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Nonlocal controllability of mild solutions for neutral
evolution equations with state-dependent delay
in Fréchet spaces

Chahrazed BOUDEFLA © and Selma BAGHLI-BENDIMERAD

In this paper, we prove the controllability of mild solutions of neutral functional evolu-
tion equations with state-dependent delay and nonlocal conditions. We establish the non local
controllability of mild solutions under certain conditions by combining Avramescu’s nonlinear
alternative for the sum of compact and contraction operators in Fréchet spaces with semigroup
theory.
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1. Introduction

In this paper, we study the controllability of mild solutions defined on the
semi-infinite real interval J := [0, +o0), for a class of first order neutral functional
evolution equations with infinite state-dependent delay and nonlocal conditions
in a real Banach space (E, | - |).

In Section 3, we consider the following nonlocal neutral functional differential
evolution equation

% [y(@) = 8(t, ypuy) | = A@)Y(1) = Cu(t) + F(t, Ypuy), a.e.t€d, (1)
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y(1) = ¢(t) = hi(y), 1€ (=00,0], 2)

where B is an abstract phase space which will be defined later; f, g: /X8 — E,
peB,p: JXxB — Rand h,: B — E are given functions; the control function
u(-) is given in L2(J , E) is the Banach space of admissible control function; C
is a bounded linear operator from E into E and {A(¢)};c; is a family of linear
closed (not necessarily bounded) operators from E into E which generates an
evolution system of operators {U(z, 5) }(,5)ejxs for s < t.

For any continuous function y and any ¢ € J, we denote by y, the element of
B defined by

v(0) =y(t+6) foro <O0.

Here y;(-) represents the history of the state from time # < O up to the present
time 7. We assume that the histories y, belong to 8.

Then in Section 4, we present an example to illustrate the previous abstract
theory obtained.

Partial and neutral functional differential equations are used in the evolution
modelling of physical, biological and economic systems while describing their
behavior over a range of time. The response of these systems depends not only
on their current state but also on their past history.

In recent decades, many authors have applied semigroup theory, fixed point
arguments, degree theory and non-compactness measures to study the existence
and uniqueness of mild, strong and classical solutions of semilinear functional
differential equations. See the books of Ahmed [3], Pazy [28] and Wu [30] for
more details on these theories. Furthermore, the concept of phase space 8 plays an
important role in both qualitative and quantitative theoretical studies of infinite
delays. A common choice is a semi-norm space satisfying the corresponding
axioms, introduced by Hale and Kato in [23].

Numerous studies have been conducted on the controllability of linear and
nonlinear systems represented by ODEs in a finite-dimensional space. Many
authors extend the concept of controllability to infinite dimensional systems in
a Banach space with unbounded operators. The controllability problems can be
transformed into fixed point problems, as demonstrated by Quinn and Carmichael
in [29]. Fu examined the controllability of two types of abstract neutral functional
differential equations with unbounded delay in [21,22]. Benchohra et al. inves-
tigated several classes of functional differential equations and inclusions using
fixed point arguments and provided some controllability results in [7].

Baghli et al. examined the existence, uniqueness, and controllability of mild
solutions for several evolution problems with finite and infinite delay in [2,10-15].
However, in recent years, complex cases have arisen in modelling where the
delay depends on an unknown function. These equations are often referred to
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as state-dependent delay equations. We refer readers to the work of Abada et
al. [1] and Baghli et al. in [6,9, 16]. More recently, Baghli and Mebarki proved
the existence of mild solutions for the class of neutral type integro-differential
evolution inclusions constraints with infinite state-dependent delay in [27].

The concept of nonlocal conditions was introduced by Byszewski to extend the
classical constraint-based problems in the papers [18, 19]. Nonlocal conditions
can be used to describe certain physical phenomena. Nonlocal conditions are
used in physics because they are more efficient than classical initial conditions.
Furthermore, due to the accuracy of nonlocal conditions, they are largely involved
in the boundary value problems. Several papers have studied the existence of
solutions for differential equations with nonlocal conditions over the last few
years. We refer the reader to the papers [17,26].

We will extend in this paper the previous controllability results obtained by
Baghli et al. precisely in [6] to our nonlocal neutral problem (1)-(2). We use
Avramescu’s nonlinear alternative [8] in combination with semigroup theory
[3, 28] to establish sufficient conditions for the existence of mild controllable
solutions of the sum of compact operators and contraction maps in Fréchet
spaces.

2. Preliminaries

In this section, we introduce notations, definitions and theorems which are
used throughout this paper.

Let C(J, E) be the continuous functions space from J into E and B(E) be the
all bounded linear operators space from E into E, with the norm

INllBey = sup{IN ()| : |yl = 1}.

A measurable function y: J — E is Bochner integrable if and only if |y]| is
Lebesgue integrable. Let L' (J, E) be the Banach space of measurable functions
y: J — E which are Bochner integrable normed by

+00
Iyll,: = / y(0)|dr.
0

Let X be a Fréchet space with a semi-norms family {|| - ||, }nexr. We assume
that the semi-norms family {|| - ||,,} verifies:

llelle < llxll2 < llxlls < -+~ foreveryx € X.

LetY c X, we say that Y is bounded if for every n € N, there exists M, >0

such that .
Ivll, <M, forallyeY.
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In what follows, we assume that {A(7)};>0 is a closed densely defined linear
unbounded operators family on the Banach space E and with domain D (A(t))
independent of ¢.

Definition 1. A family {U(t,5)}u5ean of bounded linear operators
U(t,s):J xJ—E where (t,s) € A := {(t,s) € J xJ:s < t} is called an
evolution system if the following properties are satisfied:

1. U(t,t) = I where I is the identity operator in E,
2. U(t,s)U(s,7) =U(t,7) fort < s < t,

3. U(t,s) € B(E), where for every (t,s) € A and for each y € E, the mapping
(t,5) = Ul(t, s)y is continuous.

In this paper we use the axiomatic definition of the phase space 8 introduced
by Hale and Kato in [23] and follow the terminology used by Hino, Murakami
and Naito in [25]. Thus, B will be a linear space of functions mapping (—oo, 0]
into E endowed with a seminorm || - ||g, and satisfying the following axioms:

(Ay) If y: (=o00,b) — E, b > 0, is continuous on [0, b] and yy € B, then for
every t € [0, b) the following conditions hold:
(i) yi € B;
(if) There exists a positive constant D such that |y(¢)| < D||y;||s;
(iii) There exist two functions K (), M(+:): R* — R* independent of y ()
with K continuous and M locally bounded such that:

1y:lls < K(2) sup{|y(s)[: 0 <5 <1} + M(1)]lyoll 5.

