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Abstract
In response to the urgent need for sustainable energy, this study addresses a critical challenge in
wind turbine optimization. It focuses on developing a nuanced preventive maintenance strategy
to minimize costs and mitigate energy losses. Within this framework, our paper introduces
a novel approach employing a Monte Carlo simulation to identify the optimal preventive
maintenance frequency, striking a balance between cost efficiency and energy loss mitigation.
The results show, that grouped maintenance approach, pinpointing an optimal frequency of 93
months. This strategic configuration minimizes costs to $9997 while concurrently maintaining
an average energy loss of 32.014 MWh, resulting in a notable 4.29% increase in total energy
production. Variability analysis reveals that increasing maintenance frequency reduces cost
fluctuations, while energy loss remains relatively stable. These findings elucidate the interplay
among preventive maintenance strategies, cost, and reliability in the realm of wind turbine
performance optimization.
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Introduction

Enterprises are constantly searching for ways to im-
prove the efficiency of their internal operations, reduce
costs, and optimize their resources. In the present-day
business environment, managing human and financial
resources to maximize profitability is the most signif-
icant challenge faced by businesses. Resources form
the fundamental basis of a strategic approach, and
the distinctive amalgamation of resources generates
competitive advantages that stimulate the creation of
wealth. In a global market characterized by intense
competition and a volatile economic climate, effective
resource management is essential for survival and es-
tablishment. In this context, the world continues to
move towards more sustainable energy sources and
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renewable energy is widely recognized as a crucial tool
for addressing climate change mitigation (Luderer et
al., 2013).

Renewable energy technologies such as wind tur-
bines, solar photovoltaic systems, and hydroelectric
power plants are experiencing a surge in popularity.
These renewable energy systems provide several bene-
fits compared to conventional fossil fuel-based power
plants. They offer lower operational costs and con-
tribute to a significant reduction in greenhouse gas
emissions. However, they require regular maintenance
to ensure optimal performance and avoid costly repairs.
Preventive maintenance optimization is a critical com-
ponent of renewable energy system maintenance and
can help improve system reliability, increase energy
production, and reduce operational costs. Maintenance
optimization involves the creation and examination of
mathematical models to enhance or optimize mainte-
nance strategies. Numerous studies have delved into
this area, recognizing its significance for instance the
work of (Ding & Kamaruddin, 2015) and recently (De
Jonge & Scarf, 2020). Wind turbines play a vital role in
the utilization of renewable energy by converting wind
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power into electrical energy. However, the maintenance
of wind turbines is essential to ensure their reliable
and efficient operation, and maintenance optimization
is of utmost importance in this context as it aims to
reduce costs associated with maintenance activities
while maximizing the performance and availability of
wind turbines. In this context, a multitude of research
endeavors has examined the efficacy of optimizing pre-
ventive maintenance strategies for wind turbines. Dui
et al. (2023) provide an extensive review of the latest
advancements in optimizing maintenance strategies for
wind energy. Preventive maintenance optimization for
wind turbines can be achieved through various meth-
ods. Gonzalo et al. (2022) present an optimal cost for
the whole system of offshore wind turbines by consider-
ing 12 preventive maintenance tasks and one corrective
maintenance task. The approach employs genetic al-
gorithms and particle swarm optimization to achieve
cost minimization. Hence, various factors, including
time-based or condition-based maintenance, compo-
nent failure rate, availability, costs, and the impact of
wind speed when optimizing preventive maintenance
strategies for wind turbines are considered. Schouten
et al. (2022) discuss the optimization of maintenance
for an individual component of a wind turbine, taking
into account time-varying costs. Their study examines
the age replacement policy, block replacement policy,
and the unique considerations associated with offshore
wind turbines. Yu et al., (2021) propose a mathemati-
cal model that calculates and continuously updates the
preventive maintenance plan for a wind farm, incor-
porating condition monitoring as a vital component.
Gonzalo et al. (2022) emphasize cost minimization
and focus on the optimal maintenance management of
offshore wind turbines. Their study employs genetic
algorithms and particle swarm optimization techniques
to optimize the maintenance process.

