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Abstract. This paper presents the novel estimation algorithm that generates all signals of an object described by nonlinear ordinary differential
equations based only on easy-to-implement measurements. Unmeasured signals are estimated by using an adaptive approach. For this purpose,
a filtering equation with a continuously modified gain vector is used. Its value is determined by an incremental method, and the amount of
correction depends on the current difference between the generated signal and its measured counterpart. In addition, the study takes into account
the aging process of measurements and their random absence. The application of the proposed approach can be realized for any objects with
a suitable mathematical description. A biochemically polluted river with an appropriate transformation of the notation of partial differential
equations was chosen as an object. The results of numerical experiments are promising, and the process of obtaining them involves little
computational necessity, so the approach is aimed at the needs of control implemented online.
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1. INTRODUCTION

Rivers are crucial to the global hydrological cycle, ecosystems,
and human economy and life. Therefore, river water quality is
of great concern. River water quality is constantly deteriorat-
ing, and the main reason for water pollution is mainly due to
human activities. Every year, millions of tons of waste, in-
dustrial, agricultural and municipal wastewater, are discharged
into rivers, making the water unusable and requiring frequent
quality control. In addition to human impacts, the state of
water in rivers is also affected by weather conditions, neces-
sitating continuous monitoring with control and management
functions for water management in the region [1, 2, 3, 4, 5].
Traditional methods of assessing water quality involve tak-
ing samples and testing them in a laboratory, which is time-
consuming as a result of which information on the state of wa-
ter quality is usually overdone. Real-time systems that take
measurements easily online and reproduce unmeasured signals
may be the answer to these challenges. The authors in [6],
[7] suggest the use of mobile measuring stations and mobile
operating systems for real-time monitoring of various water
parameters in rivers. In [8] the authors propose an adaptive
sampling algorithm to increase energy efficiency in automatic
monitoring systems while ensuring the accuracy of the sam-
pled data. Tests conducted in this study included measurement
of dissolved oxygen (DO) and water turbidity. Real-time water
quality monitoring systems using chemical sensors have been
discussed in [9, 10, 11]. The authors emphasize that systems
based on chemical detection or a combination of chemical and
other methods are the most effective. However, many real-time
monitoring systems do not offer the ability to measure all re-
quired signals online. In the case of rivers, one such signal
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is the biochemical oxygen demand (BOD) index, which is ap-
proached in different ways. In [12, 13] , the authors propose
a method based on biosensors and correlation calculations to
obtain representative information on this indicator. This ar-
ticle presents another alternative approach that introduces an
adaptive algorithm for river monitoring, extending the LookUp
zonal algorithm approach published in [14], [15]. In addition
to the challenges of estimating BOD in rivers, sudden weather
anomalies also have an impact, introducing various sources of
pollution that are difficult to identify. These sources tend to
have adverse effects on aquatic ecosystems. To address mon-
itoring issues in ecological systems, machine learning meth-
ods, time series analysis and statistical models are being used
to make water management more objective, reliable and ef-
ficient [16, 17, 18, 19]. In addition, some authors have in-
tegrated Bayesian networks with mechanistic models to fully
exploit the advantages of statistical and mechanistic models
in analyzing water quality risks during pollution emergencies.
The results have been applied to various measurement indica-
tors [20], [21]. The main problem in signal reconstruction for
monitoring or control purposes is estimation, which involves
reconstructing a useful signal while eliminating unwanted in-
terference from another signal. This process aims to preserve
the quality of the signal containing important information by
separating it from interference. Direct interference suppres-
sion techniques may inadvertently remove some of the useful
signal. Therefore, optimal filters are used that take advantage
of the statistical properties of the signals. One notable ex-
ample is the Kalman filter, which recursively determines the
state vector estimate with minimum variance in linear mod-
els of dynamic systems based on output measurements of the
system [22, 23, 24]. It should be noted that the Kalman ap-
proach assumes linearity of the object model and knowledge
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of the characteristics of disturbances, which limits its appli-
cation to idealized situations that do not fully reflect reality.
The linearity requirement and assumptions about interference
characteristics are limitations for the Kalman filter, since most
systems are nonlinear and measurements are subject to non-
Gaussian noise, such as Levy noise. These limitations are cir-
cumvented, among others, by using the approach proposed in
this paper. The structure of this article is as follows: section 2
gives the mathematical model and its transformation reducing
the notation to a set of ordinary differential equations, section
3 describes the new approach in the form of an adaptive zonal
algorithm with a measurement window, the following section
gives the experimental results including monitoring quality in-
dicators, the final section summarizes the presented study.