Denote K, = sup{K(t): t € [0,b]} and M}, = sup{M (¢): t € [0, b]}.
(A;) For the function y(-) in (Ay), y; is a B-valued continuous function on [0, b].

(A3) The space B is complete.

Remark 1.
1. Condition (ii) in (Ay) is equivalent to |¢(0)| < D||¢||s for every ¢ € B.

2. Since || - || g is a seminorm, two elements ¢, € B can check ||¢p —¢||lg =0
without necessarily ¢(0) = (6) for all 6 < 0.

3. From the equivalence in the first remark, we can see that for all ¢, € B
such that ||¢ — ¥ ||g = 0. This implies necessarily that $(0) = (0).

Here are some examples of phase spaces. For more details we refer the reader
to the book by Hino et al. [25].
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Example 1. Let
BC denote the bounded continuous functions space defined from R™ to E;

BUC denote the bounded uniformly continuous functions space defined from R~
to E;

C® = {¢ € BC: glim ¢(6) exist in E} ;

C? :={¢peBC: Olim #(0) =0}, endowed with the uniform norm

|1l = sup |p(6)].
<0
We have that the spaces BUC, C* and C° satisfy assumptions (A;)—(A3). How-
ever, BC satisfy axioms (Aj), (A3) not axiom (A3).

Set
R(p™) ={p(s.¢): (5,¢) € IX B, p(s,¢) <0}

We always assume that p: J X B — R is continuous. Additionally, we intro-
duce the following hypothesis:
(Hy) The function t — ¢, is continuous from R(p~) into B and there exists a
continuous and bounded function £?: R(p~) — (0, +c0) such that

Igells < LP@)lI¢lls  forevery 1 € R(p7).
Remark 2. Continuous and bounded functions verified frequently the condition
(Hy) (see [25]).
Lemma 1. [24]Ify: (—oco,b] — E is a function such that yo = ¢ € B, then
1yslls < (My+L?)|1¢ll5 + Kp sup {|y(0)]; 6 € [0, max{0,s}]}, s € R(p™)UJ

where L9 = sup L%(1).
teR(p™)

Proposition 1. [6] From (Hg), (A1) and Lemma 1, for all t € [0,n] and n € N
we have

1¥or30ll8 < Kaly ()] + (My + L) || ¢l 5.
Definition 2. A function f: J X B — E is said to be an Llloc-Carathéodory
function if it satisfies:
(i) for eacht € J the function f(t,-): B — E is continuous;
(ii) for each y € B the function f(-,y): J — E is measurable;

(iii) for every positive integer q there exists ¥, € Llloc(‘] ,R*) such that

lf(t,y)| <94(t) forall|lyllg < q and almost eacht € J.
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Definition 3. A function f: X — X is said to be a contraction if for each n € N
there exists k,, € (0, 1) such that:

If(xX) = fFO)ln < kullx = ylln forallx,y € X.

Now we present the nonlinear alternative used in this paper given by
Avramescu in Fréchet spaces which is an extension of the alternative provided in
Banach spaces by Burton and Kirk. We refer to [8] and the references therein.

Theorem 1. Nonlinear Alternative of Avramescu
Let X be a Fréchet space and let A, B: X — X be two operators satisfying:

(1) A is a compact operator,
(2) B is a contraction.
Then either one of the following statements holds:
(C1) The operator A + B has a fixed point;

(C2) The set {x € X, x = AA(x) + AB (3)} is unbounded for some A € (0, 1).

3. Semilinear neutral evolution equations

We present in this section our main controllability results for problem (1)—(2).
Before stating and proving this result, we give the definition of mild solutions for
the nonlocal problem (1)—(2) and we define the concept of controllability for that
problem.

Definition 4. We say that the continuous function y(-): R — E is a mild solution
of (=) ify(t) = ¢(t) — hy(y) forall t € (—o0,0] and y satisfies the following
integral equation

y(1) =U(1,0) [¢(0) = ho(y) = g(0, )] +&(1, Yo(s,y,)

t t

+/U(t,s)A(s)g(s,yp(x,ys))ds+/U(t,s)Cu(s)ds

0 0
t
+/ U(t,s)f(8,Yp(s,y,))ds foreach t € J. 3)
0

Definition 5. The neutral evolution problem (1)—(2) is said to be nonlocally
controllable if for every initial function ¢ € B, y* € E and n € N, there is some
control u € L*([0,n], E) such that the mild solution y(-) of (1)~(2) satisfies the
terminal condition

y(n) + h,(y) = y*. 4)
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Let us introduce the following hypotheses which are assumed hereafter:

(H1) U(t,s)is compact for t—s > 0 and there exist two constants M>1,My>0
such that

WU(t,5)lBE) < M for every (¢,s) € A
and

AT (O lpE) < Mo forallt e J.

(H2) For all R > 0, there exists [z € L! (J,R*) such that

loc
|f(t,u) = (&, )] <Ir@)]lu—vls
for all u,v € 8 with |lu|lg < R and ||v||g < R.
(H3) For each n € N, the linear operator W: L?([0,n], E) — E is defined by
Wu = / U(n,s)Cu(s)ds,

0

has a pseudo invertible operator W~ which takes values in
L%([0,n],E)/ker W and there exists positive constants M and M; such
that

ICIlgey < M and W= < M.
(H4) For each n € N, there exists a constant o, > 0 such that
|he(u) = h (V)] < ollu = Vg

for all u,v € B with |Ju|lg < nand ||v]|g < n.

(H6) The function g is completely continuous and for any bounded set 0 ¢ B
the set {t — g(t,yp(1,y,)): ¥ € Q} is equicontinuous in C(J, E).

