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1. INTRODUCTION 

The ever-increasing population, industrial developments, and 

rapid technological developments increase the energy needed 

[1]. The negative environmental impacts of fossil fuels, the 

most widely used energy source in today's world, and the fact 

that they cause climate change make it necessary to turn to 

alternative energy sources. Investments in renewable energy 

sources such as wind, biomass, solar, and hydroelectricity, 

which have low negative impact on the environment, continue 

to increase [2], [3], [4]. Although energy produced based on the 

cycle of nature is sustainable, it has disadvantages in terms of 

continuity. Solar power plants cannot produce at night and 

operate with low efficiency on cloudy days. Similarly, wind 

power plants can only produce when the wind blows at a 

specific interval [5], [6], [7]. Considering energy is a constant 

need, renewable energy sources are integrated with energy 

storage systems (ESS) to meet this need. While ESSs charge 

during the periods when the RESs generate energy, they feed 

the system with the energy they store during the hours when 

production stops, ensuring the reliability and continuity of the 

energy supply. 

ESSs can be divided into two categories in terms of density: 

energy and power density. High-energy density storage 

systems store large amounts of energy and realize long-term 

energy release. Storage units such as lithium-based batteries 

and fuel cells are considered in this class. Although these 

systems can store energy densely, they have the disadvantage 

of releasing energy quickly and in large quantities.  On the 

other hand, high-power density energy storage systems allow 

for the instantaneous release of energy. Supercapacitors and 

flywheel systems are examples of this storage technique. Both 

systems serve different purposes and needs [8]. Hybrid energy 

storage systems (HESS) have been developed to utilize the 

advantages of both systems. Thanks to integrating two 

technologies, HESS balances energy and power needs, 

providing long-term energy and meeting instantaneous power 

needs. In addition, applications requiring instantaneous power 

prevent stress on the storage unit, which has a high energy 

density and extends the cycle life [9]. There are many hybrid 

energy storage options in the literature [10], [11], [12], [13]. 

It is also widespread to use batteries, the most widely used 

high energy density storage unit [14], in hybrid with 

supercapacitors, the most commonly used high power density 

storage unit [15], [16]. 

An energy management system (EMS) must control hybrid 

storage systems' efficiency and high-performance operation 

[17]. EMSs are essential to control, effectively monitor, and 

optimize energy consumption by monitoring and analyzing 

various parameters. EMSs can use parameters directly *e-mail: gyuksek@mersin.edu.tr 

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES
DOI: 10.24425/bpasts.2024.150203

An Adaptive Energy Management Approach for
  Battery-Supercapacitor Hybrid Energy Storage
  System

Gökhan YÜKSEK*,  Alkan ALKAYA

Department of Electrical and Electronics Engineering,  Faculty of Engineering, Mersin University, Ciftlikkoy 33100, Mersin, Turkey

Abstract  Energy storage systems (ESS)  are  indispensable in daily life  and  have two types that can offer high energy and  high

power density.  Hybrid energy storage systems (HESS) are obtained by combining  two  or more energy  storage  units  to benefit

both types. Energy management systems (EMS)  are essential  in ensuring  HESS's reliability, high performance, and efficiency.

One of the most  critical  parameters for EMS is the battery state of health (SoH). Continuous monitoring of the SoH provides

essential  information  regarding  the system's status, detects unusual performance degradations  and enables planned maintenance,

prevents  system  failures,  helps  keep  efficiency  at  a  consistently  high  level,  and  helps  ensure  energy  security  by  reducing

downtime. The SoH parameter depends on parameters such as Depth of Discharge (DoD), charge and discharge rate (C-Rate),

and temperature. Optimal values of these parameters directly affect the lifetime and operating performance of the battery. The

proposed Adaptive Energy Management System (AEMS) uses the SoH parameter of the battery as the control input. It  provides

optimal control by dynamically  updating the C-Rate and DoD parameters. In addition, the supercapacitor integrated into the

system with filter-based power separation prevents deep discharge of the batteries.  Under the proposed AEMS control, HESS

has been observed to generate 6.31% more energy than a system relying solely on batteries. This beneficial relationship between

supercapacitors  and  batteries  efficiently  managed  by  AEMS  opens  new  possibilities  for  advanced  energy  management  in
applications ranging from electric vehicles to renewable energy storage systems.

Key words:  Lithium batteries,  Energy  management systems, Renewable energy,  Hybrid  Energy storage,  Supercapacitor

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

THIS IS AN EARLY ACCESS ARTICLE.
This article has been accepted for publication in a future issue of this journal,

but has not been fully edited. Content may change prior to final publication.



2 

measured by sensors, such as current, voltage, and 

temperature [18]. Still, for high performance, they also need 

battery parameters such as state of charge (SoC), state of 

health (SoH), charge-discharge rate (C-Rate), and depth of 

discharge (DoD), which can be obtained indirectly by 

estimation or prediction [19], [20]. 

One of the most critical parameters affecting the reliability 

and performance of ESS is SoH. With SoH monitoring, which 

can be estimated from the data of the ESS obtained through 

sensors, it is possible to determine the instantaneous status of 

the ESS and the approximate stage of its life in general use 

and to identify potential problems in advance. It can also 

detect unusual drops in performance, enable planned 

maintenance, prevent system failures, keep efficiency at a 

constant high level, and ensure energy security by reducing 

downtime. The SoH parameter can be used as a performance 

and success indicator for EMSs, as well as a part of an 

algorithm that directs the operation of the EMS by using it as 

input. Using the SoH parameter as an EMS input, which 

provides information considering the whole life of the 

batteries, plays a crucial role in developing strategies to 

increase components' lifetime and realize longevity 

perspective [21]. 