2. MATHEMATICAL MODEL OF THE SPREAD OF POLLU-
TANTS IN THE RIVER

The issue of pollutant dispersion in a river is important for
monitoring water quality. However, it is a very complex pro-
cess that, when pollutants are discharged, generates processes
that determine their spread and transport. Among these pro-
cesses we have advection, diffusion, adsorption, desorption,
settling of suspended substances, chemical reactions and bio-
logical processes [25]. The primary indicators characterizing
the pollution status of a river include Biochemical Oxygen De-
mand (BOD) and Dissolved Oxygen Deficit (DO). These are
the two indicators most commonly used to determine water
quality and its ability to support aquatic life. The BOD index
refers to the amount of oxygen required for microorganisms to
oxidize organic matter in water under certain conditions. It is
an indicator that measures the content of organic substances,
such as carbon, nitrogen and phosphorus compounds, which
can come from pollution, in a water sample. The higher the
BOD, the greater the amount of organic matter present, which
can lead to a shortage of oxygen in the water as microorgan-
isms break it down. The DO deficit index reflects the amount
of dissolved oxygen in the water compared to its full capac-
ity. Dissolved oxygen deficit occurs when the concentration of
oxygen in the water is lower than optimal for aquatic organ-
isms. It can be caused by various factors, such as the pres-
ence of chemicals, organic pollutants or reduced water aer-
ation. Low dissolved oxygen levels can lead to hypoxia in
aquatic organisms and negatively affect aquatic ecosystems. A
water body with very low DO levels is considered a dead body
of water. Both BOD and DO are important water quality indi-
cators that can be monitored to assess the extent of pollution
and the health of aquatic ecosystems. High BOD values and
low dissolved oxygen levels may indicate the presence of or-
ganic contaminants or other water quality problems that may
require protective or corrective action. Monitoring these in-
dicators can help identify potential risks and take appropriate
action to protect and preserve water health. Further consider-
ations will include a mathematical model describing these in-
dicators to support the real-time monitoring process. In online
monitoring issues, solutions are sought that bypass the com-
plexity of calculations while maintaining the required accuracy

of the solution. Due to the natural nature of the river, the deter-
mination of the dynamics of pollutant concentrations requires
an indication of place and time. Thus, a model that determines
the level of pollutant concentration in the form of partial dif-
ferential equations is adopted. In the case of a mathematical
model of a river, some simplifications can be made that cause
a very slight loss of accuracy, due to the specifics of the object
itself. The general mathematical model of a river, describing
biochemical pollution and the process of self-purification takes
the following form:

∂x(l, t)
∂ t

+ v(l, t)
∂x(l, t)

∂ l
= Ax(l, t)+wR(l, t), (1)

with initial (bonduary) conditions:

IC : x(l, t0) = x0(l)+ vR(l), (2)

BC : x(0, t) = xB(t)+ vp(t), (3)

where: x(l, t) - vector x(l, t) = col[x1(l, t),x2(l, t)] with BOD

and DO components expressed in [mg/l], A =

[
k1 0
k2 k3

]
-

coefficient matrix ki, i = 1,2,3, vR(l), vp(t) - disturbances oc-
curring in boundary conditions, wR(l, t) - disturbances inter-
acting along the length of the river, x1 - concentration of bio-
chemical pollutants expressed in terms of BOD, x2 - DO dis-
solved oxygen concentration deficit, which is the difference
x2 = x2S−x2N between the dissolved oxygen concentration x2S
and the oxygen content of the water in the saturated state x2N .
The coefficients k1, k2 and k3 appearing in the equations de-
scribe the dynamics of the river’s natural self-purification pro-
cess and depend primarily on temperature, in particular, they
stand for: k1 - reaction rate coefficient of BOD [1/day], k2 -
coefficient of the influence of BOD on DO [1/day], k3 – co-
efficient of change of DO [1/day]. In the implementation of
the monitoring task in real-time mode, it is sought, as far as
possible, to reduce the complexity of calculations. Therefore,
the authors for this purpose transform the mathematical model
described by partial differential equations to a simpler form,
i.e. ordinary differential equations, keeping the accuracy of the
description unchanged. In particular, it is proposed to conduct
considerations along the so-called characteristics. These char-
acteristics will be lines defined by the flow velocity v(l, t), and
the description of the distribution of pollutant concentrations
in the river refers to a freely moving volume of water (Fig. 1).