Remark 3.
1. For the construction of W1, see the paper of Quinn and Carmichael [29].
2. By condition (H2), we deduce that

(H2)" There exists a function p € Llloc(J ,R*) and a continuous nondecreas-
ing function  : R* — (0, +o0) and such that

|l f(t,u)| < p(O)Y (|lullg) fora.e t €Jandeachu € B.

3. We get from condition (H4) that
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(H4)" There exists 0, > 0 such that
|y (u)] < 0

foreacht € J and u € B with ||u||g < n.

4. (HS) There exists a constant 0 < L < such that

MoK,
|A(t)g(t,d)| < L(||pllg +1) forallt € Jand ¢ € B.
From (Hy) and Proposition 1, we state the following property:

Corollary 1. For any function y: (—oco,b] — E such that y(t) = ¢(t) — h,(y)
fort <0, then for each t € [0,n] and n € N we have

1Yo lls < Kaly (O] + My + £3) (1815 + 52,

forp € R(p~), and L;’f = sup L;’f(t) with .Ef(t) = L0~
1eR(p”)
Consider the following space

Biw ={y: R — E: y||o, continuous for 7 > 0 and y, € B},

where y|[o 7] is the restriction of y to the real compact interval [0, 77].
Let us fix 7 > 1. For every n € N, we define in B, the semi-norms by:

Iyll = sup{e™ ™|y (0)]: 1 € [0,n]}

where L} (1) = fot I,(s)ds , L,(t) = Knﬂln(t) and [, is the function from (H2).
Then B, is a Fréchet space with those family of semi-norms {|| - ||, }nen-

Theorem 2. Assume that (Hs) and (H1)—-(H6) hold and moreover for each
n € N¥, there exists a constant M)y > 0 such that

M*
——— 1" > 1, (5)
~ MMMin +

an + KnM —————— [My +¢ (M)] (|1l

1-MyLK,
with {(t) = max(L, p(t)) and
—~ —~ - K, &,
@, = (Kan) + My + 1;2) 6|5 + (K,,M + My + L,‘f) Gy b —nEn__
1-MyLK,

where

&n=¢n (y*’ b, 5’,1)
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= [(1\2+ 1)HOL+MLn] (AZM‘M]H 1) +MMMn (1 +M0LK,1) |y*]

+ [(M + M, + LZ) MOL(MMMW + 1) + 1\71)(1\711\71\71?1 +MOLKn)] 915

+ [(Mn + Lff) ML (1\711\71\7111 + 1) +MMMin (]\7[ +1 +M0LK,1)

+ MMOLKn]3n .

Then the neutral functional evolution equation with infinite state-dependent delay
(1)=(2) is nonlocally controllable on R.

Proof. We transform the problem (1)—(2) into a fixed-point problem. For that, let
us consider the operator N: B, — Bi defined by

N(y)(1) =

¢(1) = hi(y), if 7<0;
U(t,0) [¢(0) — ho(y) — g(0,9)] + g (2, yp(s,y,))
+/U(t, $)A(5)g (s, Yp(s,ys))ds +/U(t, s)Cuy(s)ds

0 0
t

+/U(t’ S)f(s»yp(s,ys))dsa ifteJ.
0

Let’s first introduce the following proposition:

Proposition 2. From the inequalities (3) and (4) and the hypotheses (H1), (H2)',
(H3), (H4)" and (HS), for all t € [0,n] and n € N we have

luy (1)] <

M, [|y*| + M(D +MoL)||llg + (M + 1)(MoL +G) + MLn

n
+MJ%UMm%mgH%ML/HMmmMMT
0

+%M/mwmmmﬂmw. ©)
0
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Proof. Using hypothesis (H3), for an arbitrary function y(-), we define the
control

uy(1) =W ly* — ha(y) = U(n,0)(¢(0) — ho(y) — g(0,¢)) — g(n, yp(ny,))

- / U, 5)A(5)8 (5. Yp(sy)ds — / U(n,5) £ (5. yps)ds | (1.

0 0

By the hypotheses (H1), (H3), (H4)’, (HS5) and using Remark 1, we get

Juy (D] < 1IW g0 [ 1"+ Tha (D] + 11U (2, 0) 1 3&) (18(0)] + 1o ()] +12(0, 6)1)

+le(n o) + / U Dla JA@ 2Ty d

/ |U(n, T)”B(E) |f(T Yo(r, yT))| dT]

< My [|y |+ G+ 7 (DIl + 5+ 147 (0)lacr) 14(0)(0, )

1A s AW (1 Yy )| + 7 / A()g(t, ypran)| dr
0

n
+M / |f (T, Ypryn)| dT
0

< My||y*| 4G+ M(D||¢llg+T 0+ MoL(||¢]lz+ 1)) + MoL(|ly p(ny, I3 +1)

il / LUlypienlls +1)d7 + 51 / £ (e ypirn)| d

< M, [ly |+ M (D + MoL)|| 6|5 + (M + 1) (MoL +7) + MLn]

+MIMOL”yp(ny,,)”B"‘MlML/”yp(TyT)||BdT+M1M/|f(T yp(TyT))
0 0

Applying (H2)’, we get

juy (O] < 41 [1y*|+ $1(D + MoL) gz + (M + 1) (MoL + ) + MLn|
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n
+M1MOL”)’p(n,yn)”B +M1ML/||yp(T,yr)”BdT
0

+%M/mﬂwmmwmmm
0

Using the previous proposition, we will prove that the operator N has a
fixed point y(-) which is the mild solution of the nonlocal neutral evolution
equation (1)—(2).

For ¢ € B, we define the function x(-): R — E by

x(t) =

{mn—hxw, if 1 <0:;
U(t,0)[$(0) = ho(y)], if 1€,

Then xg = ¢ — ho(y).
For each function z € B,s with z(0) = 0, we denote by z the function

defined by
~ 0, if ¢+ <0
z(1) = ,
z(t), if tel.

