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Caster Car — underactuated ground vehicle
with caster wheels

Sebastian KORCZAK

This paper presents a new type of underactuated ground mobile robot called Caster Car. The
platform consists of a front-driven and steered wheel and two uncontrolled rear caster wheels.
The Caster Car model presented can be an interesting alternative for mobile robots that connects
dynamic properties of hovercrafts and classical 4-wheeled cars. Underactuated properties of
the Caster Car cause that classical proportional-derivative feedback control give the ability to
affect only selected configuration variables. Three mathematical models of the Caster Car are
proposed: a dynamic model with free-moving casters, a dynamic model with blocked casters, and
a simplified hovercraft description. Models were tested during tracking tasks with demanding
trajectory using selective and full-state control. This full state control was based on the computed
torque technique with the pseudoinverse operation and proportional-derivative feedback. It gives
the ability to suppress unstable behaviors of uncontrolled orientation but in cost of overall effect
(higher position errors).
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1. Introduction

For years many mobile robot platform types have been developed. Popular
three- or four-wheeled platforms often use their kinematic properties for control
tasks. Problems related to nonholonomic constraints have been analyzed for years
[1,7] with the success of omnidirectional wheels alternative [17]. Researchers like
also more complicated platforms — two-wheeled balancing robots or balancing on
a ball robots [14]. Underactuated mechanical systems are one of the most active
fields of research related to nonlinear control of flying, driving, and floating
objects [12]. Control techniques vary from classical PID, through backstepping
and fuzzy approaches [18] to advanced non-holonomic navigators [15].
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Swivel caster wheels invented by an ancient civilization, patented approxi-
mately 100 years ago [2], become a powerful tool for transportation machines
and furniture. Typical usage for airplanes was extended for ground vehicles with
wheelchair patent [16].

The purpose of this paper is to present a new type of underactuated ground
mobile robot called Caster Car. The platform consists of a front-driven and steered
wheel, and two rear caster wheels (Figure 1). These passive caster wheels adapt
their orientation to the platform’s velocity direction. The behavior of the platform
is similar to a hovercraft but the caster wheels’ friction extends it with some
new types of motion with uncertainty of the center of rotation’s location. This
system with three degrees of freedom and two inputs is formally called trivially
underactuated. Underactuation property limits the range of system accelerations,
even with unbounded inputs [6]. As presented in [11] this type of underactuated
system is vulnerable to chaotic behaviors in case of trajectory tracking with
limited direction of input force.

Figure 1: Caster Car

Traditional vehicles have front-driven and rotating wheels and rear fixed-
axis wheels. This causes a limitation of the minimum value of the radius of
trajectory curvature when assuming motion without a slip (classical first-order
nonholonomic constraints). Second-order nonholonomic constraints (underac-
tuation) limit accelerations without the limitation of velocities directions, thus
control of the Caster Car becomes more flexible and challenging.

2. Caster Car overview

Caster Car presented in Figure 1 consists of a chassis with two rear caster
wheels and one front-driven and steered wheel (alternatively two front wheels
are possible to prevent overturning). In the case of rolling without a slip, a front-
driven wheel and rear passive wheels of the Caster Car are oriented to satisfy the
instantaneous velocity scheme of a chassis. Possible types of steady motion of
the system are shown in Figure 2:

a) linear motion in a direction parallel to the platform’s longitudinal axis of
symmetry,



CASTER CAR - UNDERACTUATED GROUND VEHICLE WITH CASTER WHEELS 93

a) : b) . ©)

d) 9

e

'y
=
- )
R
i% ,/ \\
|

Figure 2: Possible steady motions of the Caster Car

b) skew linear motion — possible due to torque of friction presence in caster
wheel pivot,

¢) backward linear motion,
d) circular motion with a relatively large radius of curvature,
e) circular motion with a relatively small radius of curvature,

f) backward circular motion — possible with a relatively small or large radius
of curvature.

Dry friction presence in caster wheel pivots causes uncertainty in system’s
dynamic behavior. The temporary position of a center of rotation is not directly
related to a steering angle of the front wheel, but also depends on a ‘history of
motion’. It has been noticed during experiments that underactuated behaviors of
the Caster Car moving backward are not as strong as in forward motion (pushing
force causes torque on the caster in the same direction as intended by a steered
wheel).

