |×𝐶𝑝 =


(
𝑏1, |𝑘 𝑝 |𝜎𝐶𝑝

(𝑏1), 1 − |𝑘 𝑝 | + |𝑘 𝑝 |𝜁𝐶𝑝
(𝑏1), |𝑘 𝑝 |𝜂𝐶𝑝

(𝑏1)
)
,(

𝑏2, |𝑘 𝑝 |𝜎𝐶𝑝
(𝑏2), 1 − |𝑘 𝑝 | + |𝑘 𝑝 |𝜁𝐶𝑝

(𝑏2), |𝑘 𝑝 |𝜂𝐶𝑝
(𝑏2)

)
, . . . ,(

𝑏𝑞, |𝑘 𝑝 |𝜎𝐶𝑝
(𝑏𝑞), 1 − |𝑘 𝑝 | + |𝑘 𝑝 |𝜁𝐶𝑝

(𝑏𝑞), |𝑘 𝑝 |𝜂𝐶𝑝
(𝑏𝑞)

)


So, the desired result of the approximate reasoning method is “𝐴 is 𝐶∗”, where

𝐶∗ = 𝐶∗
1 ∪ 𝐶

∗
2 ∪ . . . ∪ 𝐶

∗
𝑝

=



(
𝑏1, max

𝑡
( |𝑘𝑡 |𝜎𝐶𝑡

(𝑏1)), min
𝑡

(
1−|𝑘𝑡 |+|𝑘𝑡 |𝜁𝐶𝑡

(𝑏1)
)
, min

𝑡

(
|𝑘𝑡 |𝜂𝐶𝑡

(𝑏1)
) )(

𝑓2, max
𝑡

( |𝑘𝑡 |𝜎𝐶𝑡
(𝑏2)), min

𝑡

(
1−|𝑘𝑡 |+|𝑘𝑡 |𝜁𝐶𝑡

(𝑏2)
)
, min

𝑡

(
|𝑘𝑡 |𝜂𝐶𝑡

(𝑏2)
) )(

𝑏𝑞, max
𝑡

( |𝑘𝑡 |𝜎𝐶𝑡
(𝑏𝑞)), min

𝑡

(
1−|𝑘𝑡 |+|𝑘𝑡 |𝜁𝐶𝑡

(𝑏𝑞)
)
, min

𝑡

(
|𝑘𝑡 |𝜂𝐶𝑡

(𝑏𝑞)
) )

,

and ∪ denotes the union operator between SFSs, 1 ¬ 𝑡 ¬ 𝑝.
Example 3. Let us have a look at the following SFS-based backward approxima-
tion reasoning system.

𝑃1 : If 𝐴 is 𝐶1, then 𝐸 is 𝐷1.

𝑃2 : If 𝐴 is 𝐶2, then 𝐸 is 𝐷2.

𝑃3 : If 𝐴 is 𝐶3, then 𝐸 is 𝐷3.

Fact : 𝐸 is 𝐷∗.

Consequence : 𝐴 is 𝐶∗.
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In this system

𝐶1 =
{
(𝑏1, 0.2, 0.7, 0.1), (𝑏2, 0, 0.1, 0), (𝑏3, 0.5, 0.3, 0.1)

}
,

𝐶2 =
{
(𝑏1, 0.4, 0.1, 0.2), (𝑏2, 0.1, 0.5, 0.3), (𝑏3, 0.7, 0.1, 0.2)

}
,

𝐶3 =
{
(𝑏1, 0.1, 0.5, 0.3), (𝑏2, 0.1, 0.6, 0.1), (𝑏3, 0, 0.5, 0.4)

}
,

𝐷1 =
{
( 𝑓1, 0.4, 0.1, 0.3), ( 𝑓2, 0.3, 0.5, 0.1), ( 𝑓3, 0.4, 0.1, 0.3)

}
,

𝐷2 =
{
( 𝑓1, 0, 0.9, 0.1), ( 𝑓2, 0, 0.5, 0.1), ( 𝑓3, 0.1, 0.3, 0.5)

}
,

𝐷3 =
{
( 𝑓1, 0.3, 0.4, 0.1), ( 𝑓2, 0.2, 0.4, 0.3), ( 𝑓3, 0.5, 0.1, 0.2)

}
,

𝐷∗ =
{
( 𝑓1, 0.6, 0.1, 0.1), ( 𝑓2, 0.5, 0.4, 0), ( 𝑓3, 0.3, 0.3, 0.2)

}
.