Zheng et al. (2020) present a preventive maintenance
policy for wind turbines that considers the impact of
wind speed, specifically addressing the accelerating
hazard rate. Collectively, these studies highlight the
importance of preventive maintenance optimization in
the wind energy sector, considering various factors and
employing diverse mathematical models and optimiza-
tion techniques to improve maintenance practices.
Therefore, one promising approach to optimizing

preventive maintenance strategies for wind turbines is
through the utilization of Monte Carlo simulation. Sev-
eral researchers have explored the utilization of Monte
Carlo methods in optimizing preventive maintenance
for wind energy systems. Lu et al. (2021), develops
an optimized maintenance strategy for offshore wind
farms, effectively addressing the challenges posed by
weather conditions and limited accessibility.

By incorporating an improved Monte Carlo algo-
rithm and considering maintenance correlations, the
proposed model increases system availability and re-
duces maintenance costs for offshore wind turbines.
Duarte et al. (2020), present a risk-based model that
utilizes Monte Carlo simulation to coordinate the pre-
ventive maintenance of generators in an isolated dis-
tributed Power System with wind generation.
Wind turbines, as intricate machines, experience

unpredictable environmental and mechanical loads
that result in wear and damage to their components.
This diminishes their availability, necessitating fre-
quent shutdowns and inspections, which in turn incur
costs and power losses. Hajej et al. (2020). presents
a cost model that optimizes the sequence of produc-
tion and maintenance activities for a wind farm. The
primary objective of this strategy is to minimize the
overall cost of production and maintenance, while si-
multaneously maximizing the operational capacity of
the wind turbines. Hofmann & Sperstad (2013), use
a Monte Carlo technique to simulate different main-
tenance and logistic approaches, considering weather
uncertainty. The tool provides results such as availabil-
ity, life cycle profit, and operation and maintenance
costs. Therefore, Marmidis et al. (2008) propose a novel
approach for optimizing wind turbine placement in
a wind park. Where a Monte Carlo simulation method
is used to determine the optimal arrangement based
on maximum energy production and minimum instal-
lation cost criteria.
Monte Carlo is a widely used method for assessing

wind turbine reliability and operational performance
in the presence of uncertainties (Dao et al., 2020)
and (Su et al., 2021). Its application extends to the
analysis of wind turbine performance and reliability
(Vittal & Teboul, 2005). In the context of wind turbine
maintenance, Monte Carlo simulation offers several
valuable applications. For instance, optimizing mainte-
nance routing: Designing an optimal route for accessing
turbines within a wind farm can significantly reduce
maintenance costs. Monte Carlo simulation enables
the simulation of various maintenance scenarios, facili-
tating the determination of the most efficient route for
each selected vessel (Irawan et al., 2021). Evaluating
the impact of faults on power generation using Monte
Carlo simulation for the evaluation of how wind tur-
bine faults affect power output. This analysis helps
in identifying potential issues and making informed
decisions regarding maintenance strategies (Biazar et
al., 2022). In addition, Monte Carlo simulation aids
in determining the most suitable and optimal mainte-
nance interval for wind turbines by simulating different
maintenance scenarios, it becomes possible to identify
the optimal interval that minimizes maintenance costs
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(Wang et al., 2020). Our work will contribute to this
area. Hence, Monte Carlo simulation plays a crucial
role in analyzing the reliability of wind energy sys-
tems. This assessment assists in identifying potential
concerns and devising effective maintenance strategies
(Abdusamad, 2018).