Another essential element that can be used in ESSs is the 

parameter that determines the charge and discharge rates, also 

called C-Rate. C-Rate is critical for evaluating cell and battery 

performance in energy storage systems [22]. C-Rate is a rate 

that expresses the charge or discharge rate of a cell or battery 

relative to its nominal capacity. This parameter is critical in 

how energy management systems monitor, control, and 

optimize battery performance. The C-Rate of batteries 

indicates how quickly they can store or release energy [23].  

The EMS uses this information to determine how the battery 

can respond to sudden energy demands and ensure optimum 

performance. This parameter can also control the current 

value at which the battery will be charged. By using the C-

Rate parameter as a control argument, EMSs increase battery 

life and performance by providing charging and discharging 

at the optimum value. This way, battery costs are reduced, and 

system security is increased [24], [25], [26]. 

DoD is another critical element used in energy management 

systems [27], [28]. DoD, which can also be called useful 

capacity, is a parameter that shows how much of the 

instantaneous maximum capacity of the battery is used. It 

indicates how much the battery can be discharged in each 

cycle and is used to determine the minimum value of the SoC 

parameter. The determination of the DoD level is shaped by 

system and user needs. A low DoD level allows the battery to 

be used for a shorter period, extending battery life, while high 

DoD levels provide more energy output. However, as the 

battery is exposed to more cycles, the cycle life decreases in 

parallel [29]. Keeping DoD at an optimal level is essential for 

stabilizing battery costs and increasing the economic 

efficiency of energy storage systems [30], [31]. The use of 

optimal DoD levels in EMSs is of great importance in terms 

of both long-term cost savings and optimizing system 

performance [32], [33], [34]. 

The literature has shown significant interest in exploring the 

relationship between SoH and DoD within EMS. In [35], an 

experimental investigation to understand how different DoD 

values impact battery aging. This research revealed some 

critical insights. The study found that the most efficient 

operational practice involves varying the DoD based on the 

SoH of the battery. Specifically, it was determined that 

operating at 70% DoD is most efficient when the battery's 

SoH is between 90% and 100%. 

In contrast, when the SoH is between 80% and 90%, adjusting 

the DoD to 60% has better results. This dynamic approach, as 

opposed to a static 60% DoD usage, was shown to 

significantly improve the performance of the EMS, 

particularly in terms of the amount of energy effectively 

extracted from the battery. Despite the success of this study, 

it also highlighted a limitation in the current scope of EMS 

design. The research only incorporated two distinct DoD 

values into the EMS, thus limiting the system's adaptability. 

This limitation suggests that there is potential for further 

refinement in EMS design. By incorporating a broader range 

of DoD values and perhaps integrating more nuanced SoH 

parameters, EMSs could achieve even higher efficiency and 

battery longevity. Such advancements would improve energy 

extraction and contribute to battery-based energy storage 

systems' sustainability and cost-effectiveness. 

In another notable study, referenced as [36] in the literature, 

researchers employed a non-dominated sorting genetic 

algorithm (NSGA) to conduct aging tests for batteries at 

varying DoD levels. This advanced algorithmic approach 

enabled the determination of an optimal DoD value, which 

was found to be 70%. The study meticulously calculated the 

energy cost of this specific DoD level, pinpointing it at 

$0.20456 per kilowatt when maintaining a fixed 70% DoD. 

While the study did not delve into the development of an 

adaptive EMS structure, it marked a significant advancement 

in optimizing the relationship between DoD and the SoH of 

batteries. This optimization led to noticeable improvements in 

system performance. However, exploring more complex EMS 

designs could further expand the research. For instance, 

integrating a dynamic, adaptive system that adjusts the DoD 

based on real-time SoH data and other operational parameters 

could further enhance efficiency and cost-effectiveness. 

Moreover, advanced algorithms like NSGA could be explored 

in more depth. By applying these algorithms in a broader 

context, including real-time decision-making processes in 

EMS, the potential for even more nuanced and effective 

energy management strategies emerges. This could lead to 

significant battery technology and energy management 

breakthroughs, offering more sustainable, efficient, and 

economically viable energy storage and utilization solutions. 

In a significant contribution to the field, documented as a 

study [37], researchers developed an EMS where the DoD 

parameter was optimally determined within a predefined 

range. This innovative design incorporated two critical cost 

functions: battery degradation and energy loss throughout the 

battery's life. Battery degradation was quantitatively assessed 

through the cost of battery replacement and an Estimated 

Battery Life (EBL) model. The study strategically established 

a range for DoD values, within which the most optimal DoD 

was selected based on the system's capacity. This approach of 

using an optimal DoD, as opposed to a fixed one, yielded a 

longer EBL, showcasing the effectiveness of the design in 

enhancing battery longevity. However, it's important to note 
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that this study set the DoD value based on the system's initial 

conditions and maintained it consistently throughout. This 

means the system lacked adaptability, as there was no 

provision for modifying the DoD value in response to 

changing operational conditions or battery health. While 

practical under controlled conditions, the study's approach 

points to a broader challenge in battery management: the need 

for adaptability in diverse and changing environments. This is 

particularly relevant for electric vehicles and portable devices, 

where battery performance can vary significantly due to 

environmental factors, usage patterns, and operational 

demands. While studies like [37] have made strides in 

extending battery life under specific, controlled conditions, 

they highlight a gap in addressing variable real-world 

scenarios. Future research could focus on developing more 

dynamic, adaptive EMS designs. These systems would 

optimize DoD based on initial conditions and continuously 

adjust it in response to real-time data on battery health, 

environmental factors, and usage patterns. Such 

advancements could lead to more robust, efficient, and 

sustainable battery management solutions catering to the 

diverse needs of modern technology and transportation 

systems. 

