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Equitable colorings of 𝑙-corona products
of cubic graphs

Hanna FURMAŃCZYKo and Marek KUBALEo

A graph 𝐺 is equitably 𝑘-colorable if its vertices can be partitioned into 𝑘 independent sets
in such a way that the number of vertices in any two sets differ by at most one. The smallest
integer 𝑘 for which such a coloring exists is known as the equitable chromatic number of 𝐺 and
it is denoted by 𝜒= (𝐺).

In this paper the problem of determining the value of equitable chromatic number for
multicoronas of cubic graphs𝐺◦𝑙𝐻 is studied. The problem of ordinary coloring of multicoronas
of cubic graphs is solvable in polynomial time. The complexity of equitable coloring problem
is an open question for these graphs. We provide some polynomially solvable cases of cubical
multicoronas and give simple linear time algorithms for equitable coloring of such graphs which
use at most 𝜒= (𝐺 ◦𝑙 𝐻) + 1 colors in the remaining cases.
Key words: corona graph, 𝑙-corona products, cubic graph, equitable chromatic number, poly-
nomial algorithm, 1-absolute approximation algorithm

1. Introduction

All graphs considered in this paper are connected, finite and simple, i.e.
undirected, loopless and without multiple edges. Many of them are cubic, i.e.
3-regular graphs.

The paper concerns one of popular graph coloring models, namely equitable
coloring. If the set of vertices of a graph 𝐺 can be partitioned into 𝑘 (possibly
empty) classes 𝑉1, 𝑉2, . . . , 𝑉𝑘 such that each 𝑉𝑖 is an independent set and the
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condition | |𝑉𝑖 | − |𝑉 𝑗 | | ¬ 1 holds for every pair (𝑖, 𝑗), then𝐺 is said to be equitably
k-colorable. The smallest integer 𝑘 for which𝐺 is equitably 𝑘-colorable is known
as the equitable chromatic number of 𝐺 and denoted by 𝜒=(𝐺) [19]. When the
condition | |𝑉𝑖 | − |𝑉 𝑗 | | = 0 holds for every pair (𝑖, 𝑗), graph 𝐺 is said to be strong
equitably 𝑘-colorable. Given a 𝑘-coloring of 𝐺, a vertex with color 𝑖 is called an
𝑖-vertex.

It is interesting to note that if a graph 𝐺 is equitably 𝑘-colorable, it does not
imply that it is equitably (𝑘 + 1)-colorable. A counterexample is the complete
bipartite graph (also cubic graph) 𝐾3,3, which can be equitably colored with two
colors, but not with three. The smallest integer 𝑘 , for which 𝐺 is equitably 𝑘′-
colorable for all 𝑘′ ­ 𝑘 , is called the equitable chromatic threshold of 𝐺 and
denoted by 𝜒∗=(𝐺).

We use also the concept of semi-equitable coloring. Graph 𝐺 has a semi-
equitable 𝑘-coloring, if there exists a partition of its vertices into independent sets
𝑉1, . . . , 𝑉𝑘 ⊂ 𝑉 such that one of these subsets, say𝑉𝑖, is of size ∉ {⌊𝑛/𝑘⌋, ⌈𝑛/𝑘⌉},
and the remaining subgraph𝐺−𝑉𝑖 is equitably (𝑘−1)-colorable. Note that not all
graphs have such a coloring, for example 𝐾4 does not have. In the following we
will say that graph 𝐺 has (𝑉1, . . . , 𝑉𝑘 )-coloring to express explicitly a partition
of 𝑉 into 𝑘 independent sets. If, however, only cardinalities of color classes are
important, we will use the notation of [|𝑉1 |, . . . , |𝑉𝑘 |]-coloring.

The model of equitable graph coloring has many practical applications (cre-
ating timetables, task scheduling, transport problems, networks, etc.). Every time
when we have to divide a system with binary conflict relations into equal or
almost equal conflict-free subsystems we can model this situation by means of
equitable graph coloring (see for example [8, 10]).

The problem of equitable coloring has attracted attention of many graph
theory specialists for almost 50 years. The conducted studies are mainly focused
on the proving of known conjectures for particular graph classes (cf. [3, 16]),
analysis of the problem’s complexity (cf. [11]), designing exact algorithms for
polynomial cases (cf. [17]), and approximate algorithms or heuristics for hard
cases (cf. [6]). We know that the equitable coloring problem is NP-complete
in general case, as a particular case of vertex coloring. Very recently a few
papers investigating the parameterized complexity of equitable coloring have
been published (cf. [4, 13, 14]).