This interpretation of the model amounts to a transforma-
tion in which the observation of the distribution of pollution
in the river is made along the so-called characteristics in the
spatio-temporal domain. To preserve the identity of the func-
tion describing the values of the state coordinates x in the
spatio-temporal domain (the solution of hyperbolic partial dif-
ferential equations), boundary conditions from the description
of the model by differential equations with distributed parame-
ters are used. The initial condition and the Dirichlet boundary
condition are used for consideration (see Fig. 1) This means
that the values of these functions are available for any length
of the river and at any time in the area. River water pollu-
tion levels considered according to the characteristics in the

2

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



Comprehensive online estimation of object signals...

Fig. 1. The field of solutions using characteristics

l, t domain become ordinary differential equations represent-
ing the individual characteristics. The description of the vector
x in the l, t domain leads to the solution of a number of spatio-
temporal characteristics. As a result of this interpretation, for a
known flow velocity v of the river, the distribution of pollution
depends only on time, so, the characteristics are defined by the
relation:

d
dt
(l, t) = v(l(t)) (4)

The characteristics shown in Fig. 1 describe the x vector in the
following domain areas(l, t):

• i− th characteristic:

vi(l(t)) =
d
dt
(l, t)|t=t0 , l(t) =

ti∫
t0

vi(t)dt, l(t) ∈ [li,L] (5)

• main characteristic:

vg(l(t)) =
d
dt
(l, t)|t=t0 , l(t) =

T∫
t0

vg(t)dt, l(t) ∈ [l0,L] (6)

• j− th characteristic:

v j(l(t)) =
d
dt
(l, t)|t=t j , l(t) =

T∫
t j

v j(t)dt, l(t) ∈ [l0, l j] (7)

This interpretation results in a set of characteristics covering
the entire solution domain, and the equation for each charac-
teristic takes the form of:

d
dt

x(t) = Ax(t)+Bw(t) (8)

where: x - state vector x = col[x1,x2], A - coefficient matrix
as in Eq. (1), B - interaction matrix of interference signals,
w - system disturbances vector [w1,w2], w1 - intensity of the
inflow of pollutants [mg/l/day], w2 - intensity of oxygen up-
take/supply from/to water [mg/l/day].

Experimental studies use a set of equations Eq. (8) in the
considered spatio-temporal domain, the number of which re-
sults from the density of these characteristics. It can be as-
sumed that the discretization step on length l for a partial dif-

Fig. 2. Zones and their corresponding gain corrections ∆Ki in the cor-
rection table for zones

ferential equation Eq. (1) is a parameter that determines the
size of the set of ordinary differential equations Eq. (8).

The above assumptions make Eq. (8) a nonlinear ordinary
differential equation, which will be used in further considera-
tions. For the purposes of online monitoring, such measure-
ments are chosen that can be made directly and without delay.
For the issues under consideration, such a signal is x2(t). The
general notation of the measurement equation takes the form:

y(t) =Cx+ vp (9)

where: C = [01] - measurement matrix, vp – measurement dis-
turbances.

It should be noted that both the measurement and x signals
are subject to noises with a Gaussian distribution [26].

3. ADAPTIVE ZONAL ALGORITHM WITH MEASUREMENT
WINDOW

The proposed adaptive algorithm with a measurement window
(LookUpWindow) generates all signals of the object, includ-
ing those for which measurements are not made due to the
difficulty of online measurement. The concept of the algo-
rithm is to use a filtering equation with the structure as used in
the Kalman filter. However, the gain value will be determined
adaptively by incrementally modifying the gain ∆K. Specifi-
cally, the modification of the gain coefficient is carried out at
each measurement step taking into account the current adap-
tation error εi, the history of measurements, and considering
cases of their random absence. The adaptation error is a real,
measurable signal, representing the difference between the cur-
rent measurement y(t) and the corresponding coordinate of the
monitored signal vector x̂ and was expressed by the equation:

εi = yi−Cx̂i (10)

where: εi - adaptation error in the i− th step. On the basis of
the adaptive error εi Eq. (10), which is determined on the fly,
an appropriate selection is made of the value of gain correction
∆K depending on the error’s belonging to the designated error
zones as illustrated in Fig. 2.