The proposed adaptive energy management system (AEMS) 

dynamically changes DoD and C-Rate parameters. The most 

important parameter of this study is the battery health status 

parameter that enables this dynamic change. Integrating the 

SoH parameter into the EMS allows the battery to adapt to 

health conditions throughout its operational lifetime. The 

proposed work uses differential equations based on an 

analytical approach adapted to the SoH parameter, allowing 

the DoD and C-Rate parameters to be updated appropriately 

for each battery cycle. This approach allows for more efficient 

energy consumption, leading to longer lifetimes. The EMS 

design is tested through simulation studies using 

Matlab/Simulink. These simulations have demonstrated the 

proposed EMS's clear superiority over battery-only systems 

using fixed DoD and C-Rate values and the battery-only 

system managed using AEMS, showing significant 

improvements in battery life and system efficiency. 

Another important aspect of this study is the inclusion of a 

supercapacitor within the system. The supercapacitor is crucial 

for alleviating abrupt discharges in the battery, which 

negatively affect its health. By leveling out these sharp 

discharge events, the supercapacitor not only aids in preserving 

the battery's lifespan but also boosts the system's overall 

dependability and efficiency. This integrated strategy, which 

combines sophisticated algorithmic control with a 

supercapacitor, marks a notable advancement in battery 

management technologies. It prolongs the battery's usable life 

and creates more robust and efficient energy systems. This 

approach could significantly change energy management 

across various sectors, including electric vehicles and large-

scale renewable energy storage, offering a more reliable, 

sustainable, and cost-efficient solution. 

The main contributions of this paper as follows: 

1. Designing a new adaptive energy management system 

for battery-supercapacitor hybrid energy storage 

systems in which the battery SoH parameter is used as 

input and the C-Rate and DoD parameters are 

continuously updated accordingly to extend the 

lifetime of the batteries. 

2. With the proposed differential approach, DoD and C-

Rate parameters can be updated with weighting 

parameters throughout the operating life of the system 

so that the battery-supercapacitor hybrid energy 

storage system can adapt to challenging conditions. 

This paper is organized as follows: Firstly, the aging model of 

lithium-based batteries is explained. Then, the mathematical 

expression of the supercapacitor is given, and differential 

equations and justifications for the proposed study are 

described. Then, the flowchart of the proposed study is 

presented. Then, the impact of the SoH parameter-based 

energy management and the supercapacitor used for the peak 

power demands on the battery's cycle life are shown with 

simulation studies. Finally, the AEMS simulation studies are 

analyzed, demonstrating its superiority. 

2. MATERIAL and METHODS 
 

An energy management system design is realized based on the 

battery aging model for the proposed study. A hybrid energy 

storage system is created with a supercapacitor, and filter-

based power sharing is realized. 

2.1. Lithium-Ion Battery Aging Model 

SoH of a battery is calculated as the percentage ratio of the 

current capacity of the battery Q𝑛 to its initial capacity Q𝐵𝑂𝐿, 

as demonstrated in Equation 1. 

 

SoH(%) = (
Q𝑛

Q𝐵𝑂𝐿
) x100 

(1) 

 

As expressed in [38] for the lithium-ion battery, the effect of 

aging on the battery capacity and internal resistance is given 

as follows; 

 

𝑄(𝑛) = {
𝑄𝐵𝑂𝐿 − 𝜀(𝑛) ⋅ (𝑄𝐵𝑂𝐿 − 𝑄𝐸𝑂𝐿) 𝑖𝑓 𝑘/2 ≠ 0

𝑄(𝑛 − 1)             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(2) 

𝑅(𝑛) = {
𝑅𝐵𝑂𝐿 + 𝜀(𝑛) ⋅ (𝑅𝐸𝑂𝐿 − 𝑅𝐵𝑂𝐿) 𝑖𝑓 𝑘/2 ≠ 0

𝑅(𝑛 − 1)             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(3) 

𝑛 = 𝑘𝑇ℎ    (𝑘 = 1, 2, 3 … ∞) (4) 

 

where, 𝑇ℎ represents the time duration of half a cycle, 

measured in seconds, 𝑄𝐵𝑂𝐿  represents the battery's maximum 

capacity in Ampere-hours (Ah) when it is new, at the 

beginning of its life (BOL), and under normal ambient 

temperature conditions, 𝑄𝐸𝑂𝐿  represents the battery's 

maximum capacity in Ah at the end of its life (EOL), and this 

measurement is taken at the nominal ambient temperature, 

𝑅𝐵𝑂𝐿  stands for the internal resistance of the battery, measured 

in ohms at the BOL and under the rated ambient temperature 

conditions., 𝑅𝐸𝑂𝐿  is the internal battery resistance, measured 

in ohms, at EOL and under the rated ambient temperature 

conditions, ε represents the battery's aging factor, which 

assumes zero values at the BOL and one at the EOL. 
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DoD is a crucial metric for measuring a battery's usage and 

efficiency. It measures the proportion of energy withdrawn 

from a battery in a discharge cycle, indicating how much of 

the battery's total capacity has been used. Represented as a 

percentage, DoD provides essential insights for optimizing 

battery performance and lifespan. It is integral to battery 

management, influencing efficiency and system functionality. 