In this paper we consider the problem of equitable vertex-coloring for one
of known graph products, namely for corona products of cubic graphs. Graph
products are interesting and useful in many situations. The complexity of many
problems, also equitable coloring, that deal with very large and complicated
graphs is reduced greatly if one can fully characterize the properties of less com-
plicated prime factors. Moreover, corona graphs lie often close to the boundary
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between easy and hard coloring problems [9]. More formally, the corona of two
graphs, 𝑛𝐺-vertex graph𝐺 and 𝑛𝐻-vertex graph 𝐻, is a graph𝐺 ◦𝐻 formed from
one copy of 𝐺, called the center graph, and 𝑛𝐺 copies of 𝐻, named the outer
graph, where the 𝑖-th vertex of𝐺 is adjacent to every vertex in the 𝑖-th copy of 𝐻.
Such type of graph product was introduced by Frucht and Harary [5]. In this paper
we extend this concept to 𝑙-corona products as follows. For any integer 𝑙 ­ 2, we
define the graph 𝐺 ◦𝑙 𝐻 as 𝐺 ◦𝑙 𝐻 = (𝐺 ◦𝑙−1 𝐻) ◦ 𝐻, where 𝐺 ◦1 𝐻 = 𝐺 ◦ 𝐻.
Graph 𝐺 ◦𝑙 𝐻 is also named as 𝑙-corona product of 𝐺 and 𝐻.

The problem of equitable coloring of corona products of cubic graphs was
considered in [9]. The authors showed that although the problem of ordinary
coloring of coronas of cubic graphs is solvable in polynomial time, the problem
of equitable coloring becomes NP-hard for such graphs. Moreover, they provided
polynomially solvable instances of cubical coronas in some cases and 1-absolute
approximation algorithms in the remaining cases. In this paper we extend the
results from [9] to cubical multicoronas. Note that the product𝐺 ◦𝐻 of two cubic
graphs is no longer cubic.

Now, let us recall some facts concerning cubic graphs. In 1994, Chen et al. [2]
proved that for every connected cubic graph, the chromatic number of which
is 3, the equitable chromatic number of it is also equal to 3. Moreover, since
connected cubic graph 𝐺, for which 𝜒(𝐺) = 2 is a bipartite graph 𝐺 (𝐴, 𝐵) such
that |𝐴| = |𝐵 |, we have:

𝜒(𝐺) = 𝜒=(𝐺)
and due to Brooks Theorem [1], since the only cubic 4-chromatic graph is 𝐾4
which is easily seen to be equitably colorable using 4 colors:

2 ¬ 𝜒=(𝐺) ¬ 4,

for any cubic graph 𝐺.
Let
• 𝑄2 denote the class of 2-chromatic cubic graphs,
• 𝑄3 denote the class of 3-chromatic cubic graphs,
• 𝑄4 denote the class of 4-chromatic cubic graphs.

Clearly, 𝑄4 = {𝐾4}.
Next, let 𝑄2(𝑡) ⊂ 𝑄2 (𝑄3(𝑡) ⊂ 𝑄3) denote the class of 2-chromatic (3-

chromatic) cubic graphs with partition sets of cardinality 𝑡, and let𝑄3(𝑢, 𝑣, 𝑤) ⊂
𝑄3 denote the class of 3-chromatic graphs with color classes of cardinalities 𝑢, 𝑣
and 𝑤, respectively, where 𝑢 ­ 𝑣 ­ 𝑤 ­ 𝑢 − 1.

Hajnal and Szemeredi [15] proved

Theorem 1. If 𝐺 is a graph satisfying Δ(𝐺) ¬ 𝑘 then 𝐺 has an equitable
(𝑘 + 1)-coloring.
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This theorem implies that every subcubic graph𝐺, i.e. a graph withΔ(𝐺) ¬ 3,
has an equitable 𝑘-coloring for every 𝑘 ­ 4. In other words,

𝜒∗=(𝐺) ¬ 4. (1)

This result was extended in [11] into a semi-equitable coloring of cubic graphs.
We showed that, given a 𝑛-vertex subcubic graph𝐺 and constants 𝜖 > 0, 𝑘 ­ 4, it
is NP-complete to obtain a semi-equitable 𝑘-coloring of 𝐺 whose non-equitable
color class is of size 𝑠 if 𝑠 ­ 𝑛/3 + 𝜖𝑛, and it is polynomially solvable if 𝑠 ¬ 𝑛/3.
In particular, we proved

Theorem 2 ( [11]). Given a 𝑛-vertex subcubic graph 𝐺 not including 𝐾4 neither
𝐾3,3, a constant 𝑘 ­ 4, and an integer function 𝑠 = 𝑠(𝑛), a semi-equitable 𝑘-
coloring of 𝐺 of type [𝑠, ⌈ 𝑛−𝑠

𝑘−1⌉, . . . , ⌊
𝑛−𝑠
𝑘−1⌋] can be found in 𝑂 (𝑛2) time, if only

𝑠 ¬ ⌈𝑛/3⌉.

The remainder of the paper is organized as follows. In Section 2 we provide
some auxiliary tools while in Section 3 we give our main results. Namely, we give
in some cases polynomial algorithms for optimal equitable coloring of cubical
coronas 𝐺 ◦𝑙 𝐻, 𝑙 ­ 1, while in the remaining cases we give sharp bounds on
the equitable chromatic number of 𝑙-corona products of such graphs. Section 4
summarizes our results in a tabular form and remains as an open question the
complexity status of equitable coloring of graphs under consideration.

