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Microstructure evolution through cryogenic rolling  
of ultra-high Purity titaniuM Produced by electron beaM Melting 

in this study, crystal grain refinement of pure titanium manufactured by electron beam melting through cryogenic rolling was 
performed. The effect of rolling in a cryogenic atmosphere on average grain size was investigated. Cryogenic atmosphere rolling 
was confirmed to be smaller than normal temperature rolling. electron back scatter diffraction (eBSD) confirmed the presence of 
oriented crystal grains in the material. The deformation, temperature, and stress generated during rolling were calculated using 3D 
simulation. Finite element analysis (FeM) modeling was used to analyze the trend of average grain size change during the heat 
treatment of the rolled samples.
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1. introduction

The demand for ultrahigh-purity titanium (UP-Ti) for use as 
sputtering targets is increasing [1-4]. recently, the electron beam 
melting process (eBM) has enabled the manufacturing of UP-Ti 
with a purity level of 4n5 (99.995%) or higher [5-12]. The eBM 
process utilizes an electron beam to melt the metal powder and 
shape it into a desired form. eBM occurs under high-vacuum 
conditions, allowing impurities to volatilize, thus producing 
a high-purity final product. However, high-purity ingots manu-
factured using the eBM process have coarse grain sizes and 
relatively irregular textures. Previous studies have demonstrated 
that targets with smaller grain sizes exhibit higher deposition 
rates compared to those with larger grain sizes  [13-15]. This is 
because grain boundaries are more vulnerable to attack during 
sputtering. The higher the grain boundary area, the faster the film 
deposition. in addition, the crystallographic orientation must be 
aligned along the (0001) direction to improve the uniformity of 
the sputtered film [16-18].

in the case of UP-Ti manufactured by eBM, the vapor 
pressure differences between titanium and other elements, such 
as oxygen and iron, leads to substantial evaporation of these 
impurities, resulting in higher purity. However, the high purity of 
UP-Ti also leads to low lattice friction and weak grain boundary 

pinning forces, which in turn contribute to a remarkably high 
grain growth rate [19-21]. For its application as a sputtering 
target, UP-Ti needs to possess a fine grain size below 30 μm 
and a strong (0001) texture orientation along the nD (normal 
direction). Cryogenic rolling below –70°C is a useful process 
for obtaining fine grain structures and controlled texture charac-
teristics that are difficult to achieve using conventional rolling 
and forging processes [22-24]. 

in the present study, crystal grain refinement of UP-Ti ingots 
produced by eBM through cryogenic rolling was performed. 
rolling was carried out at room temperature and –75°C. after 
rolling, heat treatment was performed at 800°C for 5, 15, and 
30 minutes to investigate the changing grain size.

2. experimental details

UP-Ti ingots produced using the eBM process (Produc-
tion Technology research institute) were used in this study. 
a beam current of 500 ma was applied for 1 hour to produce 
a 900 g ingot. owing to the high-vacuum electron beam melt-
ing, the oxygen content of the UP-Ti ingots was measured as 
1218 ppm, far below that of commercially pure Ti (1800 ppm 
for CP-Ti grade 1). The UP-Ti ingots were rolled at room 
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temperature (25°C) and cryogenic temperature (–75°C). each 
sample was designated as an room temperature (rT) or cryogenic 
temperature (CT sample. The initial ingot size for rolling was 
50 mm×20 mm×17 mm. after 18 rolling passes, the ingot height 
decreased to 5.6 mm. ethanol was cooled to –75°C to create 
a cryogenic atmosphere, and the rolled CT samples were cooled 
for a sufficient amount of time before each pass. after rolling, 
the specimens were heat-treated at 800°C for 5, 15, and 30 min.

The samples were rolled and heat treated under each condi-
tion and etched using an electropolishing machine (electropol-5, 
Struers). etching was performed using 95% methanol and 5% 
perchloric acid etchant for 10 seconds at –20°C, and 30 v was 
applied. The microstructures of the etched samples were exam-
ined using an optical microscope (olyMPUS Co. gX41 model) 
and electron backscattered diffraction (TSl Hikari XP) [25]. 
The average grain size was determined by analyzing the optical 
microscope data using imagej software [26,27].

Using the finite element method with the DeForM-3D 
code [28,29], the distributions of temperature, applied stress, and 
strain were simulated. The reliability of the simulation results 
was confirmed by comparing the height measured after the pass 
with that calculated during the pass. 

3. results and discussion

Fig. 1 shows the optical micrographs of UP-Ti before and 
after rolling. Fig. 1a shows that the as-received microstructure 
produced by the eBM process is composed of a lamellar phase 
structure. The lamellar thickness was approximately 20-100 mm. 