To summarize, the literature review reveals an in-
creasing interest in the utilization of Monte Carlo sim-
ulation to optimize preventive maintenance strategies
for wind turbines (Ali Elfarra & Kaya, 2021), Dao et
al., 2021), Singh et al., 2023). Therefore, it is worth not-
ing that our comprehensive literature review revealed
a significant gap in existing research. To the best of
the authors’ knowledge, no prior work has specifically
addressed the intricate interplay between cost analysis
and energy loss assessment for optimizing preventive
maintenance strategies in the context of wind turbines
using Monte Carlo simulation. This underscores the
pioneering nature of our research, as we bridge this
critical knowledge gap and provide valuable insights
into a hitherto unexplored domain. Our innovative
approach not only contributes to the existing body
of knowledge but also addresses a pressing need in
the renewable energy industry for holistic, data-driven
maintenance optimization strategies.
The primary research problem centers on the need

for a nuanced preventive maintenance strategy that not
only minimizes costs but also mitigates energy losses
associated with turbine components. Framed within
this context, our study formulates two key research
questions:
1. How can preventive maintenance schedules be opti-

mized for individual components and group strate-
gies in wind turbines?

2. What is the optimal preventive maintenance fre-
quency that strikes a balance between cost reduc-
tion and energy production enhancement?
A Monte Carlo simulation is employed to incor-

porate the probabilistic nature of various operational
parameters, enabling a comprehensive analysis of main-
tenance strategies. To model the novel approach, an op-
timization algorithm is employed, which offers a power-
ful optimization technique capable of exploring a wide
range of possible maintenance schedules and identify-
ing the most cost-effective solutions. The model utilizes
historical data and maintenance cost information to ac-
curately represent the wind turbine system’s behaviour
and failure patterns, enabling realistic simulations and
analysis.

By applying the proposed methodology, various per-
formance metrics such as expected energy loss, and
maintenance costs are obtained. These metrics serve
as key indicators for assessing the effectiveness of dif-
ferent preventive maintenance strategies. The analysis

aims to find the optimal preventive maintenance fre-
quency that corresponds to the minimal maintenance
cost for each wind turbine component, as well as for
the overall wind turbine group strategy. In addition,
a sensitivity study has been performed to assess which
parameters affect the optimization result the most.
This paper proposes an innovative approach to op-

timizing preventive maintenance schedules for wind
turbines, utilizing Monte Carlo simulation. The moti-
vation behind this research is grounded in the pressing
necessity to bolster both the cost-effectiveness and reli-
ability of wind turbine operations, particularly within
the overarching goal of advancing sustainable energy.
As the world increasingly leans towards renewable en-
ergy sources, the efficiency and dependability of wind
turbines become paramount. The imperative to opti-
mize preventive maintenance schedules arises from the
recognition that these maintenance practices directly
impact the overall performance, longevity, and eco-
nomic viability of wind energy systems. In the broader
context of sustainable energy advancement, our re-
search endeavors to make a meaningful contribution
by introducing a novel approach to preventive main-
tenance optimization. This approach acknowledges
the intricate interplay between various factors such as
maintenance cost, system reliability, and downtime.
By delving into the complexities of wind turbine oper-
ations, we seek to address the critical need for method-
ologies that go beyond traditional models and better
account for the inherent uncertainties associated with
these systems. The main contributions of this work
are outlined below:
• Develop a model that seamlessly integrates histor-
ical data, maintenance costs, and stochastic vari-
ables. This model accurately represents the intri-
cate behavior and failure patterns of wind turbines,
providing a holistic foundation for maintenance
optimization.

• Incorporation of Monte Carlo simulation is a key
contribution, allowing for the systematic consider-
ation of uncertainties inherent in wind turbine op-
erations. By generating multiple random scenarios,
our model captures the variability in performance,
resulting in more robust and reliable preventive
maintenance schedules.

• Determining the optimal preventive maintenance
frequency, our study goes beyond conventional ap-
proaches by determining the optimal preventive
maintenance frequency for individual components
and overall group strategy. Through a detailed anal-
ysis of performance metrics, including expected
energy loss and maintenance costs, we identify
schedules that minimize costs while concurrently
enhancing system reliability.
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• Validation through a numerical example: To demon-
strate the practical applicability of our approach,
we apply the model to real wind turbine data, in-
corporating failure rates, maintenance costs, and
historical performance records. The numerical ex-
ample serves as tangible evidence, showcasing the
effectiveness of the Monte Carlo simulation in opti-
mizing preventive maintenance schedules and yield-
ing improved system reliability and cost-efficiency.
This paper is structured as follows: Literature

Overview in the following Section, where a compre-
hensive review of the relevant literature is provided.
Monte Carlo Simulation in Section 3, introduces the
Monte Carlo simulation technique and its application
in our study. An optimization problem presented in Sec-
tion 4, focuses on the optimization problem, including
the necessary assumptions for cost-effective preventive
maintenance. We also outline the algorithm employed
in this study. Numerical Application in Section 5, we
present a practical application of the methodology
through numerical examples.