DoD is mathematically linked to the SoC, which reflects the 

current charge level as a percentage of maximum capacity. To 

enhance energy use and prolong battery life, DoD and SoC are 

vital for effective battery management in various applications, 

including electric vehicles and renewable energy systems. 

 

𝛥𝑆𝑜𝐶(𝑘) = 𝑆𝑜𝐶(𝑘) − 𝑆𝑜𝐶(𝑘 − 1) (5) 

  

𝐷𝑂𝐷(𝑛) = 1 − 𝑆𝑜𝐶(𝑘)   𝑖𝑓 𝛥𝑆𝑜𝐶(𝑘)

≠ 𝑠𝑖𝑔𝑛𝛥𝑆𝑜𝐶(𝑘 − 1) 

(6) 

 

The effect of DoD on the aging factor as follows 

 

𝐷𝑂𝐷𝑒𝑓 = (2 −
𝐷𝑂𝐷(𝑛 − 2) + 𝐷𝑂𝐷(𝑛)

𝐷𝑂𝐷(𝑛 − 1)
) 

(7) 

 

and also, ε can be shown as; 

 

ε (𝑛) = {
ε (𝑛 − 1) +

0.5

𝑁(𝑛 − 1)
𝐷𝑂𝐷𝑒𝑓  𝑖𝑓 𝑘/2 ≠ 0

ε(𝑛 − 1)             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(8) 

 

Let's express the average charge and discharge currents during 

a half-cycle, considering the exponential factor that varies 

based on these charge and discharge currents. 

 

𝐼𝑐ℎ−𝑑𝑖𝑠 = (𝐼𝑑𝑖𝑠_𝑎𝑣𝑒(𝑛))
−𝛾1

(𝐼𝑐ℎ_𝑎𝑣𝑒(𝑛))
−𝛾2

 (9) 

 

Then, N is the maximum number of cycles, and the following 

equation can express it. 

 

𝑁(𝑛) = 𝐻 (
𝐷𝑂𝐷(𝑛)

100
)

ε

exp (−𝜓 (
1

𝑇𝑟𝑒𝑓

)

− (
1

𝑇𝑎(𝑛)
)) 𝐼𝑐ℎ−𝑑𝑖𝑠 

(10) 

 

where H represents the constant related to the number of 

cycles, ξ is the DoD's exponent factor, ψ is the rate constant 

for the cycle number in Arrhenius-like models, Idis_ave 

represents the average discharge current throughout half a 

cycle, Ich_ave signifies the average charge current throughout 

half a cycle, γ1 represents the exponent factor for the discharge 

current, while γ2 represents the exponent factor for the charge 

current. 

2.2. Supercapacitor Model 

In our past study, the supercapacitor was modeled using the 

Debye polarization equivalent circuit [16]. This model was 

used because of its simplicity and uncomplicated 

mathematical theory. The Debye polarization equivalent 

circuit shown in fig. 1 includes the leakage current and 

adsorption capacity parameters.   

 

 
Fig. 1 Debye polarization equivalent circuit model 

The electrical behavior of the Debye polarization equivalent 

circuit model can be expressed as following equations: 

 
𝑑𝑉𝐷𝐴

𝑑𝑡
=

1

𝑅𝐿𝐶𝐷𝐴

𝑉𝐷𝐴 +
1

𝑅𝐿𝐶𝐷𝐴

𝑉𝑁 
(11) 

𝑑𝑉𝑁

𝑑𝑡
=

1

𝑅𝐿𝐶𝑁

𝑉𝐷𝐴 +
1

𝑅𝐿𝐶𝑁

𝑉𝑁 −
1

𝐶𝑁

𝐼 
(12) 

𝑉𝑇 = 𝑉𝑁 − 𝐼𝑅𝐸𝑆𝑅 (13) 

 

where RESR is the equivalent series resistor, RL is the leakage 

current resistance, CDA is the Debye adsorption capacitance, 

and CN is the nominal capacitance. 

2.3. Proposed Energy Management System for Hybrid 
Energy Storage System 

The AEMS introduced in this research offers a dynamic 

method for managing battery performance, emphasizing the 

adjustment of DoD and C-Rate parameters in reaction to the 

battery's SoH. According to Equation 8, there is a direct 

correlation between DoD and the aging factor of the battery. 

This correlation acknowledges that varying discharge depths 

lead to different levels of wear and aging in the battery. 

Consequently, tailoring the DoD to align with the battery's 

current health is crucial for prolonging its service life. 

Additionally, the impact of the C-Rate value is analyzed in 

equations 9 and 10, highlighting its direct relationship with the 

number of cycles and its indirect ties with the aging factor 

through cycle count. Equations 19 and 20 provide the 

proposed hypotheses and mathematical approximations that 

establish the x and y variable parameters of AEMS in terms 

of the aging factor to complete the adaptive approach. In 

essence, this adaptive approach signifies a shift from fixed 

battery management strategies to ones that are dynamic and 

responsive to the battery's health. By linking DoD and C-Rate 

directly to the aging factor with x and y weighting parameters, 

AEMS optimizes energy use while maintaining battery health, 

resulting in longer life and more efficient battery performance.  