If y(-) satisfies (3), we can decompose it as y(t) = z(¢) +x(t) for t € J, which
implies y, = z; + x;, for every ¢t € J. The function z(-) satisfies zop = 0 and for
t € J, we get

Z(t) = g(t» Lp(tzp+x,) T xp(t,zt+x,)) - U(t’ O)g(o’ ¢)

t t

+/U(t, S)A(S)8(S, Zp(s,z54x,) + Xp(s,254x,)) A8 +/U(t, §)Clyyy(s5)ds

0 0
t

+/U(l’ ) f (s, Zp(s,75+xs) +xp(s,zs+xs))d5-
0

Let
Bgoo ={z € Byw: 29 = 0}.
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We define for t € J the operators F, G: B, — BY_ by

F(2)(t) = g(t, Zp(t,z0+x,) T xp(t,z,+x,)) - U(t,0)g(0, ¢)

t

. / U1, ) A(5)8(5: Zp (5,000 + Tp(ser) s

0
1

+ [ U(t,s)Cuzx(s)ds
/

and
t

G(z)(1) = /U(l, s)f (s, 2p(s,75+xs) +xp(s,zs+xs))ds-
0

It is obvious that operator N has a fixed point if and only if F' + G has a fixed
point, so it turns to prove that '+ G has a fixed point. The proof will be given in
five steps.

Step 1: F is continuous.
Let (z)xen be a sequence in BY _ such that z; — zin BY_.. By the hypotheses
(H1) and (H3), we get for every t € [0, n]

|F(zi) (1) = F(2)(1)]

< g(t, Zkp(t,zke4xr) T xp(t,zk,+x,)) - g(t, Zp(t,ze+x,) T xp(t,z,+x,))|
t
+ (10l
0
X |A(s)g(s, Zkp(s,zps+Xs) +xp(s,zks+xs)) —A(s)g(s, Zp(s,25+xg) +xp(s,zs+xs))| ds
t
+ [N Il () = s ()]s
0
< |g(l‘, Zkp(t,zee4x,) T xp(t,zk,+x,)) - g(l‘, Zp(tzp4x,) T xp(t,zﬁx,))l

t
+ M/‘A(S)g(s, Zkp(s,zpstxs) T xp(s,zks+xs)) - A(s)g(s, Zp(s,z5+xs)
0

t
+xp(s’zs+xs))‘ds + MM/ |tz 1x(8) — uzx(s)|ds.
0
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Using the hypotheses (H1), (H3) and (H4), we get

|uzk+x(s) — Uzx ()]

< W I3 [lhn(Zk +x) = hy(z+x)[ +[|U(s,0) || eyl ho(zk +x) — ho(z + x)|

+ |g(n, Zhp(nzintin) T Xp(nzen+xn)) — 8 Zp(nzyt,) + xp(n’zn+xn))|
n
+/ U (n, 1) ”B(E) |A(T)g(7’ Zkp(t,zpr+x7) T xp(T,sz+xT))
0
—-A(7)g(T, Zp(t,ze+x7) T xp(‘r,zT+xT))| dr

n
+/ |U(n, T)”B(E) |f(T’ Zkp(T,2kr+%r) +xp(T,sz+xT))
0

_f(T, Zp(T,204%7) + xp(T,Z-r+XT))| dr

< i [mm ~ 2l + Moz 2l

+ |g(n, Zkp(nzin+in) T Xp(nzentn) — 8 (M Zp(nzptry) + xp(n,zn+xn))|

n
+ M/ |A(T)g(7" Zp(r,zetxe) T Xp(rzietre))
0
—-A(7)g(r, Zp(t,ze4x7) T xp(T,ZT+xT))| dr

n
+M/ |f (T2 Zkp(razietnn) F Xp(ragetrn) = F (T2 Zp(rzrars) ¥ Xp(rizeann)| AT
0

Then
|F(z) (1) = F(2)(1)]

< |g(t, Zhp(tzrtxr) T Xp(tzitx) — 8(E Zp(rzax,) + xp(t,Zz+xt))|

t
+ M‘/ |A()8 (S, Zkp(s.ure) + Xpls.2arbes)
0
—A(s)g(s, Zp(s,z5+xs) +xp(s,zs+xs))| ds + MMMn(M + 1)oy||zk — zlls

continued on next page
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continued from previous page

+ MMMI” |g(n, Zkp(nzin+xn) T xp(n,an+xn)) - g(n, Zp(nzn+xn) T xp(n,zn+xn))|
n
+ M*MMn / |A()8 (S, Zkp(s.cusr0) + Xp(s.21vt0,))
0
- A(s)g(s, Zp(s,zs4xs) T -xp(S,Z5+xs))| ds
n
+ MZMMl"/ |f(s, Zhp(s.zpstrs) T Xp(s.2xsx))
0

—f (8 Zp(s.zetny) F Xp(s.zpeny))| A5

From the hypothesis (H6) and since f is continuous, we obtain by the
Lebesgue dominated convergence theorem

|F(zx)(t) = F(2)(1)] > 0 as k — +oo.

Thus F is continuous.

Step 2: F maps bounded sets of BY | into bounded sets.

Indeed, it is enough to show that for any d > 0, there exists a positive constant
¢ such that for each z € By = {z € BY.: ||z|l» < d} one has ||F(2)||, < £.

Let z € B,. By the hypotheses (H1) and (H3), we have for each 7 € [0, n]

|F(2) ()] < 18(2, 2p(t,204x) + Xp(r.ziex) | + U2, 0) 5|80, 9)]

t
+/ U (£, $)|lB(E)|A(S)8 (S, Zp(s,z04xs) + Xp(s,z54x,)) |AS
0

t
+ / 10 s ICllaee litaes ()] ds
0

< ”A_l (t) ”B(E) |A(t)g(t’ Zp(t,z+x;) T xp(l,zt+x,))|

+ M||A1(0)]1 3| A(0)g (0, 8)|

t t
+M / |A($)8(S, Zp(s.24ms) + Xp(s.egtny)) | ds + MM / |tzex (5)]ds.
0 0
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Using (H1), (H5) and the inequality (6), we get
|F(2)(1)] < MoL (|2p(1,z4x,) + Xp(ezexp |8 + 1) + MMoL(|| ¢l + 1)
t

+ M/L (1zp(s,z04xs) + Xp(s,ze4r) |8 + 1) ds
0

t
+ 1\71\7/1\71 Iy*| + M(D + MoL)||pllg + (M + 1) (ML + &) + MLn
0 n
+ MOLHZp(n,znﬂcn) + Xp(n,z0+x0) ls + ML‘/ ||Zp(T,zT+xT) + Xp(1,204x7) lgdr