Monte Carlo simulation

Monte Carlo simulation is considered a powerful
computational technique that employs random sam-
pling to accurately analyze complex equipment. By
iteratively running simulations using randomly gen-
erated inputs, it enables the examination of system
behaviour and the estimation of diverse outcomes. By
incorporating probability distributions and statistical
analysis, Monte Carlo simulation provides a highly
effective tool for evaluating and analyzing complex
systems and optimizing decision-making in diverse
fields.
The selection of the Monte Carlo method is driven

by its unique ability to address the inherent uncertain-
ties and variability present in wind turbine operations.
Several factors contribute to the justification for em-
ploying Monte Carlo simulation:
• The Monte Carlo method excels in capturing this
randomness by simulating multiple scenarios, al-
lowing for a more comprehensive understanding of
the system’s behavior.

• Monte Carlo simulation provides a flexible frame-
work to model intricate failure scenarios, enabling
a more realistic representation of the system’s reli-
ability and susceptibility to unforeseen events.

• Monte Carlo simulation allows for the quantifica-
tion of uncertainties associated with maintenance
cost estimates, component failures, and energy pro-
duction fluctuations. By generating a large number

of random samples, the method provides a prob-
abilistic view of the potential outcomes, aiding
decision-makers in risk assessment and manage-
ment.

• The iterative nature of the Monte Carlo method
aligns well with the optimization process. Through
repeated simulations, the model refines preventive
maintenance schedules, converging towards solu-
tions that balance cost-effectiveness and system
reliability.
Taking into account, Monte Carlo simulation finds

significant choice in maintenance optimization appli-
cation, particularly in the context of wind turbine
maintenance. By simulating various maintenance sce-
narios and considering uncertain factors, such as com-
ponent failures and operational parameters. Monte
Carlo simulation enables the identification of optimal
maintenance strategies. It allows for the evaluation
of different maintenance intervals, routing plans, and
cost optimization techniques, leading to enhanced op-
erational efficiency and cost-effectiveness. Monte Carlo
simulation assists in assessing the reliability and per-
formance of wind energy systems, facilitating the iden-
tification of potential issues and the development of
effective maintenance strategies.
The basic principle of the Monte Carlo Simulation

is given in Equation (1):

z = f(y1, y2, y3, . . . , yn) (1)

In practical scenarios, the variables y1, y2, y3, . . . , yn
are random variables, and Z represents the dependent
variable. The function formula f(y1, y2, y3, . . . , yn) as-
sociated with Z can be highly complex, and in many
cases, it may even be completely unknown. Due to
the complexity of “f ” and the lack of an analytical
method to calculate the probability distribution and
mathematical characteristics of “Z”, it becomes chal-
lenging. However, Monte Carlo simulation provides
a solution. It involves the direct or indirect sampling
of values for each set of variables y1i, y2i, y3i, . . . , yni
using a random number generator. Subsequently, the
value of “Zi” is calculated based on the equation. By
repeatedly generating these random samples and eval-
uating the equation, Monte Carlo simulation allows for
the estimation of the behaviour and characteristics of
“Z”. This approach circumvents the need for explicit
analytical calculations and enables the exploration
of a range of possible outcomes. It provides valuable
insights into the system under study, even when the
underlying function is complex or unknown.

By repeating the sampling process, we obtain a set
of sampled data for the variable “Zi”. As the number of
simulation iterations increases, the estimated probabil-
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ity distribution function of “Zi” and its mathematical
characteristics converge towards the true underlying
distribution. The accuracy of the estimated value of
“Zi” can be quantified by the standard error, as men-
tioned in (Dubi, 1998).