2. Some auxiliaries

In this section we prove lemmas, which are used very often in the further part
of the paper.

Lemma 1. Let 𝑘 ­ 5, 𝐺 be a strong equitably 𝑘-colorable graph, and let 𝐻 be a
cubic graph. Then 𝐺 ◦𝑙 𝐻 is strong equitably 𝑘-colorable for every 𝑙 ­ 1.

Proof. First, notice that every cubic graph 𝐻 can be seen as a (𝑘 − 1)-partite
graph 𝐻 (𝑋1, 𝑋2, . . . , 𝑋𝑘−1), 𝑘 ­ 5 (due to inequality (1)). Next, let 𝑉 (𝐺) =

𝑉1 ∪𝑉2 ∪ · · · ∪𝑉𝑘 , where 𝑉1, . . . , 𝑉𝑘 are independent sets each of size 𝑛𝐺/𝑘 (due
to the assumption of strong equitable 𝑘-colorability of 𝐺).

Now, we determine an equitable 𝑘-coloring of𝐺 ◦1𝐻, starting from the strong
equitable 𝑘-coloring of 𝐺: 𝑐 : 𝑉 (𝐺) → {1, 2, . . . , 𝑘}. We extend it to the copies
of 𝐻 in 𝐺 ◦ 𝐻 in the following way:

• color vertices of each copy of 𝐻 linked to an 𝑖-vertex of 𝐺 using color
(𝑖+ 𝑗) mod 𝑘 for vertices in 𝑋 𝑗 (we use color 𝑘 instead of 0), for 𝑖 = 1, . . . , 𝑘
and 𝑗 = 1, . . . , 𝑘 − 1.
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Let us notice that this 𝑘-coloring of 𝐺 ◦1 𝐻 is strong equitable. Indeed, every
color is used 𝑛𝐺/𝑘 + 𝑛𝐺/𝑘 ( |𝑋1 | + |𝑋2 | + · · · + |𝑋𝑘−1 |) = 𝑛𝐺 (𝑛𝐻 + 1)/𝑘 times. The
thesis follows from induction on 𝑙. 2

Lemma 2. Let 𝐺 be a strong equitably 4-colorable graph, and let 𝐻 ∈ 𝑄2 ∪𝑄3.
Then 𝐺 ◦𝑙 𝐻 is strong equitably 𝑘-colorable for every 𝑙 ­ 1.

Proof. Let 𝑉 (𝐺) = 𝑉1 ∪𝑉2 ∪𝑉3 ∪𝑉4, where 𝑉1, . . . , 𝑉4 are independent sets of
size 𝑛𝐺/4 each. Now, we determine an equitable 4-coloring of 𝐺 ◦1 𝐻, starting
from the strong equitable 4-coloring of 𝐺: 𝑐 : 𝑉 (𝐺) → {1, 2, 3, 4}. We extend it
to the copies of 𝐻 in 𝐺 ◦ 𝐻 in the following way:
Case 1: 𝐻 ∈ 𝑄2

Let 𝐻 = 𝐻 (𝑋1, 𝑋2). We color the vertices of each copy of 𝐻 linked to an
𝑖-vertex of 𝐺 using color (𝑖 + 𝑗) mod 4 for vertices in 𝑋 𝑗 (we use color 4
instead of 0), for 𝑖 = 1, . . . , 4 and 𝑗 = 1, 2.

Case 2: 𝐻 ∈ 𝑄3
Let 𝐻 = 𝐻 (𝑋1, 𝑋2, 𝑋3). We color vertices of each copy of 𝐻 linked to an
𝑖-vertex of 𝐺 using color (𝑖 + 𝑗) mod 4 for vertices in 𝑋 𝑗 (we use color 4
instead of 0), for 𝑖 = 1, . . . , 4 and 𝑗 = 1, 2, 3.

Notice that the 4-coloring of 𝐺 ◦1 𝐻 is strong equitable. Indeed, every color
is used 𝑛𝐺 (𝑛𝐻 + 1)/4 times. The thesis follows from induction on 𝑙. 2

Lemma 3. Let 𝐺 be a strong equitably 3-colorable graph, and let 𝐻 ∈ 𝑄2. Then
𝐺 ◦𝑙 𝐻 is strong equitably 3-colorable for every 𝑙 ­ 1.