The differential theorem is based on the hypothesis that DoD 

and C-Rate should also decrease concerning the capacity of 

the battery, thus slowing down the aging effect. Optimization 
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methods can be used to select weighting parameters, which 

can also be selected according to user needs and demands. 

Equation 1 is rewritten to give equation 14. 

 

(Qn =
SoH(%) ∗ QBOL

100
) 

(14) 

 

Substituted in Equation 2;  

 
SoH(%) ∗ QBOL

100
= QBOL − ε (n)(QBOL − QEOL) 

(15) 

 

is achieved. Batteries are considered dead if their capacity 

drops to 80%. In this case, QEOL value can be accepted as 80% 

of QBOL value. If equation 15 is rewritten under these 

conditions, 

 
SoH(%) ∗ QBOL

100
= QBOL

− ε (n)(QBOL − 0.8 ∗ QBOL) 

 (16) 

 

If the equation is modified, 

 

SoH(%) =
100 ∗ QBOL(1 − 0.2 ∗ ε (n))

QBOL

 
(17) 

ε (n) =
100 − SoH(%)

20
 

(18) 

 

is obtained. The analytical connection between an aging factor 

and a battery's remaining life is discussed here. Equation 8 

shows that DoD and C-Rate remain consistent throughout the 

battery's lifespan. Furthermore, as the battery ages, its 

capacity diminishes. This reduction in capacity significantly 

affects systems that operate with a constant DoD. 

Additionally, Equation 10 reveals how the charging speed 

influences the number of battery cycles. Consequently, the 

aging factor is also indirectly affected by the charging rate. 

The proposed AEMS with variable DoD and C-Rate 

reduces the operating capacity and charging rate in a 

controlled manner and aims to minimize the aging effect. For 

this purpose, a differential equation that correlates the DoD 

and charging current value with the SoH of the battery and re-

evaluates it according to the aging factor is created and given 

in equations 19-20. Using such differential equations within 

the AEMS allows for a dynamic and intelligent approach to 

battery management. The system can optimize battery 

performance by continuously monitoring and adjusting DoD 

and charging current in response to the aging factor while 

mitigating the degradation typically associated with battery 

cycling. 

 

DoDmax(n) = DoDmax(n − 1) −
ε (n)

x ∗ SoH(%)
 

(19) 

  

Ich(n) = Ich(n − 1) −
ε (n)

y ∗ SoH(%)
 

(20) 

 

The supercapacitor is integrated into the system to extend the 

battery life, as shown in fig. 2. With a low-pass filter, the 

power demanded is optimally shared between the 

supercapacitor and the battery.  

 

 

Fig. 2 HESS Power Share Strategy 

  

Total reference current (Iref) needs to be adjusted to counteract 

any voltage fluctuations, thereby ensuring stability in power 

levels. Iref is then split into the low-frequency component 

(LFC) and the high-frequency component (HFC). Firstly, Iref 

goes through a low pass filter, separating the LFC (Iref-LF), 

which becomes the reference for the battery loop. This loop 

adjusts for the low-frequency deviations in power. 

Meanwhile, the Supercapacitor control loop manages the HFC 

of the reference current (Iref-HF). The reference for this loop, 

ISC-ref, is determined using Iref-HF combined with the battery 

error current (Ibat-error), which is the difference between the 

reference current and the battery current. 

AEMS described in this study operates on a dynamic 

algorithm guided by user-defined weighting parameters, 

denoted as x and y, designed to be optimized according to the 

system's specific characteristics and usage requirements. The 

primary objective is to achieve optimal battery usage by 

continually adjusting DoD and C-Rate values based on these 

user-defined design parameters. Figure 3 provides a flowchart 

illustrating the AEMS process. 

In summary, the AEMS algorithm presents a dynamic and 

adaptive approach to battery management, allowing users to 

tailor DoD and C-Rate settings to their specific needs. The 

hybrid structure created with the supercapacitor added to the 

system minimizes the damage to the chemical structure of the 

battery by preventing sudden current draws. The algorithm 

optimizes energy utilization, extends battery life, and ensures 

efficient operation by continuously monitoring and adjusting 

these parameters based on the battery's state. It is a valuable 

tool in various applications requiring reliable and sustainable 

energy storage solutions. 
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Fig. 3 Proposed AEMS Flowchart 

3. SIMULATION STUDY 

Simulink diagram was established using Matlab/Simulink for 

simulation studies, which is given in fig. 4. The simulation 

diagram consists of 7 parts: battery block, supercapacitor 

block and their control blocks, block containing the proposed 

algorithm, power calculation block and termination block. 

With the proposed algorithm, control signals are generated 

based on the power calculations of the system, whose 

operating limits are determined separately in each cycle, and 

the data are monitored instantaneously with the monitoring 

blocks in the battery and supercapacitor blocks. The 

termination block continuously monitors the battery capacity 

and terminates the system when it drops below 80%. 

Information about the supercapacitor used to support the 

battery, the primary storage unit, is given in table 1. The 

supercapacitor block formed by connecting 5 supercapacitors 

in parallel with the data of the BCAP0600 P270 S18 model 

produced by Maxwell was used. 