Fig. 1b shows the long-stretched coarse-phase structure of 
the rT sample after room-temperature rolling. Fig. 1c shows 
the microstructures of the CT samples after rolling at cryogenic 
temperatures. after cryogenic rolling, the microstructure of the 
specimen exhibited a thinner-phase structure compared to that of 
the specimen rolled at room temperature. This suggests that 
cryogenic rolling transferred more stress compared to normal 
temperature rolling, attributed to the generation of slip and the 
increased occurrence of twins during cryogenic rolling, leading 
to higher internal stress and reduced grain size during recrys-
tallization. Deformation twinning has been reported to create 
high-angle twin boundaries within the grain matrix, causing grain 
fragmentation and leading to grain refinement [23].

The effects of cryogenic rolling are illustrated in Fig. 2. 
The grain size of the rolled sample increased significantly with 
heat treatment at 800°C. Under the same heat-treatment condi-
tions, the average grain size of the CT sample was considerably 
smaller than that of the rT sample. Fig. 2(a-f) confirms this 
finding. Fig. 2(g) shows the average grain size plot as a func-
tion of annealing time at 800°C. notably, the grain growth rate 
of UP-Ti is much faster than that of conventional CP-Ti. This is 
because the amount of impurities that can interfere with atomic 
movement or diffusion is very low in UP-Ti.

Fig. 3 shows the eBSD data of the sample subjected to heat 
treatment for 5 min after rolling. Twin structures disappeared 
for both the rT and CT samples because of recrystallization. 
Moreover, both rT samples had a strong basal texture. However, 
compared to the CT, the basal texture of the rT deviated more 
from the nD direction. For example, the (0001) pole figure of 
the rT sample consists primarily of a split basal texture towards 

Fig. 1. optical images of (a) as-received UP-Ti after eBM, (b) microstructure after room temperature rolling, and (c) cryogenic rolling, respectively

Fig. 2. optical images of microstructure after heat treatment for (a, d) 5 min, (b, e) 15 min, (c, f) 30 min. (a, b, c) for rT samples, (d, e, f) for CT 
samples. (g) average grain size of the microstructure of UP-Ti ingot as a function of annealing time
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the TD and rD at an angle of ~80°, while that of the CT sample 
shows a split basal texture towards the TD at an angle of ~45°. 
The average grain size of the rT sample was ~50 micrometers, 
while the average grain size of the CT samples subjected to the 
same heat treatment was ~29 micrometers, in line with Fig. 2. 
in addition, the standard deviation of the grain size distribution 
was much smaller at CT than at rT. These results indicate that the 

microstructure of UP-Ti, suitable for sputtering target materials, 
is better controlled through cryo-rolling. Therefore, a uniform 
and fast deposition can be achieved by controlling the crystal 
structure of pure Ti via cryogenic rolling.

The stress, strain, and temperature during cryogenic rolling 
were simulated using the Finite element analysis (FeM) approach 
and are presented in Fig. 4. a very large strain generated a high-

Fig. 3. eBSD data of (a) rT and (b) CT samples after heat treatment

Fig. 4. (a) Strain during cryogenic rolling calculated by simulation, (b) stress, (c) temperature, and (d) sample height per each pass
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stress level after 18 rolling passes. During the rolling process, the 
local temperature at the contact area with the roller experienced 
a significant increase owing to deformation heating, reaching 
up to –3°C. However, the average temperature was successfully 
maintained below –30°C after passing through the roll die. By 
ensuring sufficient cooling time between each pass, the plate 
temperature was set to –75°C for each pass. The experimental 
measurements of the heights closely matched the simulated 
heights (as shown in Fig. 4d), demonstrating the reliability of 
the FeM simulation results.

The grain-size evolution during the rolling and subsequent 
annealing processes was closely related to the accumulated 
strain and temperature, which varied with the position of the 
plate. a microstructure prediction module pre-implemented in 
the DeForM-3D Fe code was utilized to predict the micro-
structural variations during cryogenic rolling. a flowchart of 
the microstructure-prediction module implemented in the Fe 
code is shown in Fig. 5(a). The grain-growth exponent (n) and 
activation energy (Qg) for grain growth were 2 and 100 kj/mol, 
respectively. Fig. 5b shows the FeM predictions for the aver-

Fig. 5. (a) Flow chart of a microstructure prediction module for the recrystallization and grain growth models. (b) Distribution of FeM-predicted 
average grain size for the CT sample after annealing
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age grain size of the CT sample after annealing at 800°C for 
5 min. The grain size at the tail edge region was larger than that 
in the inner region because of faster thermal diffusion. gener-
ally, the simulation results were in excellent agreement with the 
experimental observations, although some inconsistencies were 
observed. These inconsistencies may be attributed to the devia-
tion between the actual and simulated temperatures. 

4. conclusions

in this study, we confirmed that cryogenic rolling can 
effectively refine the grain size of pure titanium produced by 
electron beam melting. The average grain size of pure titanium 
rolled with a reduction ratio of 70% in a –75°C atmosphere and 
subjected to annealing was found to be 29 μm. Furthermore, 
the (0001) basal texture of the cryogenically rolled sample 
exhibited improved alignment along the nD compared to the 
sample rolled at rT. The stress, strain, and temperature changes 
during rolling were simulated using an Fe code, and reasonable 
predictions of the grain size evolution were obtained for the  
CT samples. 
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