0

n
+M/p(T)w(||Zp(T,ZT+xT)+xp(T,ZT+xT)||B)dT ds
0

< MoLl|Zp (1205 + Xp(t.2sn) |8 + MMoL| ¢l + (M + 1) MoL
t
+ ML/ ”Zp(S,zﬁxs) +xp(s,zs+xs)||8d5 +MLn
0

+ MMMn [|y*| + M(D +MoL)||dllg + (M + 1)(MoL +G) + MLn

+ MMMIMOL’”‘”Zp(n,znﬂn) + Xp(n,z0+x,) lls

n
+ MZMMILn/ ||Zp(s,zs+xs) +xp(s,zs+xs)||3ds
0

n
SR [ P60 12ptsm) + s )5
0
< [(1\2 + )MoL + MLn] (1\’/}]\71\7111 + 1) + Mﬂﬁln|y*|
+ M [MOL(ZVHVIMW 1)+ Mﬂﬂlnﬂ] blls + MM Min(M + 1),

+ MMM, MOLn”Zp(n,zn+xn) + Xp(n,z0+x,) llg + MOL”Zp(t,zﬁxl) + Xp(t,204x) ls

t n

+ MLﬁlzp(s,Z.v+xs) +xp(s,zs+xs) ||Bds + MZMMI Ln/llzp(s,zs+xs) +xp(s,zs+xs) ”Bds
0 0

n

+ P2V / D ([2p(smrny +Xo(smesnsll8)ds.
0
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Using Corollary 1 and the fact that xg = ¢ — ho(z + x), we get

||Z,0(S,ZS+XS) + xp(svzs"'xs) B

<N zp(s,zg0x0) 18 + 1Xp(5,204000) |8
< Kalz()| + (M + LD |zoll5 + Kalx ()] + (M, + L) [1x0]l8
< Kalz(8)] + KallU (5, 0) | () (16(0)] + [ho(z +x)])

+ (M, + L)) (¢l +T)
< Kulz(s)| + KoM (D|gllg +5) + (M + LD) (6115 +5)
< Kalz(9)| + (K,MD + My + L)) |8l 8

+ (K,M + M, + Lf)&n .
Set
Cp = (KnMZ) + M, + L;f) ol + (Knﬂ + M, + LZ) Oy .

Then we obtain

||Zp(s,zs+xs) +xP(SaZs+Xs)| B < Knlz(s)l +Cp. (7)
Since z € By, then we have
2p(s.20tx) + Xp(s.20t00) ||l g < Knd + € 1= 6 (8)

Note that we have

||Zp(n,zn+xn) T Xp(nzn+xn) || g

< Kaly(m)| + (My + LD Iyolls
< Kuly* =y + (M + L2 (Il +T)
< Kaly*| + KoGo + (M + L) (I1llg + 5)

< Kaly*|+ (My + LD 8llg + Ky + My + LGy . (9)
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We get, using the nondecreasing character of i, for each ¢t € [0, n]

IF(2)(1)] < [(1\2 + 1) MoL + MLn] (Mm?]n + 1) + MM Mynly*|

So

LM [MOL(MMM1n+ 1)+ Mﬂﬂln@] 16llg + MM Myn(M +1)5,,

+ MMM MoLn | Kyly*| + (M, + L) lls + (K + My + L))

+ oL (Ky|2(0)] + ca) + FIL / (K lz(s)] + en)ds
0

n
+A22MM1Ln/(Kn|z(s)| +c,)ds
0

+ W2F M / ()0 (Kalz(s)] + o) ds
0

< [(M+ DML + 1\7[Ln] (1\71\71\7111+1) +MMMin (1 +M0LK,,) [y*]

+ M [MOL(AZM'M'WH)+MMM1@n+MM1MOLn(M,,+L,f)] I6lls

+ MMMn [1\2 +1+MoL(K, + M, + L,‘f)] Gn+ MoLS, + MLns,

+ M>MM\n* L6, + M*MMnys (5,)Ipll 1 -

IF(2)(1)] < [(M + )Mol + MLn] (Mﬂﬂln + 1)+ MMMn (1 +MOLKn) Iy*]

+1\71[MOL(MMM1n+1)+MMM1Dn+MM1MOLn(Mn+£$)] 65
+ MMMn [1\71 +1+MyL(K, + M, + LZ)] On

) [MO + Mn(MMMn + 1)] S + M2MMinyr (5.)|pll 1 = G

Thus there exists a positive number ¢, such that

I1F(2)lln < ln.

Hence F(By) C By,.
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Step 3: F maps bounded sets into equicontinuous sets of B,

We consider By as in Step 2 and we show that F(By) is equicontinuous. Let
T1, T € J with ™ > 71 and z € B,;. Then

|F(2)(m2) = F(2)(71)]
< ‘g(T% Zp(rr.aytrey) T Xp(n2.2ay ) = 8 (T Zp(ar.ar )+ Xp(t1.20 4r))

+1U(72,0) = U(71,0) I35 1A~ (0) | (1) |A(0)g (0, §)]|

7
+/IIU(Tz,S) — U1, 9)|1B(E) [A($)8 (S, Zp(s,25x,) F Xp(s,25+x,)) | ds
0

Iy
+/llU(TZ’S)”B(E)lA(S)g(Sa Zp(s,75+xs) +xp(s,zs+xs))|ds

T

T
+ / 1U (22, 8) = U1, 9)llpe [ Cll s lizss (5)]ds
0

™
+ / 1U (22 ) 1306 | C ll e it ()] ds.

Tl

By the inequalities (6), (8) and (9) and using the nondecreasing character of ¢,
we get

ean ()] < By [13*]+ FE(D + MoL) gl + (M + 1)(MoL + ) + M Ln

+ MiMoL||Zp(n,z,4x,) + Xp(n,z04x0) |8

n
+M1ML/ ||Zp(7-,z.r+x.,)+-xp(T,z.,+xT)||BdT
0

n
a7 / PEOW Nz emrrn) + Xprarnnll8)dT
0

< M [|y*| + M(D + MoL)||gllg + (M + 1)(MoL +5) + MLn]
+ M ML [Kaly* |+ (My+ L) 9l + (K + My + £
+ M{MLnS, + MMy (6,)|pll 1.