 
TABLE 1 Supercapacitor parameters 

Parameter Value 

Rated Capacitance 600 F 

Rated Voltage 2.7 V 

Surge Voltage 12.95 V 

Leakage Current 1.5 mA  

Peak Current 280 A 

Continuous Current 32 ARMS 

Equivalent DC Resistance 8.9 mΩ 

Operating Temperature -40 °C to +85 °C 

Projected Cycle Life >1000000 

Projected Life Time 10 Years 

High-Temperature Life Time 3000 Hours 

Shelf Life 4 Years 

Mass 95 g 

 (per supercapacitor) 

Thermal Resistance 5 °C/W 

Thermal Capacitance 170 J/°C 

 

Powerbrick+ LiFEPO4 battery data was used as the primary 

storage unit, and datasheet information is given in table 2. 

TABLE 2 Battery parameters 

Parameter Value 

Nominal Voltage 12.8 V 

BOL Capacity 40 Ah 

Cut-Off Voltage 10.5 

Nominal Current 20 A (0,5C) 

EOL Capacity 40*0,8 Ah 

Nominal Charge Current 20 A (0,5C) 

BOL Internal Resistance 0.015 Ohm 

EOL Internal Resistance 0.01512 Ohm 

DoD Variable 

Stored Energy 512 Wh 

Mass 5.25 kg 

Max Discharge 2C 
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Fig. 4 Simulation diagram of the proposed AEMS 

First, an operating scenario under a constant temperature of 

25 °C was prepared to understand how the battery responds to 

different C-Rate and DoD parameters regarding aging. C-Rate 

and DoD parameters were analyzed separately. First, the C-

Rate parameter was kept constant at 0.5C, and the total energy 

available from the battery was calculated for 60%, 70%, 80%, 

90%, and 100% DoD values. Then, the DoD parameter was 

kept constant at 80%, and energy calculations were performed 

for C-Rate values of 0.25C, 0.5C, 1C, and 1.5C. In the 

simulation study where the DoD effect is examined in Table 

3, it is seen that at values of 80% and above, also known as 

deep discharge, the energy that can be withdrawn from the 

battery decreases significantly.  

 
TABLE 3 DoD effect on the battery life 

DoD C-Rate Time (Hour) Cycle Energy 

(kWh) 

60 0.5 6561.22 3084 1729.6 

70 0.5 6135.57 2476 1612.74 

80 0.5 5802.53 2050 1519.81 

90 0.5 5520.73 1734 1438.97 

100 0.5 5305.64 1484 1372.18 

 

Figure 5 also shows how the battery SoH parameter changes 

with time and cycle under different DoD parameters. As can 

be seen, there is an inverse relationship between the DoD 

parameter and the battery aging, and as the DoD increases, the 

battery reaches its end of life earlier. 

  

 
Fig. 5 Effect of DoD on the SoH 

Table 4 shows how vital the C-Rate parameter is for the 

battery's life. It is seen that the high current values used to save 

time during charging cause significant damage to the battery 

chemistry in long-term use and significantly reduce the total 

amount of energy that can be drawn. As a result, DoD and C-

Rate parameters have an inverse relationship with battery life. 

Dynamically optimizing both parameters can directly 

contribute to the battery life and is necessary to maximize the 

energy drawn. 
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TABLE 4 C-Rate effect on the battery life 

C-Rate DoD Time (Hour) Cycle Energy 

(kWh) 

0,25 80 9608.09 2271 2502.24 

0.5 80 5802.53 2050 1519.81 

1 80 4205.25 1987 1114.85 

1,5 80 3612.40 1916 994.75 

 

Similarly, fig. 6 shows how the battery C-Rate parameter 

changes with time and cycle under different DoD parameters. 

In the simulation setup prepared by considering the factory 

data of the battery used, it did not exceed 1.5C. As the C-Rate 

parameter increases, the battery finishes its life earlier. 

 
Fig. 6 Effect of C-Rate on the SoH 

In the proposed study, two approaches are combined under a 

single algorithm to extend the battery's lifetime, which is used 

as the primary energy source, and the total energy that can be 

drawn. Firstly, to prevent all energy from being withdrawn 

directly from the battery when the system enters the discharge 

state, it aims to maintain the battery chemistry for a more 

extended period with supercapacitor support.  With the 

hybridization realized using active topology, both the 

supercapacitor and the battery are kept under control, and the 

energy required by the system can be provided 

uninterruptedly and most efficiently. Secondly, the proposed 

study adaptively controls the hybridized energy storage 

system. AEMS has been implemented to use the SoH 

parameter as a control variable and optimize the DoD and C-

Rate parameters in line with this parameter. In the design 

criteria, the DoD parameter should not fall below 60% and 

should not exceed 80%. This is because DoD values of 80% 

and above cause deep discharges and cause irreversible 

degradation of the battery chemistry. In addition, the 60% 

DoD value aims to use the battery with efficient capacity and 

longer life. The performance criterion considered in the 

AEMS design is that the amount of energy that the system 

under the control of the AEMS should not fall below the 

amount of energy that can be drawn with a constant 60% DoD. 

In this way, it aims to achieve an optimal balance between 

battery health, longevity, and total energy drawn. 