Optimization model approach

The optimization model approach for wind turbine
preventive maintenance presents notable advantages,
marked by its comprehensive consideration of diverse
factors. Through the integration of historical data,
maintenance costs, and stochastic variables, the model
provides a holistic representation of the intricate el-
ements influencing wind turbine operations. This in-
clusive approach guards against oversimplification, en-
suring that the optimization process yields robust and
practical preventive maintenance schedules that ac-
curately reflect the complex realities of wind energy
systems.
Hence, thorough and accurate analysis is essential

for wind turbines, and there are several methods avail-
able to evaluate wind resources. When there is a set
of wind measurements at a specific site, the data can
be represented as a histogram. In such cases, the Ex-
ponential or Gamma distribution may not always be
the most suitable option. Hence, the Weibull distri-
bution has now become the standard for representing
wind climatology, (Daoudi et al., 2022). Thereby, the
Weibull function is more flexible. To adhere to industry
standards in the wind sector, this paper employs the
two-parameter Weibull function, expressed as follows,
(Dorvlo, 2002):

f (ρ) =

(
β

η

)
·
(
ρ

η

)β−1

e

[
−( ρη )

β
]

(2)

where ρ is the wind speed, η is the scale parameter,
β is the shape parameter and the frequency of wind
speed occurrence, denoted as f(ρ).

Hence, the Reliability function is:

f (ρ) = e

[
−( ρη )

β
]

(3)

The cumulative distribution function is then ex-
pressed:

F = 1− e

[
−( ρη )

β
]

(4)

Hence, the Reliability function is:

R (t) = e

[
−( tη )

β
]

(5)

We chose to utilize the maximum likelihood method
for estimating the shape and scale parameters.

Cost model

The model approach for wind turbine maintenance
is built upon the key parameters: failure rate (η),
downtime (γ), and maintenance costs associated with
corrective and preventive measures.

The measure of turbine failures over time, known as
the failure rate (η), represents the frequency of these
failures. The quantification of failure rate is expressed
as the number of turbine failures per year, represented
by equation (6).

η =

I∑
i=1

Fi

I∑
i

xiTi

(6)

Fi denotes the count of failures that have occurred
within a specific time interval. The variable xi corre-
sponds to the number of turbines reported during the
same time interval, while Ti denotes the duration of
that time interval.
Equation (7) defines downtime (γ) as the average

duration of hours lost as a result of failures. The down-
time r provides a measure of the average time that the
turbine remains non-operational due to failures.

γ =

I∑
i=1

γi

I∑
i

xiTi

(7)

Within the time interval Ti, the variable γi repre-
sents the total number of productive hours lost due
to failures. It quantifies the amount of time that the
turbine is unable to operate effectively during that
specific time period.

Hence, to model the total cost (CT ) and determine
the optimization function. The calculation of the to-
tal cost takes into account various cost components,
including the cost of preventive maintenance tasks
(CPR), the cost of corrective maintenance (CCC). The
cost of performing each preventive maintenance task
is denoted as (CPR), is calculated using equation (8).

CPR =

K∑
k=1

δj · CPR
j (8)

Let δj represent the duration of the preventive main-
tenance task in hours, and CPR

j denote the hourly cost
for conducting preventive maintenance.
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Therefore, cost resulting from carrying out corrective
maintenance tasks can be expressed in equation (9).

CCC = αj · CCCA (9)

where αj denote the number of corrective maintenance
tasks, and CCCA represent the average cost for con-
ducting corrective maintenance.

The equation for the total cost is derived by adding
the costs presented in equations (8) and (9). This
resulting cost is expressed in equation (10).

CT =

K∑
k=1

δj · CPR
j + αj · CCCA (10)

Given the previously mentioned variables and func-
tions, the cost minimization described in equation (10)
serves as the objective function to determine the opti-
mal preventive maintenance PM frequency. Therefore,
equation (11) represents the optimization objective.

min

{
CT =

K∑
k=1

δj · CPR
j + αj · CCCA

}
(11)

which helps to compare the average total maintenance
costs for each PM frequency being evaluated and select
the frequency with the lowest cost.

