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Laser Weld Seam Curved Path Effect on 6063 Aluminum Alloy Strength  
and Temperature Distributions: COMSOL Numerical Simulation

To improve the welding performance of aluminum alloys, a thermal source model of an irregular weld seam was established. 
COMSOL software was used for numerical simulation of the weld seam geometry effect on the temperature and stress fields in 
laser welding, which results were experimentally validated. The results show that the ellipsoidal laser welding melted micropool 
exhibited quasi-steady-state temperature field characteristics. The temperature gradient and thermal stress showed an increase 
followed by a decline. The temperature fluctuation amplitude of the square-tooth-shaped weld seam exceeded that of the arc-tooth-
shaped one. The temperature evolution of the broken line tooth-shaped weld seam showed a slightly increasing trend, except for the 
inflection point. The experimental average tensile strength of the weld seam was the highest, reaching about 210 MPa, i.e., roughly 
85% of the base material (245 MPa), which coincided with the COMSOL-based temperature field simulation results. With increas-
ing deformation amplitude and transition radius, the maximum tensile force, tensile strength, and elongation at fracture showed an 
increasing trend. However, the deformation amplitude should be below a certain limit because its increase elongates the welding 
path and reduces the distance between weld seams, resulting in serious heat accumulation. The tensile fracture morphology of the 
6063-T6 base material was curved shear, with shallow toughness pits, small tearing edges at the edges, and small granular objects, 
indicating small plastic deformation during the fracture process. The tensile fracture of the welded part spanned the weld seam 
and the base material, and the fracture occurred along the tangent direction of the weld seam. The fracture surface was smooth, the 
tearing edges at the edge of the toughness pit shifted along the weld seam direction, forming many co-directional slip bands, with 
highly pronounced plastic deformation.
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1. Introduction

The 6063-T6 aluminum alloy has a small density, good 
mechanical properties, excellent thermal processing, and corro-
sion resistance, implying its wide use in aerospace applications, 
including aircraft intakes and fuel tanks [1-4]. However, fatigue 
cracks and other defects in aerospace thin-walled aluminum al-
loy structures inevitably appear during their service due to the 
combined effects of cyclic loads, impact vibrations, corrosion, 
temperature differences, and other factors that seriously affect 
flight safety. Due to the special structure, small space, and 
difficulty accessing both sides of the aircraft intake and fuel 
tank, traditional riveting repair processes are not applicable, 
and alternative repair technologies are urgently needed. As an 
emerging joining technology, welding, especially laser welding, 
is increasingly accepted by the aerospace industry worldwide 
and has become a research hotspot [5-8]. However, the high 

thermal conductivity, reflectivity, and element burnout combined 
with low welding stability make it difficult for linear welds of 
aluminum alloys produced by low-power lasers to meet strict 
quality requirements [9-13].

The research goal is to provide a new technology to replace 
riveting for the welding and repair of aluminum alloy structure 
damage on the surface of the aircraft, and to improve the per-
formance of aluminum alloy structural welds with new ideas, so 
that the tensile strength in the direction of the main stress after 
welding and repair can reach the level of more than 85% of the 
strength of the base metal. Alternatively, weld seams made by 
curved laser paths provide strength re-distribution in the tensile/
bending planes with mixed high-strength base and lower-strength 
weld materials. To this end, this study simulated various-shaped 
laser weld seams in 6063 aluminum alloy sheets using the finite 
element method run via COMSOL software. Numerical simu-
lation and experimental laser welding tests were conducted to 
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clarify the effects of the weld seam geometry and size parameters 
on the temperature and stress fields of 6063 aluminum alloy plate 
subjected to laser welding. The study was aimed at improving 
the weld repair quality and providing theoretical support for the 
engineering application of low-power laser welding technology 
for damage repair of aluminum alloy parts.

2. Experimental materials and methods

The study used 6063-T6 aluminum alloy sheets with 
100 mm×60 mm×3 mm dimensions. Their chemical composi-
tion is shown in TABLE 1. The laser power ranged from 1000 to 
1200 W, the scanning speed ranged from 850 to 1250 mm/min, 
and the argon gas protection pressure ranged from 0.2 to 0.3 MPa. 
The welding was done on one side with a copper plate as a back-
ing, and the defocus amount was –1 mm.