Complicated dynamical behaviors of the Caster Car could be mastered or
reduced with some construction modifications (not analyzed here):

a) brakes for the casters — used to keep casters’ direction fixed or to increase
friction,
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b) torsional springs for the casters — generates an additional forces attract-
ing to a certain caster position, therefore they reduce variation of casters’
directions,

¢) cam follower mechanism — generates centering torque, patented [3,4].

3. Mathematical modeling of the Caster Car
3.1. Hovercraft model

The simplest method to describe the dynamics of the Caster Car is to use
hovercraft mathematical model. The model described by [9] consist of a planar
rigid body moving on a plane (Figure 3). The object has mass m and inertia I¢
respect to the center of mass (point C). Its configuration is described by x(¢) and
y(t) position coordinates and angle ¢(¢) between the object symmetry line and X
axis of the global coordinate system O xy. The vector of force F acts on the object
in a point away from the center of mass by distance a and angle 5. Constant drag
coefficients ¢ and c, are used for linear and angular motion, respectively. The
system’s equations of motion are as follows

mi (1) + ci(t) = |F(1)| cos (¢(2) + B()), (1)
m3 (1) + cy(t) = |F (1) sin (p(1) + B(1)), 2)
I.$(1) + cop(t) = alF (1)] sin (B(1)). 3)
8 Ft)
o) B(t)
e ;
ot m. 1. Y X

Figure 3: Hovercraft model scheme

The presented model was successfully used to control hovercrafts, rockets, and
ships in trajectory tracking tasks. The computed torque technique, backstepping
algorithm, passive velocity field method, and sliding mode control have been
used in selective control tracking tasks. Many control problems are related to the
input coupling effect visible in equations (1)—(3) — both inputs, F (¢) and B(¢),
presents in more than one equation. The new method of full configuration control
with pseudoinverse operation was presented in [10].
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3.2. Advanced model

The second proposed method of the Caster Car dynamic description is based
on the geometry scheme presented in Figure 4, forces/torques description pre-
sented in Figure 5 and equations as follows

mi =T; cos (¢ + B) — T, sin (¢ + B) + Ti2, — cX, 4)
my =T;sin (¢ + B) + T, cos (¢ + B) + T12y — Y, &)
Icg = a(T;sin B +T,cos B) — cpp + My, + Mp, (6)
Ipd = Mgy —Tirp — ca, (7)
Ii(y1 + @) = =My — Type;, (8)
L;(72+ @) = =M> — Tope;, ©)

where the car chassis is represented by a rigid body with the center of mass in
point C, parameters and variables m, Ic, x, y, ¢, ¢, ¢, defined as in hovercraft
model. A front wheel of radius rr and inertia described by I, forced by a torque
MF,, located at distance a from the center of mass, is rotating with angular

d
velocity w = —C; (where « is the wheel’s self-rotation angle). The front wheel’s

direction angle 8 also points out the orientation of its local coordinate system
X Yr. Angles y1 and 7y, are the orientations of the left and right caster wheels’

Y“

X, k [3\

Vi

Figure 4: Advanced Caster Car model scheme
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. X

Figure 5: Advanced Caster Car external forces and internal reactions

yokes, respectively. Coordinate systems X;1Y;; and X;»Y;, are fixed with casters’
yokes. I; describes caster yoke inertia with respect to its kingpin (main pivot). The
caster wheels’ inertia was omitted. A front wheel-tire friction force is described
by two components:

* alongitudinal component 7; = Qp (u; (1 — e7™#2%) — u3s), where friction is
proportional to the front wheel’s load Q r and related to classically defined
wheel’s slip s with Burckhardt model [8];

* a lateral component 7, = Qpuasgn (vg,), where Coulomb’s dry friction
model was used with parameter 4, and v, describes a temporary normal
component of the wheel’s velocity in contact point.