Proof. Let 𝑉 (𝐺) = 𝑉1 ∪ 𝑉2 ∪ 𝑉3, where 𝑉1, 𝑉2, 𝑉3 are independent sets of size
𝑛𝐺/3 each. Now, we determine an equitable 3-coloring of 𝐺 ◦1 𝐻, starting from
the strong equitable 3-coloring of 𝐺: 𝑐 : 𝑉 (𝐺) → {1, 2, 3}. We extend it to the
copies of 𝐻 in 𝐺 ◦ 𝐻 in the following way. Let 𝐻 = 𝐻 (𝑋1, 𝑋2). We color the
vertices of each copy of 𝐻 linked to an 𝑖-vertex of 𝐺 using color (𝑖 + 𝑗) mod 3
for vertices in 𝑋 𝑗 (we use color 3 instead of 0), for 𝑖 = 1, 2, 3 and 𝑗 = 1, 2. Notice
that the 3-coloring of 𝐺 ◦1 𝐻 is strong equitable. Indeed, every color is used
𝑛𝐺 (𝑛𝐻 + 1)/3 times. The thesis follows from induction on 𝑙. 2

Actually, we have proved the following corollaries.

Corollary 1. Let 𝐻 be a cubic graph different from 𝐾4 and let 𝑙 ­ 1. If 𝐺 has a
strong equitable 𝑘-coloring then

𝜒=(𝐺 ◦𝑙 𝐻) ¬ 𝑘,

for any 𝑘 ­ 4.
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Corollary 2. Let 𝐻 be a cubic graph, 𝐻 ∈ 𝑄2 and let 𝑙 ­ 1. If 𝐺 has a strong
equitable 𝑘-coloring then

𝜒=(𝐺 ◦𝑙 𝐻) ¬ 𝑘,

for any 𝑘 ­ 3.

3. Main results

3.1. Case 𝐻 ∈ 𝑄2

In this subsection we obtain exact values of 𝜒=(𝐺 ◦𝑙 𝐻), where 𝐻 ∈ 𝑄2. We
give also polynomial-time algorithms for the corresponding colorings.

First, let us recall a known result.

Proposition 1 ( [9]). If 𝐺 is any cubic graph and 𝐻 ∈ 𝑄2, then

𝜒=(𝐺 ◦ 𝐻) =
{

3 if 𝐺 ≠ 𝐾3,3 and 6|𝑛𝐺 ,
4 otherwise.

Theorem 3. If 𝐺 and 𝐻 are cubic graphs, then for any 𝑙 ­ 1 𝜒=(𝐺 ◦𝑙 𝐻) = 3 if
and only if 𝐺 has a strong equitable 3-coloring and 𝐻 ∈ 𝑄2.

Proof. (⇐) Since 𝑛𝐺 is even, as𝐺 is cubic, and 3|𝑛𝐺 , as𝐺 has a strong equitable
3-coloring so we have that 6|𝑛𝐺 . Of course, 𝐺 ≠ 𝐾3,3, as 𝐾3,3 is not equitably
3-colorable. Thus, the truth for 𝑙 = 1 follows from Proposition 1. Please note,
that the equitable 3-coloring is strong. Indeed, the number of vertices of 𝐺 ◦𝐻 is
𝑛𝐺 (𝑛𝐻 + 1) and since 6|𝑛𝐺 , any equitable 3-coloring implies three color classes
each of size 𝑛𝐺 (𝑛𝐻+1)/3. For 𝑙 > 1, we get the thesis inductively due to Lemma 3.
(⇒) Assume that 𝜒=(𝐺 ◦𝑙 𝐻) = 3. This implies that:

• 𝐻 must be 2-chromatic,
• 𝐺 must be 3-colorable (not necessarily equitably), i.e. 𝜒(𝐺) ¬ 3, which

implies 𝐺 ∈ 𝑄2 ∪𝑄3.
Otherwise, we would have 𝜒(𝐺 ◦𝑙 𝐻) ­ 4, which is a contradiction.

We begin with 𝑙 = 1. Since 𝐻 ∈ 𝑄2 is connected, its bipartition is determined.
Let𝐻 ∈ 𝑄2(𝑡), 𝑡 ­ 3. Observe that every 3-coloring of𝐺 determines a 3-partition
of 𝐺 ◦ 𝐻. Let us consider any 3-coloring of 𝐺 with color classes of cardinality
𝑛1, 𝑛2 and 𝑛3, respectively, where 𝑛𝐺 = 𝑛1 + 𝑛2 + 𝑛3 and 𝑛1 ­ 𝑛2 ­ 𝑛3. Then
the cardinalities of color classes in the 3-coloring of 𝐺 ◦ 𝐻 form a sequence
(𝑛1

1, 𝑛
1
2, 𝑛

1
3) = (𝑛1 + (𝑛2 + 𝑛3)𝑡, 𝑛2 + (𝑛1 + 𝑛3)𝑡, 𝑛3 + (𝑛1 + 𝑛2)𝑡). Such a 3-coloring

of 𝐺 ◦ 𝐻 is equitable if and only if 𝑛1 = 𝑛2 = 𝑛3. This means that 𝐺 must have a
strong equitable 3-coloring.
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For greater values of 𝑙 the cardinalities of color classes in the determined
3-coloring of 𝐺 ◦𝑙 𝐻, (𝑛𝑙1, 𝑛

𝑙
2, 𝑛

𝑙
3), can be computed from the recursion:

𝑛0
1 = 𝑛1,

𝑛0
2 = 𝑛2,

𝑛0
3 = 𝑛3.