Table 1

Chemical composition of 6063-T6 aluminum alloy (at.%)

Si Fe Cu Mn Mg Cr Zn Ti Al
0.2-0.6 ≤0.35 ≤0.1 ≤0.1 0.45-0.9 ≤0.1 ≤0.1 ≤0.1 margin

A WD-P6205 universal testing machine was used to test 
the tensile strength. A Hitachi S-3400 N scanning electron 
microscope was applied to observe the fracture morphology; 
To design the structural model of different kinds of welds, the 
matrix is spliced together by two aluminum alloy plates, the size 
is 200 mm×60 mm×3 mm, and the weld position is located in 
the middle of the two plates, and with the help of COMSOL 
software, according to the actual material size, the model size 
is constructed, the curved weld is located in the middle posi-
tion, the heat source travels in the direction of the curved weld, 
and the meshing of the loading surface of the heat source at 
the curved weld adopts a quadrilateral grid. The finite element 
method uses a numerical approximation to calculate, so in most 
cases, the more precise the meshing, the more accurate the final 

result. Therefore, in order to increase the accuracy, the mesh 
accuracy level is ultra-fine on the heat source loading surface. 
a finite element model and path model were established for three 
irregular (rectangular, circular, and zigzag) weld path configura-
tions depicted in Fig. 1, producing square tooth, arc tooth, and 
broken line shapes, respectively.

3. Experimental results

3.1. Temperature and stress fields of different-shaped  
weld seams

For the above three weld path configurations, the laser 
welding temperature evolution curves were experimentally 
obtained for monitoring points 1 to 13 depicted in Fig. 2 and 
plotted in Fig. 2(b-d).

As seen in Fig. 2a, the peak temperature fluctuation of the 
square tooth weld was not significant, reaching above 1100℃. 
Still, the peak and the valley have a large temperature difference. 
Although the bottom temperature of the valley showed a slow 
upward trend, the first half was still below the melting point of 
the base material, resulting in incomplete penetration on one 
side. The temperature fluctuation range of the arc tooth weld 
was smaller than that of the square tooth shape, and it was more 
stable, showing an upward trend. Still, the bottom temperature 
of the valley was mostly lower than the melting point of the base 
material. In the straight line section of the broken line tooth weld, 
the temperature was higher, with a peak temperature exceed-
ing 1100℃, and the bottom temperature of the weld was over 
800℃, exceeding the melting point of the base material. Despite 
a significant temperature drop at turning points 1 (4, 5, 6) and 2 
(8, 9, 10), the peak temperature was still above 900℃, while all 
temperature curves were stable and slightly rising. The broken 
line tooth weld temperature evolution was the most regular, and 
the respective welding process was the most controllable.

The temperature distribution law of laser welding is shown 
in Fig. 3. As the heat source of laser welding moved, the basic 

deformation 
amplitude a 

transition r  radius R 

(a) finite element model	 (b) rectangular path

shaape period T

(c) circular path	 (d) zigzag path
Fig. 1. Curve path simulation model
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(c) circular path	 (d) zigzag path
Fig. 2. Temperature-time curve of different curve paths

(a) T = 0.1 s	 (b) T = 3 s

(c) T = 5 s	 (d) T = 7 s

(e) T = 9 s	 (f) T = 9.4 s
Fig. 3. Temperature field at different times
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shape of the welding pool did not change and remained elliptical, 
showing quasi-steady-state temperature field characteristics. The 
temperature field distribution gradually changed from the initial 
approximate semi-elliptical arc tooth shape to an elliptical one, 
and the temperature lines showed a semi-circular arc divergent 
shape. They also varied with time, gradually becoming less 
dense, indicating a decreasing trend in the temperature gradient.

The initial condition of the weldment is the distribution of 
the temperature field at the initial time, and the initial tempera-
ture before the simulation is set to 293K. The thermal radiation 
phenomenon has little influence on this simulation, so only the 
deformation and stress in the thermal convection laser welding 
process are considered. The influence of temperature gradient 
changes on the stress field of laser welding is shown in Fig. 4. 
When the heat source was applied to the welding starting point, 
there was no constraint on the solidification section of the weld, 
so the thermal stress was relatively small. With the increased 
length of the solidified weld and increased thermal accumulation, 
the tensile stress formed by the coupling effect of temperature 
and constraint force grew rapidly, promoting formation of such 

defects as thermal cracks, pores, and collapse. At the end of 
the weld seam, the thermal accumulation reached a high level, 
the overall temperature of the base material increased, the 
temperature gradient dropped, while the thermal stress showed 
a downward trend.

3.2. Tensile properties of different shaped welds

This study adopted the deformation amplitude a = 20 mm, 
shape period T = 40 mm, and transition radius r = 3 mm. The 
tensile performance curves of three different-shaped welds are 
shown in Fig. 5.

The average tensile strength of the zigzag weld was the 
highest (150 MPa), with a maximum value of 154 MPa and 
a minimum value of 145 MPa), surpassing that of the square 
tooth and arc tooth welds (with maximum, minimum, and aver-
age values of 136, 84, and 114 MPa, respectively). These results 
were consistent with the temperature field simulation results of 
COMSOL.