Energy losses

Therefore, the energy losses EL is given by equa-
tion (12)

EL = RC · FD ·NF (12)

where, RC is the rated capacity, which represents the
maximum/nominal power output it can generate under
ideal conditions. FD represents the Failure duration
for which the turbine remains failed until it is repaired.
This is the time during which the turbine cannot gen-
erate any power. NF , denotes the total number of
failures that occur during that time interval.

Production process

The production process of a wind turbine is in-
fluenced by various factors, including, wind turbine
capacity, its efficiency and maintenance activities that
have a direct impact on the reliability and availability
of the turbine, thus affecting its energy output. There-
fore, the energy produced EP for a specified period is
calculated using equation (13).

Let (Period− TD) represent the effective operating
time of the wind turbine during the specified period,
to subtracts the total downtime from the total period
to determine how much time the wind turbine was
operational and able to produce energy. Tef denote
turbine efficiency.

Ep =

n∑
j=1

((Period− TD) ·RC · Tef ) (13)

The application of the model approach and opti-
mization function through a case study, along with
a discussion of the results, will be treated in Section 3.

Optimization model

The optimization model used in this paper aims to
determine the optimal frequency for preventive main-
tenance (PM) activities in a wind turbine system. The
objective is to minimize the expected total maintenance
cost while ensuring acceptable levels of energy loss.
To achieve this, the algorithm employs a Monte

Carlo simulation approach. It considers different PM
frequencies, representing the intervals at which the tur-
bine undergoes inspection and maintenance. For each
PM frequency, the algorithm simulates the operation
of the wind turbine over a specified period (simulation
years).

Various factors are taken into account, including the
failure rate, operating hours, and the occurrence of
maintenance activities based on the PM frequency.

The energy loss is estimated, and the total mainte-
nance cost for each PM frequency. By averaging the
performance metrics over multiple simulation scenar-
ios, the algorithm provides insights into the average
energy loss and total maintenance cost associated with
each PM frequency. It then identifies the optimal PM
frequency that yields the lowest expected total mainte-
nance cost for the individual strategy and the grouped
strategy. The optimization algorithm strikes a balance
between maintenance costs and energy losses, ensuring
efficient operation and maximizing the overall perfor-
mance and reliability of the wind turbine system.

The optimization of the problem is accomplished by
employing a simulation process in MATLAB, involving
the following steps.
Step 1: Assign initial values for all parameters and

variables in equation (1) to (12) by using the parame-
ters in (Tab. 1).
Step 2: Define the maximum likelihood estimation

function for the Weibull distribution.
Step 3: Perform a Monte Carlo simulation, for each

PM frequency.
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Step 4: Initialize variables to accumulate costs for
each wind turbine component and the group strategy.

Step 5: Perform the specified number of simulations:
Simulate the failure time for each component using

a Weibull distribution based on its MTBF.
Calculate the number of corrective maintenance

actions based on whether the failure occurs within the
simulation period.
Calculate the number of preventive maintenance

actions based on the PM frequency and simulation
period.

Accumulate the total corrective and preventive main-
tenance times and costs for each component.

Determine the maximum corrective and preventive
maintenance times among all components for the group
strategy.

Accumulate the total cost for the group strategy.
Calculate the average total costs for each component

and the group strategy
Step 6: Determine the PM frequency that minimizes

the total cost for each component and the group strategy.
Step 7: Generate random failure events based on

the failure rate and calculate the energy loss.
Step 8: Determine the maintenance cost distribution.

Assumptions

The following assumptions are considered:
1. Failure rate: The failure rate is assumed to follow

the Weibull distribution.
2. Maintenance activities: Performed only when the

cumulative operating hours reach the threshold
and the PM frequency condition is met. No other
factors or criteria for performing maintenance are
considered.