3.1. AEMS Weighting Parameter Determination 

To meet the design criteria, the weighting parameters x and y 

will enable dynamic optimization of DoD and C-Rate 

parameters. The mathematical expression of the energy 

management system given in equations 19 and 20 is 

introduced. As shown in fig. 7, the maximum amount of 

energy that can be extracted from the battery system in hybrid 

energy systems operating under different x and y parameters 

has been analyzed. A set of design criteria, defined with all 

trade-offs in mind, has shaped the design of the proposed 

AEMS. These criteria were developed to optimize the 

performance and durability of the battery. Foremost among 

these criteria is the decision that DoD should never drop 

below 60%. This threshold was chosen to make the most 

efficient use of the battery's capacity while avoiding deep 

discharges that could damage the health of the battery. It is 

also stipulated that the DoD should not exceed 80% to prevent 

over-discharge, a condition that can significantly reduce the 

battery's life. 

Furthermore, the design criterion was set to ensure that the 

energy output from the AEMS system is consistently equal to 

or more than the energy output of a system designed with a 

constant 60% DoD. Finally, the expected lifetime of the 

battery, which is required to be no less than a system designed 

with a constant 60% DoD, is also a critical consideration. 

These design conditions emphasize the importance of 

achieving a harmonious balance between energy extraction, 

battery health, and longevity. To fulfill these stringent design 

criteria, an extensive investigation of parameter combinations, 

referred to as x and y parameters, has been carried out within 

the framework of the AEMS.  The obtained data are compared 

with the results of the system controlled under constant DoD 

using only the battery, and the system is controlled adaptively 

with the same parameters using only the battery. 

 
TABLE 5 Results of a simulation study 

DoD C-Rate ESS Time Cycle Energy 

(kWh) 

x=0.0125 y=0.0485 Hybrid 6712.25 2652 1838.79 

x=0.0125  y=0.0485 Battery-Only 6588.67 2437 1729.63 

60 0.5 Battery-Only 6561.22 3084 1729.6 

x=0.0125 y=0.05 Battery-Only 6550.55 2435 1724.9 

70 0.5 Battery-Only 6135.57 2476 1612.74 

80 0.5 Hybrid 6052.54 2401 1605.73 

80 0.5 Battery-Only 5802.53 2050 1519.81 

90 0.5 Battery-Only 5520.73 1734 1438.97 

100 0.5 Battery-Only 5305.64 1484 1372.18 

 

Table 5 shows that the optimum values for the weighting 

parameters x and y are 0.0125 and 0.0485, respectively, 

crucial in improving the battery's performance and ensuring it 

operates within predefined parameters for energy efficiency 
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and longevity. The proposed AEMS-controlled battery is 

initially used with 80% DoD, which is reduced to 60% over 

time as the battery ages. In addition, the charging current, 

which starts at 0.5C, is reduced to 0.375C as the battery ages. 

These adjustments are crucial to maintain the battery's long-

term health and ensure a continuous high energy supply. 

 

 
Fig. 7 Comparison of various weighting parameters in terms of energy 

 

In fig. 8, the performance of the proposed AEMS is compared 

with systems generated and controlled under different 

conditions. First, comparing battery-only systems using fixed 

DoD and charging current settings are compared. The 

proposed AEMS exhibits a significant improvement of 

13.81% in energy performance over the systems using fixed 

80% DoD and 0.5C charging current. Moreover, it performs 

equal to the energy performance of the systems with a 

constant 60% DoD and 0.5C charging current. This result 

points to a significant advantage of AEMS. Although it allows 

deeper discharges and more energy utilization in each cycle, 

there is no loss in the overall benefit derived from the battery. 

This improves energy utilization efficiency and extends 

battery life. This makes AEMS a promising solution for 

optimizing battery usage in various applications. Secondly, a 

comparison with the hybrid system controlled by AEMS was 

performed. The energy obtained with the hybrid system 

controlled by the same AEMS was observed to be 6.31% 

higher than the system using only batteries. These results 

show that the use of supercapacitors can delay battery aging.  

This analysis reveals that AEMS is a highly effective method 

of optimizing ESS operation. By dynamically updating DoD 

and charging current based on SoH, the design strikes a 

delicate balance between extracting more energy per cycle 

and preserving the battery's chemistry for longer. This balance 

results in improved energy performance, longer battery life, 

and enhanced overall system efficiency, making AEMS an 

essential tool for applications where consistent energy supply 

and long-term reliability are paramount. 

 
Fig. 8 Energy comparison of AEMS-controlled HESS with standard 
BEMS and AEMS-controlled battery-only systems 

Figure 9 shows the current-sharing of the battery and 

supercapacitor that comprise the HESS during a cycle. 

Although the supercapacitor supports the battery for a short 

period, it prevents the battery from overloading and allows it 

to start supplying power more smoothly.  
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Fig. 9 Current sharing of battery and supercapacitor for a cycle 

3.2. Battery Test Protocols 

Many test protocols in the literature exist for testing batteries 

under realistic conditions. Test protocols are created by 

constantly renewing or changing parameters such as 

temperature, C-Rate, and standby time within a flow 

framework. Hybrid pulse power characterization (HPPC) and 

initial conditioning characterization test (ICCT) tests were 

applied to show the effects of the proposed study on battery 

life. The conditions of the HPPC protocol are given in fig. 10.  