NONLOCAL CONTROLLABILITY OF MILD SOLUTIONS
FOR NEUTRAL EVOLUTION EQUATIONS 135

So
e (9] < My (1+ MoLK, ) y*] + 8y | M1D + MoL(M + M, + £3) | 1915
+ M, [M+ 1+MyL(K,+M, +LZ)] .+ ML [MO(M+ 1) +Mn]
+ MM, Lng, + MMy (6:) |1l 1 = wn - (10)
By the hypothesis (H1), (H3), (H5) and the inequality (10), we have
|F(2)(12) — F(2)(11)]

S ‘g(Tz’ ZP(TZvZTz+xTz) + XP(TZ’ZT2+XTQ)) - g(TI’ Zp(ty 2oy ) T Xp(ny X1 +x71)))

+ MoL (l¢lls + 1) [|U(72,0) = U(71,0) I3z

T]
+/ WU (72, 8) = U1, $)|lsE) L (12p(5.204x0) + Xp(s.ze4x) |8 + 1) ds
0

Ly
+/ U (2, )l 8(E) L (12p(5,204x0) + Xp(s,200x0) 18 + 1) ds

Tl

T1 iyl
+ M, / U2, 5) = U(rr, )llseyds + Mo, / 1U (52 )l ds.
0

7
Using the inequality (8), we get
|F(2)(12) = F(2)(11)]

< ‘g(T2’ Zp(T27ZT2+xT2) + xp(T21Z‘1'2+xT2)) - g(Tl ’ Zp(Tltle +)C7-1) + xp(TI’ZTI +)C7-1 ))‘

+MoL (||¢llg + 1) |U(72,0) = U(71,0) || n()

T1 Lyl
FL(Gn+ 1) / 1U (22, 5) = UCr1, )l ds + L(6a + 1) / 1U (22, 5) gy ds
0 T

1

T1 Lyl
+ M, / 1U (2, 5) = Ui, )l ds + o / 1U (22 ) 10 ds.
0

71

Note that |F(z)(12) — F(z)(11)| tends to zero as 7 — 11 — 0 independently of
Z € By.
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The right hand side of the above inequality tends to zero as 7, — 71 — 0
as a consequence of (H6) and the fact that U(z, s) is a strongly continuous and
compact operator for ¢ > s implies the continuity in the uniform operator topology
(see [4,28]).

As a consequence of Steps 1 to 3 together with the Arzeld-Ascoli theorem it
suffices to show that the operator F' maps B, into a precompact set in E.

Let ¢ € J be fixed and let € be a real number satisfying O < € < ¢. For z € By
we define

FE(Z) (t) = g(t’ Zp(t,z¢+x1) + xp(t,z,+xl)) - U(t’ O)g(o’ ¢)
1—€
. / U1, $)A(S)Z (5. Zp(scvsry + Tp(s.viry) s

0
t—e

+/ U(t,s)Cu,i(s)ds
0
= g(t’ Zp(t,z¢+x1) +xp(t,z,+x,)) - U(t’t - G)U(t — €, O)g(oa ¢)

t—e

+ U(t, t— E) / U(t — €, S)A(S)g(S, Zp(s,75+xs) + xp(s,zs+xs))ds
0

t—e

+U(t,t—¢€) / U(t—¢€,5)Cuy(s)ds.
0
Note that the set

{g(t’ Zp(tzp+x) T xp(t,zﬁx,)) - U(t-€,0)g(0,9)
i—€

s / Ut = €, 5)A()Z(5: Zp(s zyreg) + Xp(szosr)ds
0
1—e

+/ U(t—€,5)Cupy(s)ds: z € Bd}
0

is bounded.

Since U(t, s) is a compact operator and by hypothesis (H6), we conclude that
the set Z.(t) = {Fe(z)(t): z € By} is precompact in E for every e sufficiently
small, 0 < € < t. Moreover using the inequalities (8), (10) and the hypotheses
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(H3) and (HS5), we obtain
t
F(2)(1) = Fu(2) ()] < / 1U (s )13 |A()8 (5. Zp(s.00m00) + oo aenny)lds
t—e
t
+ / 10 ) s ICllaee litaen ()] ds
r—e
t
< / 1O ) L (12 e + Xpsmoells + 1) ds
t—e
t
+ M, / 10 ) llsee ds
1—e€

t t
< L(6y+1) / 10t )l ds + M / 10t 9l ds.

t—e€ t—e€

Then
|[F(2)(t) = Fe(z2)(1)| > 0 ase— 0.
Therefore there are precompact sets arbitrary close to the set {F(z)(7): z €

B;}. Hence the set {F(z)(t): z € By} is precompact in E. So we deduce from
Steps 1, 2 and 3 that F' is a continuous compact operator.

Step 4: G is a contraction.

Indeed, consider z, 7 € BY.,. By the hypotheses (H1) and (H2) for each
t € [0,n] andn € N
1G(2)(2) = G(2)(0)]

t
< ﬁlU(t’ S) ||B(E) |f(S, Zp(s,zs+xs) +x/0(SaZs+Xs))_f(S’ zp(s,iﬁxs) +xp(s’zs+xs))| dS
0

t
</Mln(s)||zp(s,z5+xs) - Ep(s,iﬁxs)”Bds-
0
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Using inequality (7), we obtain

1G(2)(1) = G(2)(1)] </Mln(S)KnIZ(S)—E(S)IdS
0

t

</Mmm%amm

N

1,()e™ 0| eH O 2(s) - Z(s)]ds

[ o7Li(s)

N

,_‘O\ o\a o
~ ~

] dsllz = Zll

< —e™n W)z = 7],

—~|

Therefore,

_ 1 _
IG(z) = G@)|l. < ;IIZ —Zln-

So, the operator G is a contraction for all n € N.

Step S: For applying Theorem 1, we must check (C2): i.e. it remains to show that

the following set is bounded

F:{zeng: z:/lF(z)+/lG(%) for some 0 < A < 1}.