If the error value ε is less than the assumed error range ER0
(zone "0"), then the gain factor correction is zero. This means
that the actual monitoring error is at most equal to the permis-
sible error range. Depending on the current adaptation error
is selected gain factor correction from the adopted correction
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Fig. 3. Variability of the distribution of measurement weight values in a
moving measurement window

table for zones. In special cases of missing measurements, the
gain update is skipped.

It is worth noting that the gain is updated using corrections
derived from the value of the adaptation error, and an adjust-
ment is made to take into account several previous measure-
ments. This is due to the use of a measurement window in the
algorithm, which includes the history of measurements. Fig-
ure 3 shows a diagram of the moving measurement window
D and the weight distributions of the measurements. The pre-
sented moving measurement window D includes q measure-
ments. which means that the history of measurements is taken
into account. However, the adopted distribution of weights for
individual measurements causes that we get the effect of "ag-
ing" of measurements as the window moves. This means that a
measurement that was current previously is now treated as "ob-
solete". Assigning smaller and smaller weights corresponds to
increasingly older measurements in the measurement window
(see Fig. 3). If there is no measurement, the distribution of
weights in the window is modified, which means that the re-
maining weights of measurements in the window are increased
accordingly. The measurement window Di includes the mea-
surement at the current step ti and the measurements from pre-
vious steps ti−1, and ti−3, and as a result of the absence of a
measurement at time ti−2, the weight for that measurement is
zero.

According to the assumptions for determining gain values,
an update is made to the current gain resulting from the adap-
tation error (see Fig. 2) according to the relation:

Ksi = Ksi +∆K j (11)

where: Ksi - current value of gain, ∆K j - gain correction for the
j− th zone from the adopted zone table. Then, the correction
forcing of the estimate Mi+1 resulting from the measurement
window for the next measurement step is determined according
to the equation:

Mi+1 =
q

∑
j=0

w jKsi− j(yi− j−Cx̂i− j) (12)

Ksi− j - gain in the measurement window from the current Ksi
to the last in the window Ksi−q, w j - measurement weights
from w0 to wq, q - quantity of measurements in the measure-

ment window.
In the next iteration, the correction forcing of the estimate

takes the index i, and the equation that generates the object
signals in the monitoring system takes the form of:̂̇xi = Ax̂i +Mi (13)

Mi - correction forcing of the estimate.
A detailed description of the algorithm for monitoring an

object with randomly missing measurements is presented in
pseudo-code form in Algorithm 1.

Algorithm 1 Adaptive zonal algorithm with measurement
window (LookUpWindow)

x̂0,Ks0,M,∆K,ER,q, distribution o f weights (w0, . . . ,wq),
i,n,A // setting the initial conditions

Input: yi //measurements
Output: x̂

1: while i < n do
2: ̂̇xi← Ax̂i +Mi // determination of the estimate
3: if mesurement then
4: εi← yi−Cx̂i;
5: if εi ≤ ER0 then
6: Ksi+1← Ksi;
7: end if
8: if ER0 < εi ≤ ER1 then
9: Ksi+1← Ksi +∆K1;

// ∆K selection and gain updating
10: end if
11: if ER1 < εi ≤ ER2 then
12: Ksi+1← Ksi +∆K2;

// ∆K selection and gain updating
13: end if
14: . . . more zones
15: Mi+1←

q
∑
j=0

w jKsi− j(yi− j−Cx̂i− j);

// calculation of the correction forcing
of the estimate from the Di window

16: else
17: modi f ying the distribution o f weights

in the Di window with missing measurements;

18: Mi+1←
q
∑
j=0

w jKsi− j(yi− j−Cx̂i− j);

// calculation of the correction forcing
of the estimate from the Di window

19: end if
20: i← i+1;
21: end while

In cases of obtaining information from the object in the form
of measurements, Algorithm 1 updates the filter gain coeffi-
cient Ksi by the adopted gain correction ∆K j depending on the
affiliation of the current adaptation error εi to the zone defined
by the value of the error range ERi (lines 9 and 12). Then, the
correction forcing of the estimate resulting from the applica-
tion of the measurement window is determined (line 15). If
the value of the adaptation error ε is less than the error limit
ER0, then the gain update resulting from the adaptation error
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is not performed (line 6). Calculation of the correction forcing
of the estimate derived from the measurement window is per-
formed in each iteration. The algorithm can be easily extended
to additional zones, which can be implemented in line 14.