For 𝑙 ­ 1: 
𝑛𝑙1 = 𝑛𝑙−1

1 + (𝑛𝑙−1
2 + 𝑛𝑙−1

3 )𝑡,
𝑛𝑙2 = 𝑛𝑙−1

2 + (𝑛𝑙−1
1 + 𝑛𝑙−1

3 )𝑡,
𝑛𝑙3 = 𝑛𝑙−1

3 + (𝑛𝑙−1
1 + 𝑛𝑙−1

2 )𝑡.

One can observe that in the determined 3-coloring of 𝐺 ◦𝑙 𝐻 the following
statements are true:

• the color classes with the biggest difference between their cardinalities are
classes of colors 1 and 3,

• the order relation between cardinalities of color classes of colors 1 and 3
changes alternately, namely 𝑛𝑙1 ­ 𝑛

𝑙
3 for odd 𝑙 while 𝑛𝑙1 ¬ 𝑛

𝑙
3 for even 𝑙,

• the absolute value of the difference between cardinalities of color classes
for colors 1 and 3 does not decrease as 𝑙 goes to infinity.

Due to the above, the 3-coloring of 𝐺 ◦𝑙 𝐻 is equitable if only 𝑛1 = 𝑛2 = 𝑛3,
which completes the proof. 2

Theorem 4. If 𝐺 is an arbitrary cubic graph and 𝐻 ∈ 𝑄2, 𝑙 ­ 1, then

𝜒=(𝐺 ◦𝑙 𝐻) ¬ 4.

Proof. We start from an equitable 4-coloring of graph 𝐺 - this is possible due to
inequality (1). If it is a strong equitable 4-coloring of 𝐺, i.e. if 𝑛𝐺 = 4𝑠 for some
𝑠 ­ 1, then the thesis follows immediately from Lemma 2. So, let 𝑛𝐺 = 4𝑠 + 2 for
some 𝑠 ­ 1. Note that in any equitable 4-coloring of 𝐺 exactly two color classes
include one more vertex than the remaining two classes. Let us denote them as
𝑉𝑥 , 𝑉𝑦, 𝑥 ≠ 𝑦, and 𝑥, 𝑦 ∈ {1, . . . , 4}, i.e. |𝑉𝑥 | = |𝑉𝑦 | = 𝑠 + 1. Let 𝑣𝑥 ∈ 𝑉𝑥 and
𝑣𝑦 ∈ 𝑉𝑦. It is easy to see that (𝐺 − {𝑣𝑥 , 𝑣𝑦}) ◦𝐻 has a strong equitable 4-coloring
(due to Lemma 2 for 𝑙 = 1), named by 𝑐1. Now, we show that 𝐺 [{𝑣𝑥 , 𝑣𝑦}] ◦ 𝐻 is
equitably 4-colorable, where 𝐺 [{𝑣𝑥 , 𝑣𝑦}] is the subgraph of 𝐺 induced by vertex
set {𝑣𝑥 , 𝑣𝑦}. Let𝐻𝑥 (𝐻𝑦) be a copy of𝐻 linked to 𝑣𝑥 (𝑣𝑦). Furthermore, let 𝑋𝑥 (𝑋𝑦)
and 𝑌𝑥 (𝑌𝑦) be the partition sets of 𝐻𝑥 (𝐻𝑦). Color the vertices of 𝑋𝑥 with color
𝑦, vertices of 𝑌𝑥 with color 𝑟 where 𝑟 ≠ 𝑥 and 𝑟 ≠ 𝑦, vertices of 𝑋𝑦 with color 𝑥,
and vertices of 𝑌𝑦 with color 𝑡, where 𝑡 ∉ {𝑥, 𝑦, 𝑟}. One can easily check that this
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results in an equitable 4-coloring of 𝐺 [{𝑣𝑥 , 𝑣𝑦}] ◦ 𝐻, named by 𝑐2. Merging the
colorings 𝑐1 and 𝑐2 we get an equitable 4-coloring of the whole 𝐺 ◦ 𝐻.

By applying the above procedure recursively for bigger 𝑙 we get an equitable
4-coloring of 𝐺 ◦𝑙 𝐻. 2

3.2. Case 𝐻 ∈ 𝑄3

In this subsection we obtain some polynomially solvable cases concerning op-
timal equitable coloring of multicoronas𝐺 ◦𝑙 𝐻, where 𝐻 ∈ 𝑄3. In the remaining
cases we give 1-absolute approximation algorithms.

Theorem 5. Let𝐺 be any cubic graph and let𝐻 ∈ 𝑄3. If𝐺 has a strong equitable
4-coloring, then

𝜒=(𝐺 ◦𝑙 𝐻) = 4

for any 𝑙 ­ 1.