 

 
Fig. 10 HPPC Test Protocol 

In the HPPC profile, the discharge current is increased in each 

discharge cycle [39]. Initially, 0.5C is used, 1C is used in the 

next cycle, and 1.5C is used in the last cycle. After every three 

cycles, it is returned to the beginning and repeated in this way 

for the entire battery life. Tests were performed for four 

different systems. Firstly, the battery-only system was tested 

under 0.5C constant C-Rate with 60% and 80% constant DoD 

parameters and standard energy management systems. Then, 

the battery-only and HESS systems using the adaptive energy 

management systems were tested separately. 

 
Fig. 11 SoH comparison of HPPC tests 

 
Fig. 12 a. HPPC Current Profile b. C-Rate effect on the HPPC test 

The effect of HPPC test on SoH and comparison of tests in 

terms of SoH fig. 11. It is shown that the HESS controlled by 

AEMS offers longer battery life compared to the other 

systems. Figure 12.a illustrates the current profile of the HPPC 

test. The effect of the adaptive C-Rate parameter is clearly 

visible on fig. 12.b. As time passes and the battery ages, the 

charge current decreases. When the results were compared, 

2334,614 kWh of energy was obtained in the system using 

HESS, and the superiority of the adaptive energy management 

system was demonstrated. HPPC test results are given in fig. 

13. 
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Fig. 13 HPPC Test Results 

The second protocol used to test the system is ICCT. The 

ICCT test in fig. 14 tests the battery's compliance with the 

factory data [40], [41].  

 

 

 
Fig. 14 ICCT Test Protocol 

The protocol is designed to discharge continuously with 0.5C 

and 0.2C C-Rate parameters.  

 
Fig. 15 SoH comparison of ICCT tests 

 
Fig. 16 a. Current Profile and b. C-Rate effect on the ICCT test 

Firstly, the battery-only system was tested under 0.5C 

constant C-Rate with 80% constant DoD parameters and 

standard energy management systems. Then, the battery-only 

and HESS systems using the adaptive energy management 

systems were tested separately. Effect of ICCT test on SoH 

and comparing tests regarding SoH Figure 15. Compared to 

the other systems, the HESS controlled by AEMS has a longer 

battery life. Figure 16.a shows the actual ICCT test graphs. 

Additionally fig. 16.b. shows the effect of the adaptive C-rate 

parameter is clearly. The charge current decreases as time 
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passes and the battery ages. The data obtained from repeated 

tests until the battery life is exhausted are compared in fig. 17. 

When the results were compared, 1638,76 kWh of energy was 

obtained using HESS, bigger than the AEMS controlled 

battery system with %2,39 and standard EMS controlled 

battery only system with %3.09. The superiority of the 

adaptive energy management system was demonstrated with 

the ICCT test profile. 

 
Fig. 17 ICCT Test Results 

4. CONCLUSIONS 

An adaptive energy management system (AEMS) for a 

battery-supercapacitor hybrid energy storage system (HESS) 

has been developed and simulated in this study. Dynamic 

Depth of Discharge (DoD) and C-Rate strategies extend the 

lifetime of lithium-based batteries and maximize energy 

utilization. However, a hybrid energy storage system is also 

created by integrating supercapacitors. Supercapacitors are 

known for their high power density and fast charge/discharge 

capabilities, which significantly increase the adaptability of 

the AEMS, reducing stress on the batteries and thus further 

extending battery life. Supercapacitors alleviate the load on 

the battery during sudden power demands and short-term 

power requirements, which increases energy efficiency and 

system resilience. This integration overcomes the limitations 

of battery-based systems, providing a faster and more efficient 

response capability to sudden load changes and high power 

demands. 

The system allows the DoD and C-Rate parameters to vary 

according to the battery's State of Health (SoH) parameter, 

making it possible to operate the battery specifically for its 

current condition. In this way, AEMS maximizes the battery's 

operating life while ensuring efficient use of energy. AEMS 

not only ensures longer battery life and higher performance 

but also significantly reduces the cost of installation and 

maintenance by extending the battery replacement time. 

Finally, the hybrid energy storage system created by 

supercapacitors integrated with the proposed Adaptive Energy 

Management System (AEMS) offers significant advantages 

regarding its environmental impact. The system contributes 

significantly to sustainability and reducing waste generation 

by reducing battery waste and replacement. This approach 

extends the lifetime of the batteries and prevents frequent 

battery replacement and waste, thus reducing the burden on 

the environment. The integration of supercapacitors can more 

efficiently meet peak energy demands, enabling battery 

systems to be used for more extended periods and generating 

less waste. This is an essential step towards reducing the 

environmental impact of energy storage solutions and 

demonstrates that AEMS promises a greener and more 

sustainable energy future. The effectiveness of using AEMS 

in hybrid storage systems has been proven by studies using 

fixed DoD and C-Rate settings and comparisons with battery-

only systems controlled by AEMS. AEMS demonstrated a 

13.81% improvement in energy performance compared to 

systems using a fixed 80% DoD and 0.5C charging current. 

Furthermore, AEMS performed on par with systems with a 

constant 60% DoD and 0.5C charging current, proving that 

despite allowing deeper discharges and higher energy 

utilization in each cycle, there was no loss in overall benefit. 

Furthermore, AEMS-controlled HESS achieved 6.31% higher 

energy utilization than battery-only systems. These findings 

suggest that being powered by supercapacitors can delay 

battery aging and improve overall system performance. 
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