Let z € I'. Then, by the hypotheses (H1), (H2)’, (H3), (H5) and the inequal-

ity (6), we have for each t € [0, n]

12(0)] < A|g(t, Zp(r,zx) + Xp(t,z0ex0)| + AU, 0)|1 3£ |2 (0, B

t
+A/HMummmMummqmmm+%@mmnm
0

t
+A/MUqummmmmmmﬁxﬂMs
0

continued on next page
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continued from previous page

Zp(s +Xs)
RERE

ds

t
2 / UG, s
0

< /l”A_l(t)”B(E) |A(t)g(t’ Zp(t,z,+x;) +xp(t,z,+x,))|

+ AU (1, 0) 18 1A (0) | (k) 1A (0)g (0, 4

+ /l/ U (t, S)HB(E) |A(s)g(s, Zp(s,z5+x5) +xp(s,zs+xx))| ds
2 / 10t )15 ICll e ltann ()]s

t
1 / UG )l ds
0

Lp(s,5+x5)
f(S,T/l+ p(s = 4x, ))

< AMOL (||Zp(t,zt+x,) +xp(t,z,+x,)||3 + 1) + /UQMOL(Hqﬁ”B + 1)

t

+/U‘71L/ (Nzp(s.25txs) + Xp(s.zptny I3 + 1) ds
0

+M2M/M1 Iy*| + M(D + MoL)||pllg + (M + 1) (ML + G) + MLn

+ MOL”Zp(n,z,,ch) + Xp(n,z,+x,) ”B + ML/ ||Zp(‘r,z.,+x.,) + Xpo(T,204x7) ”BdT
0

il / POV ptrmses +Xotranen l8)d7|ds

/lM ds.
+ / p(sw( 8) s

Zp(s. 5 +xs)
T et
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Then

201 < [ (¥ + 1)MoL + MLn| (MMM +1) + AV Myn]y*|
+ ABE [ MoL (VMM Myn + 1) + MMM Dn| |5+ AM MM (M +1)5,
+ AMM M MoLn|zp(n.zex,) + Xp(n.zpeny |3

+ /1MOL||Zp(t,a+x,) + Xp(1,204x) lls

t
+ AML/”ZP(&ZSHS) +Xp(s.204x,) |8 ds
0

n
+/1M2MM1L”/”Zp(s,zs+xs) +xp(s,zs+xs)||8d5
0

n

+/quﬂﬁln/p(s)l//(||Zp(s,zs+xs) +xp(s,zs+xs)||3)ds

0
AM ds.
+ 0/p(s)w( B) s

Using Corollary 1 and inequality (7), we obtain

Zp(s,%‘v+x5)
A +‘xp(s,%+xs)

Zp(sv%"'xs) "
_— X Zs
(5,5 +x5)
A Z P

Kyl2(s)|
< = (M + L) olls + Kulx()] + (Mo + L) ol

Knlz(s)]
A

Zp(sv%"'xs)

A

X

+ ||xp(s,z/li+xs) ”B
B

< + K llU (s, 0) [ p(E) (1(0)] + [ho(z +x)1)

+ (M, + L)) (I19llg +T)

K, ~ ~ ~
< KON 1 (DNl +5) + (Mo + L) (Il +52)

Klz(s) . -
. T( + (KuJ1D + My + L9 10l

+ (KnM + M, + L;’f)(?n )

Then, we get
Zp(s, ZTS'HCS)

Ky|z(s)]

+ X zs — +C
p(S,—+X ) =

A T g

1 n- (11)
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By inequalities (7), (9) and the previous one and the nondecreasing character
of ¢, we obtain

|z(£)] < A [(1\2 + I)M()L +]\2Ln] (MMMln + 1) +/U\2MM1n|y*|
+AM [MOL(MM'Mm +1)+ Mﬂzﬁln@] Iplls + AMMMin(M + 1),

+ AWM MoLn | Kyly*| + (M, + L) 9ll5 + (Ko + M, + L)),

+ AMoL(K,|z(2)| + cn) + AML/(K,,|Z(S)| +c,)ds

n n
+ AMPMM,Ln | (K,|z(s)| + cn)ds+AM2MM1n/p(s)L//(Kn|z(s)| +c,)ds
0 0

+/1M/ (s )1//( Kalz(s)] cn) ds.

Then

12()] < A [(1\2 + ) MoL + MLn] (1\711\71\71111 + 1) + AN M Myn (1 +M0LKn) Iy*]
+ Al [MOL(MMMIn +1) + MMn (Mz) + MoL(M, + L;‘;))] 65

+ AMM Mn [A7I+ 14+ MoL(K,+M, +£f)] Tn+AMoLc, +AMoLK,|z(?)|

+ /U\’/ZL/(Kn|z(s)| +cp)ds + ﬂﬁzﬁzﬂan/(Kn|Z(s)| +cp)ds

n t

+AM2MM1n/p(s)w(Kn|z(s)| +cn)ds+AM [p(s)y (Knlfl(s)l + cn)ds.
0 0

Set
Ep = [(1\71 + 1)MyL +A71Ln] (Mﬂﬁln + 1) + MMMin (1 +M0LKn) |y*|
+M [MOL(IVIMMm +1)+MMn (1\711) + MoL(M, + £2))] lolls

+ MMMn [1\’/} +1+MoL(K, + M, + LZ)] 0+ MoLc,.
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We consider the function u(¢) := sup |z(€)|. Then by the nondecreasing
0€[0,t]
character of /, we get for r € [0, n]

(1 = MoLK,)u(t)

t n
<A+ /Uf/fL/(K,ﬁ(s) +cu)ds + Aﬁzﬂﬂan/(Knﬁ(s) +cy)ds
0 0

n t
o~ ~ _ _ K,
+/1M2MM1n/p(s)¢(Knu(s) +cp)ds+AM [ p(s)y ( ljl(s) + cn) ds.
0 0
Then, we get
—~ t
K,u(t K.&, K.M ~
ulr) +cp<cp+ _f + — L/(Knu(s) +c,)ds
A 1 -MyLK, 1-MyLK, ,

n

+ MMM nL / (K,ii(s) + cp)ds + MMMin / ()Y (Kni(s) + cp)ds
0

0
t

+/p(s)1// (an(s) +cn) ds|.
0

Set
K
a, =cp+ _”—é:n
1 — MoLK,

By the nondecreasing character of ¥ and for 4 < 1, we get

t

Kni(t) K.M . /(an(s)