Proof. It is clear that 𝜒=(𝐺 ◦𝑙 𝐻) ­ 4, for 𝐺 and 𝐻 under assumption. On the
other hand, 𝜒=(𝐺 ◦𝑙 𝐻) ¬ 4 by Lemma 2, and the thesis follows. 2

Proposition 2. If 𝐺 is a subgraph of cubic graph on 𝑛𝐺 ­ 4 vertices, where 4|𝑛𝐺
and 𝐻 ∈ 𝑄3, then there is an equitable 5-coloring of 𝐺 ◦𝑙 𝐻 for any 𝑙 ­ 1.

Proof. Let 𝑛𝐺 = 4𝑥 for some integer 𝑥 ­ 1. First, let us notice that there is
a strong equitable 4-coloring of 𝐺 ◦𝑙 𝐻 due to inequality (1) and Corollary 1.
We color equitably 𝐺 ◦𝑙 𝐻 with 4 colors in the way described in the proof of
Lemma 2. In such a coloring every color is used exactly 𝑥(𝑛𝐻 + 1)𝑙 times. Now,
we have to choose vertices in each of the four color classes which should be
recolored to 5 so that the resulting 5-coloring of 𝐺 ◦𝑙 𝐻 is equitable. It turns out
that we can choose a proper number of 𝑖-vertices, 𝑖 = 1, 2, 3, and 4, that should
be recolored to 5 from the partition sets 𝑋1 of 𝐻 (𝑋1, 𝑋2, 𝑋3) linked to vertices
of 𝐺 ◦𝑙−1 𝐻 during creating 𝑙-corona product 𝐺 ◦𝑙 𝐻 from 𝐺 ◦𝑙−1 𝐻. Moreover,
we need only copies of 𝐻 from this 𝑙-th step that were linked to vertices of 𝐺.
Since 𝑛𝐺 = 4𝑥, we have exactly 𝑥 𝑖-vertices in 𝐺, 𝑖 ¬ 4. We will see that we need
at most 𝑥 |𝑋1 | 𝑖-vertices that should be recolored to 5. We choose them from 𝑋1’s
linked to (𝑖 − 1)-vertices in 𝐺, 𝑖 = 1, 2, 3, 4 (we use color 4 instead of color 0).
To prove this, let us consider three cases.
Case 1: 𝐻 (𝑋1, 𝑋2, 𝑋3) ∈ 𝑄3(𝑡 + 1, 𝑡, 𝑡) for some odd 𝑡 ­ 3.

In 4-coloring of 𝐺 ◦𝑙 𝐻 each of four colors is used 𝑥(3𝑡 + 2) times, while
in every equitable 5-coloring of the corona, each of five colors must be used
⌈(12𝑥𝑡 + 8𝑥)/5⌉ = 2𝑥𝑡 + 𝑥 + ⌈(2𝑥𝑡 + 3𝑥)/5⌉ or 2𝑥𝑡 + 𝑥 + ⌊(2𝑥𝑡 + 3𝑥)/5⌋ times.
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This means that the number of vertices that should be recolored to 5 in each
of the four color classes is equal to at most

3𝑥𝑡+2𝑥−2𝑥𝑡−𝑥−⌊(2𝑥𝑡+3𝑥)/5⌋ = 𝑥(𝑡+1)−⌊(2𝑥𝑡+3𝑥)/5⌋ < 𝑥(𝑡+1) = 𝑥 |𝑋1 |.

Case 2: 𝐻 (𝑋1, 𝑋2, 𝑋3) ∈ 𝑄3(𝑡 + 1, 𝑡 + 1, 𝑡) for some even 𝑡 ­ 2.
In 4-coloring of 𝐺 ◦ 𝐻 each of four colors is used 𝑥(3𝑡 + 3) times, while
in every equitable 5-coloring of the corona each of five colors must be used
⌈(12𝑥𝑡 + 12𝑥)/5⌉ = 2𝑥𝑡 + 2𝑥 + ⌈(2𝑥𝑡 + 2𝑥)/5⌉ or 2𝑥𝑡 + 2𝑥 + ⌊(2𝑥𝑡 + 2𝑥)/5⌋
times. This means that the number of vertices that should be recolored to 5
in each of the four color classes is equal to at most

3𝑥𝑡+3𝑥−2𝑥𝑡−2𝑥−⌊(2𝑥𝑡+2𝑥)/5⌋ = 𝑥(𝑡+1)−⌊(2𝑥𝑡+2𝑥)/5⌋ < 𝑥(𝑡+1) = 𝑥 |𝑋1 |.

Case 3: 𝐻 (𝑋1, 𝑋2, 𝑋3) ∈ 𝑄3(𝑡, 𝑡, 𝑡) for some even 𝑡 ­ 2.
In 4-coloring of 𝐺 ◦ 𝐻 each of four colors is used 𝑥(3𝑡 + 1) times, while
in every equitable 5-coloring of the corona each of five colors must be used
⌈(12𝑥𝑡 + 4𝑥)/5⌉ = 2𝑥𝑡 + ⌈(2𝑥𝑡 + 4𝑥)/5⌉ or 2𝑥𝑡 + ⌊(2𝑥𝑡 + 4𝑥)/5⌋ times. This
means that the number of vertices that should be recolored to 5 in each of the
four color classes is equal to at most

3𝑥𝑡 + 𝑥 − 2𝑥𝑡 − ⌊(2𝑥𝑡 + 4𝑥)/5⌋ = 𝑥(𝑡 + 1) − ⌊(2𝑥𝑡 + 4𝑥)/5⌋ ¬ 𝑥𝑡 = 𝑥 |𝑋1 |.