T2y, T12y, My, and M>,, are reduced forces and torques generated by longitudinal
and perpendicular friction forces between caster wheels and the ground as follows

Tiox = =Tircos(@ +y1) — Tinsin(e + y1) — To cos(¢ + y2)

— Topsin(p +y2), (10)
Tiay = =Ty, sin(@ +y1) + Tin cos(p +y1) = Toy sin(p + y2)

+ Trpcos(@ +7y2), (an
My, = (Tyssinyy — Tipcosyy) f + (Tig cosyr + Thy sinyr)e — My, (12)

My, = (Ty; sinyy — Tp, cosy2) f — (Tp; cosyp + To, sinyz)e — M, . (13)
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Tin = Qcpasgn (Vent), Ton = Qcpasgn (venz), Ty = Qcpssgn (verr) and
T>; = Qcussgn (vey) are lateral friction forces and tangential rolling resistance
forces between caster wheels and the ground, but this contact point lay away from
a caster kingpin at distance e, (caster offset). Q¢ is caster wheel’s load, u4 is a dry
friction coeflicient, us is a rolling resistance coefficient, vy, Vera, Vont and v
are wheel’s velocities in contact points (longitudinal and lateral respectively).
My, = Qcpuesgn (y1) + c7y1 and My = Qcuesgn (y2) + ¢y, are dry+viscous
friction torques in the caster pivots with constant coefficients ug and c7.

The presented mathematical model has six degrees of freedom — its configura-
tion is described by a set of values [x(2), y(t), ¢(t), a(t), y1(t), y2(¢)] and just
two inputs: B(¢) and Mg, (t). Thus system is trivially underactuated, but inputs
are coupled.

4. Dynamic behaviors of the Caster Car

4.1. Parameters of the mathematical models

In this section, exemplary behaviors will be compared for three models:
A) the Caster Car with blocked casters’ yokes (advanced model used),
B) the Caster Car with freely moving casters (advanced model used),

C) hovercraft model.

Parameters of the mathematical model are presented in Table 1 and were chosen
as follows:

a) mass and geometrical properties refer to a real experimental mobile platform
— a simple plastic plane with solid-rubber wheels with ball bearings, driven
by a DC motor with a servomotor and controlled over Bluetooth, mass
moment of inertia measured with a torsional pendulum,

b) front wheel’s longitudinal friction force parameters (Burckhardt model —
U1, M2, pu3) were chosen to approximate the standard tire/road adhesion
coeflicient graph [13],

c) front wheel’s lateral dry friction coefficient parameter w4 was arbitrarily
chosen high to model a hard rubber wheel operating with very small side
slip angles,

d) caster wheels’ dry friction (lateral component) parameter w4 was arbitrarily
chosen to model hard rubber/ground contact,

e) caster wheels’ dry friction (longitudinal component) parameter us was
assumed to model only small rolling resistance (caster wheel self-rotation
omitted),
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f) Coulomb’s dry friction torque in caster pivot — parameter ug was chosen to
stabilize numerical simulation,

g) viscous friction torque in caster pivot coeflicient ¢7 was chosen to observe
good behavior during real-time simulation,

h) main chassis viscous damping in linear motion ¢ was identified by speed-up
and slow-down experiments (comparison of velocity charts),

1) angular motion damping c, was assumed to stabilize angular motion.

One can notice that for the hovercraft model, the magnitude of input force
F'(t) is limited and also its directing angle 5(¢) is limited to the symmetric region.
This cause only forward motion to be possible.

Table 1: Parameters of the mathematical model used to simulate the Caster Car behavior

Common parameters for all models
m=1.7kg, Ic=0.003kgm? a=89mm, ¢=0.6Nsm,
¢y =0.01 N-ms, co=0.001 N-m-s, B(t) € [-60°, 60°]

Parameters for the Caster Car model

f=110mm, e =64.5mm, e, =185 mm, rr =25.8 mm,

Ir =107 kgm?, Iy =10"7 kgm?, py=ps=1.1, pp =20, u3=0.2,
us =1073, ug=5-10"m, c¢7=10"° N-m-s/rad, M, =0.03 N-m
Parameter for the Hovercraft model

|F(1)] < 12N

4.2. Motion range maps

With numerical simulations, regions of possible model positions were de-
scribed for analyzed models with arbitrarily chosen time periods and zero initial
conditions (Figure 6). The motion range map for the Caster Car with blocked
casters’ yokes (A) is limited by the first-order nonholonomic constraints with
steering angle saturation (Figure 6a). The corresponding map for the Caster Car
with freely moving casters’ yokes (B) comes from its underactuated properties
— second-order nonholonomic constraints (Figure 6b). The motion range map
for the hovercraft model (C) is limited by the steering angle saturation, system’s
inertia, and environment viscosity according to its underactuated properties (Fig-
ure 6¢). All maps are limited by the motion time in relation to the maximum
available force and model mass.