+ c,,) ds

0



NONLOCAL CONTROLLABILITY OF MILD SOLUTIONS
FOR NEUTRAL EVOLUTION EQUATIONS 143

We consider the function u defined by

K,u(s)

+cn:0<s<t}, tel.

p(r) = SUP{

Knu(t*
Let * € [0, ] be such that u(t) = nt(17)

inequality, we have for 7 € [0, n]

+ cp. If t* € [0, n], by the previous

t

KM . r
z L/,u(s)ds+MMMmL/y(s)ds
0

u(lt) <ap+ ————
1 -MyLK,

n t

+Mﬂﬂm/pmwmme/}uww®Ms
0 0

<an+KnM%1n+l L/,u(s)ds +/p(s)l//(,u(s))ds .
I~ MoLK, | J J

Set £(t) := max(L, p(t)) for t € [0, n], then
AMMMII’I +1

ﬂ@<%+&M—fr——/ﬁ@M@+WMWN&
1= MoLK, J

Consequently,

1zl

< L.

_MMMn+1
ay + KyM —————|||zlln + ¥ (llzll) |11
ne o 1—M0LKn[ " D 1

Then by the condition (5), there exists a constant M,y such that u(r) < M.
Since ||z||, < u(z), we have ||z||, < M5, which means that the set I" is bounded,
i.e. the statement (C2) in Theorem 1 does not hold.

From Avramescu’s nonlinear alternative [8], we deduce that (C1) holds i.e.
the operator F + G has a fixed-point z*. Thus, there exists at least a fixed point
y*(t) = z*(¢) + x(¢), t € R of the operator N, which is a mild solution of the
nonlocal problem (1)—(2). Thus the neutral evolution system (1)—(2) is nonlocally
controllable on R.
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4. Example

To illustrate the previous results, we consider the neutral functional differential
equation

0 b
0
oo - [axs=0v|s-popa| [ axtlviemPan.€as
J /
=2 gz O (1.6) + ao()v(1.€) + d(E)u(r)
0 T
+ [as=0v|s=ppa| [axbvenPan).elas 02
J /
t>0, £€]0,n],
v(t,0) =v(t,n) =0 t>0,
)4
v(0,) + ) civ(O+1;,€) = vo(6,€), 6<0, &c[0,n],
i=1

where ag: R* x [0, 7] — R is a given function such that ao(-, £) is continuous
and ao(t,-) is uniformly Holder continuous in ¢ (see [20]); aj,a3: R™ — R;
p1:RY -5 R, pp: R —> R; az: [0,71] —» R and vp: R™ x [0,7] — R are
continuous functions. ¢;, i = 1,---, p, are given constants and 0 < 7] < --- <
Ip < +0o.

Let E = L*([0,7],R), u(-): R* — E is a given control and d: [0, 7] — E
is a continuous function.

Consider the operator A: D(A) ¢ E — E given by Aw = w” with domain

D(A) ={weE:w"e€E,w(0)=w(r)=0}.

Thus A is the infinitesimal generator of an analytic semigroup {7'(¢)};>0
on E. Furthermore, A has discrete spectrum with eigenvalues —n?, n € N, and
corresponding normalized eigenfunctions give by

£0(6) =y 2sintue),

In addition, {z,: n € N} is an orthonormal basis of £ and

o

T(t)x = Z e_”zt(x, Z)Zn Xx € E,t > 0.

n=1
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It follows from this representation that 7'(¢) is compact for every ¢t > 0 and
that
IT(t)|| <e™ foreveryt > 0.

On the domain D(A), we define the operators A(z): D(A) C E — E by
A(1)x(&) = Ax(§) + ao(1,£)x(E).

By assuming that a((-) is continuous and that ag(¢,&) < —dg (69 > 0) for
every t € R, & € [0, ], it follows that the system
u'(t) =Au(t) t>s,
u(s)=x€E,
has an associated evolution family given by
t
U(t,s)x(&) = |T(t—s)exp / ao(t,&)dt |x| (&).
s

From this expression, it follows that U(z, s) is a compact linear operator and
that
U2, 5)|| < e 10005 for every (2, 5) € A.

Set 8 = BUC(R™, E) the space of bounded uniformly continuous functions
defined from R~ to E endowed with the uniform norm

6]l = sup [¢(6)].

OeR~

Theorem 3. Let ¢ € B. Assume that condition (Hy) holds and the functions
[0,7]: R* > E, p1: R* > R, po: R >R, a1,a3: R > R, ay: [0,7r] > R
and vy : R™ X [0, 1] — R are continuous. Then the neutral differential equation
(12) is nonlocally controllable on R.

Proof. From the assumptions and for C € B(R, E), we have that

y(0) (&) =v(t,6), teR, £¢€l0,n],
0
F(10)(&) = / a1 () (5. £)ds, (>0, e 0.x].

—0o0

0

S (1) (€) = / a3(s)0 (s, £)ds, (>0, £ 0],

—00
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T

p(t, ) (&) =t = p1(t)p2 /az(n)llﬁ((lf)lzdﬂ ; 1>0, &€[0,x],

0
Cu(1)(€) = d(&)u(?), 1>0, £€[0,x], ueR, d(&) €E,
p
h()(€) = Y et +1,€), t<0, ¢c0,x]

i=1

and
(P(f)(f) = VO(t’ é‘:)’ r < 0’ g € [O’ ﬂ'],

are well defined which permit to transform system (12) into the abstract sys-
tem (1)—(2). Moreover, the functions f and g are bounded linear operators. Then,
the nonlocal controllability of mild solutions can be deduced from a direct appli-
cation of Theorem 2 and the conclusion of our theorem hold.

From Remark 2, we have the following result.

Corollary 2. Let ¢ € B be continuous and bounded. Then the system (12) is
nonlocally controllable on R.

5. Conclusion

In this paper, the neutral evolution equations with state-dependent delay and
when the conditions are nonlocal have been studied. By using Avramescu’s
nonlinear alternative in combination with semigroup theory to get sufficient
conditions for the existence of a fixed point of an appropriate corresponding
operator, which is the sum of compact operators and contraction maps in Fréchet
spaces, we have established the existence of a mild solution and its controllability
over the whole reel line.
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