This completes the proof. 2

Theorem 6. If 𝐺 is a cubic graph on 𝑛𝐺 ­ 8 vertices and 𝐻 ∈ 𝑄3, then

𝜒=(𝐺 ◦𝑙 𝐻) ¬ 5

for any 𝑙 ­ 1.

Proof. If 5|𝑛𝐺 , then 𝐺 has a strong equitable 5-coloring (due to inequality (1))
and the thesis follows from Lemma 1 for 𝑘 = 5. We need to consider the cases
where 𝑛𝐺 mod 5 ≠ 0.
Case 1: 𝑛𝐺 mod 5 = 1 and 𝑛𝐺 ­ 16.

We start from a semi-equitable 5-coloring of cubic graph 𝐺 of type [(𝑛 +
4)/5, (𝑛 + 4)/5, (𝑛 + 4)/5, (𝑛 + 4)/5, (𝑛 − 16)/5] - this is possible due to
Theorem 2 for 𝑘 = 5. Next, we choose four 1-vertices, four 2-vertices,
four 3-vertices, and four 4-vertices from the center graph 𝐺. They form
a set 𝑉16(𝐺). We consider the subgraph of 𝐺 induced by this vertex set
- subcubic graph 𝐺 [𝑉16], and corona graph 𝐺 [𝑉16] ◦𝑙 𝐻 being subgraph
of 𝐺 ◦𝑙 𝐻. 𝐺 [𝑉16] ◦𝑙 𝐻 has an equitable 5-coloring due to Proposition 2.
Note, that this equitable 5-coloring of 𝑙-corona, described in the proof of
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Proposition 2, starts from a strong equitable 4-coloring of the center graph.
Thus, it is possible to extend the strong 4-coloring of𝐺 [𝑉16] into equitable
5-coloring of 𝐺 [𝑉16] ◦𝑙 𝐻. Next, we consider subgraph 𝐺 [𝑉\𝑉16], strong
equitably 5-colored, as a center graph of 𝑙-corona 𝐺 [𝑉\𝑉16] ◦𝑙 𝐻. Due
to Lemma 1 for 𝑘 = 5, 𝐺 [𝑉\𝑉16] ◦𝑙 𝐻 has an equitable 5-coloring and
this coloring is strong equitable. Furthermore, also this coloring is based
on strong equitable 5-coloring of 𝐺 [𝑉\𝑉16]. This means, that equitable
5-colorings of 𝐺 [𝑉16] ◦𝑙 𝐻 and 𝐺 [𝑉\𝑉16] ◦𝑙 𝐻 may be combined into one
proper equitable 5-coloring of 𝐺 ◦𝑙 𝐻.

Case 2: 𝑛𝐺 mod 5 = 2.
The idea is similar to that presented in the previous case. This time we start
from a semi-equitable 5-coloring of 𝐺 of type [(𝑛 + 3)/5, (𝑛 + 3)/5, (𝑛 +
3)/5, (𝑛 + 3)/5, (𝑛 − 12)/5] – this is possible due to Theorem 2.
Analogously, we choose three 1-vertices, three 2-vertices, three 3-vertices,
and three 4-vertices from the graph 𝐺. They form a set 𝑉12(𝐺). First we
extend the coloring of 𝐺 into 𝐺 [𝑉12] ◦𝑙 𝐻, and then into 𝐺 [𝑉\𝑉12] ◦𝑙 𝐻.
Finally, we obtain an equitable 5-coloring of 𝐺 ◦𝑙 𝐻.

Case 3: 𝑛𝐺 mod 5 = 3.
This time we start from a semi-equitable 5-coloring of 𝐺 of type [(𝑛 +
2)/5, (𝑛+2)/5, (𝑛+2)/5, (𝑛+2)/5, (𝑛−8)/5] (possible due to Theorem 2).
Next, we choose, analogously to the previous case, 8 vertices of𝐺, forming
set 𝑉8(𝐺). We extend the coloring of 𝐺 into 𝐺 [𝑉8] ◦𝑙 𝐻, and then into
𝐺 [𝑉\𝑉8] ◦𝑙 𝐻. Finally, we obtain an equitable 5-coloring of 𝐺 ◦𝑙 𝐻.