The region of possible positions of the Caster Car with freely moving yokes is
different than in the corresponding model with blocked yokes — some new regions
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Figure 6: Regions of possible model position with motion limited to 1 s (dashed line) and 2 s
(continuous line): a) Caster Car with blocked casters’ yokes, b) Caster Car with freely moving
casters’ yokes, c¢) hovercraft model

of configuration are accessible. That gives possibility to extend the agility of a
classical nonholonomic 4-wheels mobile platforms by expanding them with caster
wheels. The most extensive motion range for the hovercraft model comes from
its purely inertial behavior without friction to the ground. The lack of friction
related to caster wheels for the hovercraft model caused its higher range with
respect to the Caster Car model.

5. Control of the Caster Car

In this section, exemplary tracking task for the Caster Car will be presented.
Achieved trajectories will be compared for three models: A, B, and C. Parameters



100

S. KORCZAK

of the mathematical model stay unchanged. The trajectory (Figure 7) consist of
14 parts (lines, arcs, eight-shape, point). This parametric trajectory is described
with two constants: vy and [, as shown in Table 2, where x,(¢) and y,(¢) describe
position in Cartesian coordinate system and ¢ () describes orientation tangential

Table 2: Parametric description of the desired trajectory. Time is described separately for each

part
part xa(t) ya(t) wal(t)
1 vol 0 0
. Vol Vo
2 2 — 2l —2 — —
81y + 2l sin (21 lo — 21y cos (210 ) Zlot
3 8l — tvg 41y 3
. [ vof vot Vo
4 lo —lysin | — S5ly — lycos | — 3m — —t
l lo lo
5 Ly + tvg 6ly 2n
6 21y 6ly + tvg 2.5m
7 21y 111y — tvg 1.57
8 2l + tvo 8l 2n
9 41, 8lp — tvg 1.57
10 4ly + tvg 6l 2m
11 6ly + tvo 6ly + tvg 2.25n
Vo
-2.2 —t
3r 6 cos (21
. [vot . [Vvot 3vp
12 lo+1 — Iy + 21, — -0.24 —t
8lp + gsm(l 8ly + OSIH(ZZO) 0 COS(ZZO)
5V0
0.16 cos | —t
+ cos ( 2 )
13 8y + tvy 8/ 2
14 111y 81y 2n




CASTER CAR - UNDERACTUATED GROUND VEHICLE WITH CASTER WHEELS 101

to the trajectory. Simulations for all models were made with trajectory parameters
vo=0.2m-s"!and lp =0.2 m.

200

15/
E
=10}

0.5} -

0.0}

0.0 05 70 15 2.0
X [m]

Figure 7: Desired trajectory for [p = 0.2 m

5.1. Selective control with PD controller

The center of mass position of the Caster Car model could be controlled with
classical proportional-derivative feedback. Let’s define tracking problem with a
desired planar trajectory described by position functions x,(¢) and y,(¢). Control
errors are then defined as e, (f) = x4(f) — x(¢) and e, (¢) = y4(¢) — y(¢). Basic
control functions are then as follows

(1) = kp (2a(1) = %(2)) + kp (xa(1) - x(2)) (14)
7y(1) = kp (ya(t) = y(1)) + kp (ya(1) = y(1)) . (15)

For the hovercraft model, it gives inputs

F(r) =\t + 72, (16)

B(1) = Arg (Tx +Tyx/—_1) — (D). (17)

For the Caster Car model the front wheel’s direction angle () should be con-
trolled with function (17) and front wheel’s torque should be calculated with
relation to (16)

Mpn(t) = F()rp . (18)
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5.2. Full state control with computed torque technique and pseudoinverse

Position and rotation of the Caster Car model could be controlled using full
state control method based on the computed torque technique with the pseu-
doinverse operation and proportional-derivative feedback presented in [9]. Let’s
define the tracking problem of desired trajectory described by x,(¢) and y,(?),
with desired tangential orientation ¢, () with respect to trajectory. Control errors
are then defined as

e(t) =d(1) - (1), (19)

where
d = [xa(t) ya()) ea(D]", (20)
g=[x(0) y@) o(n)]". 1)

Hovercraft equations (1)—(3) could be described in matrix form

G(t) =f +fou(n), (22)
where
——EX(I)-
m
=30, (23)
L)
[ sinp(f) cos ()]
m m
f,= cos ¢(t) sing(r) (24)
2 - - ,
£ 0
Ic
[ f(2) sin B(1)