(a) T = 0.1 s	 (b) T = 1 s

(c) T = 3 s	 (d) T = 5 s

(e) T = 7 s	 (f) T = 9 s
Fig. 4. Thermal stress distribution at different time locations under the same group of paths



213

At the turning point, the operation was hindered, the dwell 
time increased, and such phenomena as excessive temperature 
of the base material, collapse of the weld seam, and even melt-
ing might occur, affecting the forming quality and reducing the 
mechanical properties. Therefore, the deformation amplitude 
a and transition radius r of the zigzag tooth weld seam were 
optimized, as shown in Fig. 6.

It can be seen that with the increase in the deformation am-
plitude and transition radius, the maximum tensile force, tensile 
strength, and elongation at break all showed an upward trend, 
with a maximum tensile strength of approximately 210 MPa, 
reaching 85% of the base material (245 MPa). Suitable shape 
parameters could effectively improve the welding performance, 
but the deformation amplitude should be kept within certain 
limits, because. excessive amplitude will lengthen the welding 
path, reduce the distance between weld seams, and result in 
severe heat accumulation.

The tensile fracture morphology of the 6063-T6 substrate 
is shown in Fig. 7a, which appears as a curved shear shape with 
a shallow notch depth. There are small tearing edges at the edges 
and small granular objects around, indicating that the plastic 
deformation generated during the fracture process is small. Many 
holes at the fracture surface are prone to stress concentration and 
microcracks, reducing plasticity. Tensile fracture of the welded 
part occurs in the weld zone and the original material zone, as 
shown in Fig. 7b. At point A, due to the presence of porosity 
defects, the notch depth of the fracture increases significantly, 
there are small voids around, and the tearing edges at the edges 
are smaller than those of the substrate, indicating a decrease in 
stress and a decrease in plasticity and toughness during the tensile 
process. At point B, the fracture occurs along the tangent direc-
tion of the weld, the fracture surface is smoother, and the tearing 
edges at the notch are offset along the direction of the weld, form-
ing a large number of slip bands in the same direction, which is 
a typical characteristic of plastic deformation [14].

Fig. 5. Force-time curve of the curve path tensile test (a = 20 mm, 
T = 40 mm, r = 3 mm)

(a) Different deformation amplitudes (r = 3 mm)

(b) Different fillet radii (a = 30 mm)

(c) Different process parameters (P = 975 W, V = 800 mm/min)
Fig. 6. Force evolution curves for different deformation amplitudes (a), 
fillet radii (b), and process parameters (c)
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4. Conclusions

The results obtained made it possible to draw the following 
conclusions:
(1)	 The melted micropool in laser welding remains elliptical in 

shape and exhibits a quasi-steady-state temperature field. 
The temperature field distribution gradually changes from 
an initial approximate semielliptical arc tooth shape to an 
elliptical shape. The temperature lines show a semi-circular 
arc divergent shape, which changes over time. The tempera-
ture lines gradually change from dense to sparse, indicating 
a decreasing trend in the temperature gradient. The thermal 
stress shows an initial increase followed by a decrea
sing trend.

(2)	 The temperature of the square tooth weld seam fluctuates 
unstably; the temperature fluctuation amplitude of the arc 
tooth weld seam is smaller than that of the square tooth; 
except for the turning point, the temperature of the broken 
line tooth weld seam is in a stable and slightly rising state, 
and the average tensile strength of the weld seam is the 
highest, reaching approximately 210 MPa, i.e., 85% of 
the base material (245 MPa), which is consistent with the 
temperature field simulation results of COMSOL.

(3)	 Appropriate shape parameters can effectively improve 
welding performance. With the increase in deformation 
amplitude and transition fillet radius, the maximum tensile 
force, tensile strength, and elongation after fracture all show 

an upward trend. However, the deformation amplitude 
should be limited. Increasing the amplitude will lengthen 
the welding path, decrease the distance between welds, and 
result in severe heat accumulation.

(4)	 The tensile fracture morphology of the 6063-T6 substrate is 
curved and sheared, with a shallow notch depth and small 
tearing edges at the edges. Small granular objects nearby 
indicate that the plastic deformation generated during the 
fracture process is small. The tensile fracture of the welded 
part spans the weld and the base material, and the fracture 
occurs along the tangent direction of the weld. The frac-
ture surface is smooth, and the tearing edges at the notch 
are offset along the weld direction, forming numerous 
co-directional slip bands with obvious plastic deformation 
characteristics.
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