Case 4: 𝑛𝐺 mod 5 = 4.
In the last case we start from a semi-equitable coloring of 𝐺 of type [(𝑛 +
1)/5, (𝑛 + 1)/5, (𝑛 + 1)/5, (𝑛 + 1)/5, (𝑛 − 4)/5]. We choose one vertex of
each color 𝑖, 1 ¬ 𝑖 ¬ 4, from graph𝐺. The vertices form the set𝑉4. First, we
extend the coloring of 𝐺 [𝑉4] into an equitable 5-coloring of 𝐺 [𝑉4] ◦𝑙 𝐻,
in the way described in the proof of Proposition 2. Next, we extend the
strong equitable 5-coloring of 𝐺 [𝑉\𝑉4] into strong equitable 5-coloring of
𝐺 [𝑉\𝑉4] ◦𝑙 𝐻 (due to method described in the proof of Lemma 1). Finally,
we obtain an equitable 5-coloring of 𝐺 ◦𝑙 𝐻. 2

3.3. Case 𝐻 = 𝐾4

Proposition 3 ( [7]). If𝐺 is a graph with 𝜒 (𝐺) ¬ 𝑚+1, then 𝜒=(𝐺◦𝐾𝑚) = 𝑚+1.

Theorem 7. If 𝐺 is cubic and 𝑙 ­ 1, then

𝜒=(𝐺 ◦𝑙 𝐾4) = 5.
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Proof. Since the following inequalities hold for every cubic graph 𝐺:

2 ¬ 𝜒(𝐺) ¬ 4,

due to Brooks theorem [1], so cubic graph𝐺 fulfills the assumption of Proposition
3 for 𝑚 = 4 and we have 𝜒=(𝐺 ◦ 𝐾4) = 5. As 𝐺 ◦𝑙 𝐾4 = (𝐺 ◦𝑙−1 𝐾4) ◦ 𝐾4 and
𝜒=(𝐺 ◦2 𝐾4) = 𝜒=(𝐺 ◦3 𝐾4) = · · · = 𝜒=(𝐺 ◦𝑙−1 𝐾4) = 5, we get immediately the
thesis. 2

4. Conclusion

In the paper we have given some results concerning the equitable coloring of
𝑙-corona products 𝐺 ◦𝑙 𝐻, where 𝐺 and 𝐻 are cubic graphs. Our main results
are summarized in Table 1. In the table the entry ’3 or 4’ means that we have
identified all the cases for which 𝜒=(𝐺 ◦𝑙 𝐻) = 3 and/or 𝜒=(𝐺 ◦𝑙 𝐻) = 4. The
entry ’¬ 5’ means merely that 𝜒=(𝐺 ◦𝑙 𝐻) ¬ 5.

Table 1: Possible values of 𝜒= (𝐺 ◦𝑙 𝐻) for cubical multicoronas

𝐺

𝐻
𝑄2 𝑄3 𝑄4

𝑄2 (𝑡) 3 or 4 [Thm. 3, 4]
4 for 𝑡 even [Thm. 5]

5 [Thm. 7]
¬ 5 for 𝑡 odd [Thm. 6]

𝑄3 3 or 4 [Thm. 3, 4] ¬ 5∗ [Thm. 6] 5 Thm. 7]
𝑄4 4 [Thm. 4] 4 [Thm. 5] 5 [Thm. 7]

*: we remind to the reader the case, where 𝑛𝐺 = 6. One should check easily that the bound
holds also for such center graphs 𝐺 (there are only two cubic graphs on 6 vertices).

Note that our results confirm the Equitable Coloring Conjecture for graphs
under consideration. This conjecture was posed by Meyer [19] in 1973.

What about the complexity of equitable coloring of cubical multicoronas?
From [9] we know that this problem is NP-hard for coronas 𝐺 ◦𝑙 𝐻, 𝑙 = 1.
We remain as an open question whether this result can be extended to arbitrary
cubical coronas 𝐺 ◦𝑙 𝐻, 𝑙 ­ 2.

We know that ordinary coloring of cubical multicoronas can be determined
in polynomial time. The exact values of ordinary chromatic number of 𝑙-corona
products under consideration are given in Table 2. The appropriate coloring of
𝐺◦𝐻 is obtained by coloring𝐺 with 𝜒(𝐺) colors and extending this coloring into
copies of 𝑟-partite cubic graph 𝐻 linked to 𝑖-vertex of 𝐺 by coloring 𝑟 partition
sets with (𝑖 + 1) mod 𝜒(𝐺 ◦1 𝐻), . . . , (𝑖 + 𝑟) mod 𝜒(𝐺 ◦1 𝐻), respectively (we
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use color 𝜒(𝐺 ◦1 𝐻) instead of color 0). Such a coloring can be extended into
copies of 𝐻 for bigger 𝑙 in the similar way.

Table 2: The exact values of 𝜒(𝐺 ◦𝑙 𝐻) for cubical multicoronas

𝐺

𝐻
𝑄2 𝑄3 𝑄4

𝑄2 3 4 5
𝑄3 3 4 5
𝑄4 4 4 5

Simple comparison of Tables 1 and 2 leads us to the conclusion that our
results miss the exact values by at most one color.
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