Using the suggested correlation metric, we have 𝐶𝐺𝐷 (𝐷1, 𝐷
∗) = 0.3919,

𝐶𝐺𝐷 (𝐷2, 𝐷
∗) = −0.2714, and 𝐶𝐺𝐷 (𝐷3, 𝐷

∗) = −0.4876. So, we obtain

𝐶∗
1 =

{
(𝑏1, 0.0784, 0.8824, 0.0392), (𝑏2, 0, 1, 0),

(𝑏3, 0.1960, 0.7256, 0.0392)

}
,

𝐶∗
2 =

{
(𝑏1, 0.1086, 0.7557, 0.0543), (𝑏2, 00271, 0.8643, 0.0814),

(𝑏3, 0.1900, 0.7557, 0.0543)

}
,

𝐶∗
3 =

{
(𝑏1, 0.0488, 0.7562, 0.1463), (𝑏2, 0.0488, 0.8050, 0.0488),

(𝑏3, 0, 0.7562, 0.1950)

}
.

So,

𝐶∗ = 𝐶∗
1 ∪ 𝐶

∗
2 ∪ . . . ∪ 𝐶

∗
𝑝

=

{
(𝑏1, 0.1086, 0.7557, 0.0392), (𝑏2, 0.0488, 0.8050, 0),

(𝑏3, 0.1960, 0.7256, 0.0392)

}
.

Now, using the suggested correlation metric 𝐶𝐺𝐷 , we have
𝐶𝐺𝐷 (𝐶1, 𝐶

∗) = 0.9783, 𝐶𝐺𝐷 (𝐶2, 𝐶
∗) = 0.6755, and 𝐶𝐺𝐷 (𝐶3, 𝐶

∗) = 0.5590.
The results indicate that 𝐶𝐺𝐷 (𝐶1, 𝐶

∗) > 𝐶𝐺𝐷 (𝐶2, 𝐶
∗) > 𝐶𝐺𝐷 (𝐶3, 𝐶

∗)
and 𝐶𝐺𝐷 (𝐷1, 𝐷

∗) > 𝐶𝐺𝐷 (𝐷2, 𝐷
∗) > 𝐶𝐺𝐷 (𝐷3, 𝐷

∗), i.e., 𝐶𝐺𝐷 (𝐶1, 𝐶
∗) and

𝐶𝐺𝐷 (𝐶3, 𝐶
∗) have the greatest and smallest values respectively among the values

of 𝐶𝐺𝐷 (𝐶1, 𝐶
∗), 𝐶𝐺𝐷 (𝐶2, 𝐶

∗), and 𝐶𝐺𝐷 (𝐶3, 𝐶
∗), whereas 𝐷1 and 𝐷3 shares the

greatest and least correlation with 𝐷∗ respectively (see Fig. 6).

Together, the outcomes of Examples 2 and 3 allow us to draw the conclusion
that the suggested strategy works well for approximate reasoning.
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Figure 6: Backward approximate reasoning

5.2. Pattern investigation

Here, we establish how to use the offered SFS correlation metric to solve
classification-related problems. Utilizing numerous criteria of compatibility, like
“correlation”, “distance”, “similarity”, etc., enables pattern analysis to categorize
an unexplained pattern into one of the recognized patterns. We contrast our results
with several compatibility measurements as well.

In the below example, we will answer a classification-related problem.

Example 4. [11] Let 𝐶𝑘 , 𝑘 = 1, 2, 3 and 𝐶 be some patterns expressed in terms
of SFSs as:

𝐶1 =

{
( 𝑓1, 0.4, 0.3, 0.1), ( 𝑓2, 0.5, 0.3, 0.2), ( 𝑓3, 0.4, 0.3, 0),

( 𝑓4, 0.7, 0, 0.2), ( 𝑓5, 0.6, 0.1, 0.1)