3.1. Measures of the quality of monitoring

Two indicators, i.e. Root Mean Squared Error (RMSE) and
Mean Absolute Error (MAE), were adopted to measure the
quality of online monitoring of the time courses of BOD and
DO signals using the presented algorithm.

The first indicator is a mean-square error and has a high sen-
sitivity to estimation deviations from actual values. The value
of the RMSE indicator is more influenced by large errors. In
addition, RMSE always takes a positive value and is expressed
in units of forecast signals [27].

For the investigated signals, the value of the RMSE index is
determined according to the formula:

RMSEi =

√
1
n

n

∑
j=1

e2
i, j (14)

where: i - index of monitored signal, ei, j = xi, j − x̂i, j - esti-
mation error of the i− th signal in the j− th step, n - number
of simulation steps. The second indicator is the mean abso-
lute estimation error of the MAE determined according to the
relationship:

MAEi =
1
n

n

∑
j=1

∣∣ ei, j
∣∣ (15)

MAE is easier to interpret its value. In addition, it is less sen-
sitive to large errors, which have little effect on the MAE value
[24].

4. RESULTS OF SIMULATION STUDIES

Simulation experiments were conducted for a hypothetical
river described by ordinary differential equations, according
to the so-called characteristics. A river flowing at an average
velocity of v = 30[km/day] with two large polluted tributaries
and an area of several tens of kilometers with an intense inflow
of pollutants were considered.

The simulation studies presented here cover signals obtained
from the assumed mathematical model and signals generated
using adaptive algorithms: zonal LookUpz [15] and the pro-
posed zonal with measurement window LookUpw, as well
as the Kalman filter. The results also include cases of ran-
dom missing measurements with different frequencies of oc-
currence.

Figure 4 shows the waveforms of BOD and DO signals on
the selected characteristic over a 36-day period, where the in-
fluence of lateral inflows is evident in the form of large BOD
values at the beginning of the simulation period and on day 24.
A sudden increase in BOD also occurs on day 12 and continues
for several days. The interpretation of such a situation relates
to intensive inflows of pollutants caused by large rainfalls last-
ing in the area of the river’s course. It should be emphasized
that such a character of changes in the forcing of BOD con-
centrations makes large, even quite unnatural, demands on the
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Fig. 4. BOD and DO signals obtained with LookUpWindow, LookUp
and Kalman filter algorithms
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Fig. 5. Gain coefficients generated by LookUpWindow and LookUp
algorithm

estimated signals. The unmeasured BOD signals obtained with
different algorithms take on positive values. The negative sig-
nals relate to the DO deficit, the measurement of which is easy
to implement, hence the high similarity of the obtained wave-
forms. The measurement window and zonal algorithms (red
and black, respectively) generate signals of comparable qual-
ity, i.e., the generated signals are close to the model values,
while the signals from the Kalman filter (green) show greater
discrepancies.

The resulting BOD and DO signals in Fig. 4 result from
different values of the gains generated by the algorithms, and
their waveforms are presented in Fig. 5. The highest values of
amplifications appear after sudden large changes in the forc-
ing, which means the natural response of the algorithm, to the
occurrence of large errors. A characteristic feature of the con-
sidered cases are the amplifications of different signs and am-
plitudes for BOD and DO signals.

The study includes cases of random lack of delivery of mea-
surements. In practice, such a situation can refer to the failure
of the measurement system caused, for example, by temporary
shortages of power supply or transmission of signals.