(25)

Lf(t)cos B(1)]
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Advanced Caster Car model can be described in the form of equation (22) with
components

(Th2x — cx(t))/m
(Th2y — cy(t))/m
_ (Mlcp + M2<p - Cnp‘:b(t))/lc
D2 e+ cod 1 )
(Tiper — M)/ + ¢

(Toner — M) /1 + ¢

[ Hany  faz 0 0]
fHeny ey 0 0
aTt/IC aTn/Ic 0 0

=]y 0 01/Ip| @D
0 0 0 O
i 0 0 0 O ]

[ sin B(t)
Yy cos(,)B(t) ’ 28)

_MFn(t)

where

foary == (Tysing(t) + T, cos (1)) /m, (29)
foa2) = (Tycos (1) = Ty sin (1)) /m, (30)
frery = (Trcos (1) + T, sinp(t)) /m, (31)
fa22) = (Ty sinp(t) — T, cos ¢(2)) /m, (32)

and configuration matrix defined as

g=[x(t) y@) ¢(t) a(t) y1(t) y(0)]". (33)

Usage of this representation for the computed torque method is impossible
because of indirect relation between input torque M, and friction force 7; (de-
sired wheel’s rotation function () can’t be proposed). Assuming friction force
T; much greater than 7,,, neglecting T2y, T12y, M1, and M, gives the possibility
to approximate the Advanced Caster Car model with the hovercraft one.
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Control functions from computed torque technique with PD feedback are
proposed as

2] =5 (@(1) ~ £, + Kpé(r) + Kpe(1)) (34)

where Kp = diag (kp, kp, k,p) and Kp = diag (kp, kp, k,p) are diagonal matri-
ces of positive coefficients, f; is a Moore-Penrose pseudoinverse of f,, that can
be calculated with formula [5]

-1
fi=lim (Ff, - 1) f1. (35)

Hovercraft model representation (equation (22)) was used to fill the computed
torque part of control functions in the equation (34). Control functions (34) then
should be substituted into (16)—(18) for both models’ input calculations.

5.3. Numerical simulations

For presented three models of the Caster Car (A, B, and C), trajectory tracking
task was simulated for the proposed test trajectory and two control techniques. For
selective control method k p and k p parameters were chosen to find the minimum
sum of squares of position tracking errors, separately for models A, B, and C. Full
state control for all models was prepared to find the minimum sum of squares of
position and rotation tracking errors by tuning kp, kp, k,p and k,p parameters.
Simulations were performed with zero initial conditions except y(r = 0) = 0.1 m.

Figures 8-9 presents simulation results of selective and full state control for
the Caster Car model with blocked casters (A). Position control presents very
good results of trajectory tracking with only one intense deviation from trajectory
during 180 deg returning (Figure 8a). Full state control algorithm keeps position
and rotation stable during whole motion, reducing deviation of angle errors in
cost of position errors (Fig. 9b).

Figures 10-11 presents simulation results of selective and full state control
for the Caster Car model with freely moving casters (B). Position control presents
very good results of trajectory tracking with only small deviations from trajectory
around 180 deg returning (Figure 10a). Full state control algorithm keeps position
and rotation stable during whole motion, reducing deviation of angle errors in
cost of position errors (Figure 11b).

Figures 14-15 presents simulation results of selective and full state control
for the hovercraft model (C). Position control presents good results of trajectory
tracking with visible deviations from trajectory starting from the first 90 deg
turning point around 38 second (Figure 14a). Full state control algorithm keeps
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casters (B) and kp = 45.617, kp = 20.402: a) desired (green) and achieved (black) trajectories,
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Figure 11: Simulation results of full state control for the Caster Car model with freely moving
casters (B) and kp = 5.007, kp = 5.148, k,p = 4.861, k,p = 4.924: a) desired (green) and
achieved (black) trajectories, b) position and rotation errors, ¢) control signals
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Figure 14: Simulation results of selective control for the hovercraft model (C) with kp = 8.685,

kp =
¢) control signals

10.0: a) desired (green) and achieved (black) trajectories, b) position and rotation errors,
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position and rotation stable during whole motion, reducing deviation of angle
errors in cost of huge position errors (Figure 15b).