}
,

𝐶2 =

{
( 𝑓1, 0.7, 0.1, 0.1), ( 𝑓2, 0.2, 0.3, 0.4), ( 𝑓3, 0.2, 0.1, 0.5),

( 𝑓4, 0.1, 0.5, 0.2), ( 𝑓5, 0.3, 0.3, 0.3)

}
,

𝐶3 =

{
( 𝑓1, 0.1, 0.3, 0.4), ( 𝑓2, 0.4, 0.3, 0.1), ( 𝑓3, 0.3, 0.4, 0.2),

( 𝑓4, 0.2, 0.5, 0.3), ( 𝑓5, 0.5, 0.3, 0.1)

}
, and

𝐶 =

{
( 𝑓1, 0.6, 0.2, 0.1), ( 𝑓2, 0.3, 0.4, 0.2), ( 𝑓3, 0.4, 0.3, 0.2),

(𝑏4, 0.7, 0.1, 0), ( 𝑓5, 0.4, 0.2, 0.2)

}
.

The task is to verify which pattern 𝐶𝑡 , 𝑡 = 1, 2, 3 shares the maximum
similarity with 𝐶. For this purpose, we combine the offered SFS correla-
tion measurement with the currently known compatibility functions. The com-
puted results are displayed in Table 4. The most of functions of compatibil-
ity along with the developed SFS metric, make it clear that 𝐶 should be as-
signed to 𝐶1 (see Table 4). After finding out the pattern to which 𝐶 belongs,
we compute the Confidence degree (CD) [14] of each compatibility function as
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𝐷𝑜𝐶 =
∑𝑚
𝑘=1,𝑘≠ 𝑗 |𝐶𝑂𝑅(𝐶𝑘 , 𝐶) − 𝐶𝑂𝑅(𝐶 𝑗 , 𝐶) |, where 𝐶𝑂𝑅 is any measure of

comparison like correlation measure, distance measure, similarity measure, etc.
and 𝐶 𝑗 is the pattern to which 𝐶 belongs. In comparison to the current picture
fuzzy and SF compatibility measures, as shown in Fig. 7, we find that the CD of
the proposed SF correlation coefficient is very high.

Table 4: Values of various PF/SF compatibility tests calculated with reference to
Example 4

Compatibility measure (𝐶1, 𝐶) (𝐶2, 𝐶) (𝐶3, 𝐶) Result
𝐷1 [6] 0.1000 0.1867 0.1933 𝐶1
𝐷2 [6] 0.1000 0.1833 0.1929 𝐶1
𝐷3 [6] 0.2000 0.2600 0.2600 𝐶1
𝐷4 [6] 0.0894 0.1428 0.1456 𝐶1
𝐷5 [7] 0.2000 0.3000 0.3400 𝐶1
𝐷6 [7] 0.4000 0.6557 0.7071 𝐶1
𝐷7 [7] 0.1789 0.2933 0.3162 𝐶1
𝐷8 [7] 0.2000 0.2800 0.3000 𝐶1
𝐷9 [21] 0.4000 0.6000 0.6800 𝐶1
𝐷10 [21] 0.1265 0.2074 0.2236 𝐶1
𝐷11 [21] 0.0500 0.0650 0.0650 𝐶1
𝐷12 [23] 0.3750 0.5154 0.4755 𝐶1
𝐷13 [23] 0.3491 0.3951 0.3880 𝐶1
𝐷14 [23] 0.1250 0.1872 0.1775 𝐶1
𝐷15 [23] 0.1955 0.2268 0.2232 𝐶1
𝐾1 [22] 0.9168 0.7625 0.7138 𝐶1
𝐾2 [22] 0.8838 0.7500 0.6739 𝐶1
𝐶𝐺𝐷 (Proposed) 0.5014 0.2235 -0.5555 𝐶1

Figure 7: Confidence Degree of various picture fuzzy/SF compatibility measures
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6. Conclusion

The SFS correlation coefficient proposed in this paper has shown both the level
of association and the correlation degree between SFSs. The offered correlation
metric has handled the linguistic hedges properly and the existing ones have led
to unsatisfactory results. In bidirectional approximate reasoning, the suggested
metric has given accurate results. Also, the suggested SF correlation coefficient
has given satisfactory results in pattern investigation and has a very high CD than
some available comparison measures. In the future, we will discuss its application
in decision-making, clustering, medical diagnosis, etc.
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