Figure 6 shows measurement moments with missing mea-
surements as points on the time axis. Despite the random
absence of 20% of measurements, the algorithms generated
waveforms of similar quality (compare with Fig. 4). The
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Table 1. Monitoring quality of BOD and DO signals for different num-
bers of randomly missing measurements

LookUpWindow RMSE MAE
estimated signal BOD DO BOD DO
all 360 measurements 3.765 0.598 1.850 0.272
20% (lack of 71) 3.553 0.629 1.848 0.275
49% (lack of 176) 3.722 0.695 1.879 0.326
69% (lack of 250) 3.986 0.649 2.102 0.314

LookUpz RMSE MAE
estimated signal BOD DO BOD DO
all 360 measurements 3.697 0.697 1.904 0.323
20% (lack of 71) 4.139 0.805 1.972 0.357
49% (lack of 176) 4.284 0.833 2.147 0.395
69% (lack of 250) 4.718 0.996 2.392 0.505

Kalman filter RMSE MAE
estimated signal BOD DO BOD DO
all 360 measurements 5.293 0.604 3.110 0.306
20% (lack of 71) 5.520 0.707 3.227 0.360
49% (lack of 176) 5.972 0.898 3.562 0.492
69% (lack of 250) 6.139 0.958 3.794 0.595

experiments extend the cases where missing measurements
amounted to several tens of percent (see Tab. 1) Despite the
large lack of measurements (69%), the algorithms do not lose
stability of performance. To illustrate the correctness of the
algorithms for difficult situations caused by the absence of a
large number of measurements, selected waveforms of gen-
erated signals and gains are shown in Fig. 7 and Fig. 8.
The zone algorithm, in the absence of a large number of mea-
surements, showed a larger amplitude of change in gain coef-
ficients compared to the algorithm with a measurement win-
dow. Despite this behaviour, the quality of signals generated
by the algorithm with the measurement window is much better
compared to the other algorithms. The quality of the results
obtained in the algorithm with a measurement window also
depends on the assumed distribution of measurement weights.
Table 2 shows the values of the RMSE and MAE quality in-
dicators for different distributions of the measurement window
weights. Increasing the values of the weights slightly improves
the quality of the estimation assessed by the RMSE index, but
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Fig. 7. BOD and DO signals and gains generated by the tested algo-
rithms at a random lack of 185 out of 360 possible measurements
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Table 2. Monitoring quality of BOD and DO signals for different num-
bers of randomly missing measurements

RMSE LookUpWindow LookUpz Kalman filter
estimated signal BOD DO BOD DO BOD DO
0.6; 0.35; 0.15; 0.05 3.488 0.662

4.21 0.88 5.20 0.621.2; 0.7; 0.3 ;0.1 3.189 0.577
2.4; 1.4; 0.6; 0.2 3.110 0.564

MAE LookUpWindow LookUpz Kalman filter
estimated signal BOD DO BOD DO BOD DO
0.6; 0.35; 0.15; 0.05 1.407 0.297

1.75 0.41 3.00 0.341.2; 0.7; 0.3; 0.1 1.419 0.271
2.4; 1.4; 0.6; 0.2 1.647 0.302

in the case of the MAE index, a deterioration in quality can be
observed with larger values of the measurement weights.

5. CONCLUSIONS

This paper presents an adaptive algorithm that generates online
object signals based on online measured state coordinates. A
mathematical model of a river described by ordinary differen-
tial equations, for which water quality is represented by BOD
and DO deficit indicators, was used as a test object.

The algorithm estimates the BOD signal based on the DO
signal measurements made online. During the estimation of
signals in the algorithm, adaptive changes are made to the gain
coefficients using an incremental method. The correction val-
ues are determined for the zones in the array, and also result
from updating the weights in the measurement window. The
proposed algorithm does not require knowledge of the charac-
teristics of the enforcing signals that interact on the object and
measurements. The algorithm is in the form of additive filter
gain correction, and it uses a predefined adaptive error and a
history of measurements that takes into account their weights.
In addition, the approach takes into account random lack of
measurements, which did not much deteriorate the quality of
the estimation. In all cases studied, the zonal algorithm with
a measurement window provided better estimation results, as
measured by the RMSE and MPE quality indicators, than the
zonal algorithm without a measurement window and Kalman
filter. This was particularly evident for the estimation of the
unmeasured state coordinate, BOD.

The presented concept of a zonal algorithm with a measure-
ment window applied to monitoring an object described by a
mathematical model representing only two water quality in-
dicators, i.e. BOD and DO, works well. Satisfactory results
should also be expected with further expansion of the mathe-
matical model to include other water quality indicators.
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