All presented results of optimized selective control (Figures 8, 10, 14) give
acceptable good results of position tracking and stable rotation errors with visible
360 degrees jumps. Results of optimized full state control (Figures 9, 11, 15) give
stable behavior of position and rotation errors with more visible deviations. Final
comparison of simulation results in terms of values of errors is presented in
Table 3 (position error from the initial condition was neglected in calculations
of e, maximum). Values of maximum and root mean square of errors confirm
the effect of full state control in relation to selective control — better shape of
orientation error together with worse position errors. Total error values proofs,
that the Caster Car model with free moving caster has better ability to track
presented trajectory than same with blocked casters (for both selective and full
state control).

Table 3: Comparison of errors from simulation results for selective and full state methods with
all models

Error Caster Car blocked (A) Caster Car free (B) Hovercraft (C)
name selective full selective full selective full
€xrms 0.0302 0.0405 0.0296 0.1007 0.0328 0.2104
€yrms 0.0748 0.0507 0.0410 0.1011 0.0344 0.1976

€orms (4.6205) 1.0013 (4.6472) | 0.9500 | (16.357) | 2.0222
max ey 0.0452 0.3008 0.1170 0.1886 0.0980 0.7813

maxe, | 0.0344 0.0411 0.1669 | 0.2362 | 0.0606 | 0.7761
maxe, | (7.8788) 3.1421 (7.5677) | 2.6963 | (32.434) | 7.2852
total 255.08 3173.0 159.93 | 3037.8 | 150.395 | 6459.1

6. Conclusions

The presented Caster Car model can be an interesting alternative for mobile
platforms that connect dynamic properties of hovercrafts and classical 4-wheeled
cars. Its sliding properties come from underactuated dynamics and give a pos-
sibility to dynamically change the system’s turning radius up to small values.
Various regions of possible positions for three given models presented in the
Section 4.2 proofs, that the Caster Car model with free casters has better dynamic
accessibility than same with blocked casters, and worse accessibility than the
hovercraft model.
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The stability of uncontrolled degrees of freedom makes traditional selective
control risky for the underactuated Caster Car model. Full state control with
computed torque technique, PD feedback, and pseudoinverse gives the ability to
suppress unstable behaviors of uncontrolled variables but at the cost of the overall
effect. All presented models were successfully controlled during the tracking task
with demanding trajectory, including magnitude and direction limitations of input
force.

Hovercraft model representation was used to fill the computed torque part of
control functions during all simulations — that reduced calculation cost and gives
the ability to use the presented algorithm for online calculations of real objects.

The requirement of the full state control method strongly depends on practical
realization. Uncontrolled roll and pitch angles of flying machines can result in
loss of lift force. Uncontrolled orientation of autonomous vehicles can cause
unpleasant feelings for passengers. Control of the orientation is also important in
situations of limited space (narrow roads, docking stations, warehouses).

Future research related to the Caster Car model should be focused on path-
tracking tasks, online control performance, and mathematical proofs of control
loop stability. It can also include a gain scheduling algorithm to switch PD
controller parameters depending on the importance of state errors.

Nomenclature

Variable name Description
m whole platform mass [kg]
Ic mass moment of inertia respect to the center of mass (point C) [kg-m?]
x(1), y(r) platform’s center of mass position coordinates [m]
(1) platform’s self rotation angle [rad]
F () vector of force [N]
a offset of force position wrt. center of mass [m]
c constant drag coefficient for linear motion [N---m™']
Co constant drag coefficient for angular motion [N-m-s-rad~']
B angle of force direction wrt. center line [rad]
re radius of front wheel [m]
Ir mass moment of inertia of front wheel [kg-mz]
a(t) angle of rotation of the front wheel [rad]
w(t) front wheel’s angular velocity [rad-s~']
Cq front wheel’s viscous friction coefficient [N-m-s-rad™!]
Mpg, front wheel’s driving torque [N-m]

Y1, V2 angles of rotation of left and right caster wheels’ yokes [rad]
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Variable name Description
It caster yoke mass moment of inertia with respect to its kingpin [kg-m?]
s wheel’s slip [-]
Or,0Qc load of front and caster wheels [N]
M1, M2, U3, da, us  friction coefficients for wheel/ground contact models [—]
HUes €7 coefficients for caster pivot friction [m], [N-m-s-rad™1]
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