3. Maintenance cost: Assumed to be fixed for each
maintenance activity and given as a parameter.

4. Energy loss: Assumes that when a failure occurs, the
entire rated capacity of the Wind turbine is lost.

5. Simulation scenarios: A Monte Carlo simulation
approach is used to evaluate different maintenance
scenarios.

6. Simulation period: The turbine is assumed to operate
continuously throughout the simulation period with-
out any extended periods of downtime or shutdown.

7. Downtimes are based on both corrective mainte-
nance and preventive maintenance.
The subsequent section showcases a numerical ex-

ample that effectively demonstrates the proposed ap-
proach for optimizing preventive maintenance. We
adopt the aforementioned algorithm and thoroughly
discuss the achieved results.

Case study

Wind turbines operate by capturing the wind’s ki-
netic energy using rotating blades. This rotational
motion is then transmitted to a nacelle on top of the
tower. Within the nacelle, a gearbox increases the ro-
tational speed before transferring it to a generator,
which converts the mechanical energy into electrical
energy. The electricity is further converted to a higher
voltage, adjusted for grid compatibility, and transmit-
ted to the power grid through cables. The efficient and
reliable functioning of wind turbines relies on several
key components and processes, with bearings playing
a crucial role. We specifically focus on four primary
systems: pitch bearings, main bearings, gearbox bear-
ings, and generator bearings shown in Figure 1. These
bearings are selected based on their higher probabili-
ties of failure and potentially severe consequences. The
rationale behind selecting these four bearings stems
from the similarity of their maintenance tasks. A brief
description of this group is provided below.
• Pitch bearings: These are an integral component
of wind turbine blades. Each blade features an
individual pitching activator that includes a hy-
draulic cylinder, piston rod, and a bearing. These
pitch bearings typically employ a four-point design,
utilizing the hub as their housing.

• Main bearings play a critical role in the struc-
tural integrity of wind turbines, particularly in
withstanding high loads during gusts and braking.
Their primary function is to minimize frictional
resistance between the blades, main shaft, and
gearbox, facilitating smooth relative motion. How-
ever, main bearing failures are often attributed to
wear, pitting, and deformation of the outer race
and rolling elements, which are the main culprits
behind these failures.

• Generator bearings are a primary source of failure
in generators, making them a critical component to
monitor. Consequently, the maintenance activities
primarily focus on inspecting and ensuring the
health of these bearings.

• Gearbox bearings support and facilitate the smooth
operation of the gearbox. They distribute loads,
enable power transmission, reduce noise and vibra-
tions, provide axial and radial support, and protect
against overloads. These bearings are crucial for the
reliable and efficient functioning of wind turbines.
We gathered our data from a comprehensive field

failure database, which includes operations and Main-
tenance reports. The database specifically focuses
on a conventional onshore wind turbine system with
RC = 2 (Megawatts) and efficiency = 35%. Addition-

Volume 15 • Number 1 • March 2024 117



Y. Eddouh, A. Daya, R. EL Otmani, A. Touache: Maximizing Wind Turbine Efficiency: Monte Carlo Simulation . . .

Fig. 1. Wind turbine bearings

ally, we have supplemented our data with information
from relevant references (Shafiee & Finkelstein, 2015
and Daoudi et al., 2022).
The introduced parameters values of the Weibull

parameters values, MTBF, preventive maintenance
action time, corrective action time and maintenance
cost of the bearings are depicted in (Tab. 1).
We have implemented a MATLAB program to

minimize the expected maintenance cost per unit
time of the system. Figure 2 illustrates the optimal
preventive maintenance (PM) frequency, which
corresponds to the minimum expected maintenance
cost for each bearing in individual wind turbines. The
optimal value is represented by the red dashed circle.
The simulation results unveil a critical insight into the
optimal (PM) frequency, with a focus on inspecting
the Pitch Bearing every 92 months. This finding
signifies that, according to the simulation, conducting
maintenance activities at this specific interval proves
optimal for minimizing the total maintenance cost to
$3484. The significance of this result extends beyond
a mere numerical output. The 92-month interval is
strategically determined to strike a delicate balance
between two crucial considerations: mitigating main-
tenance costs and ensuring the reliability of the wind

turbine system. By choosing this specific frequency,
decision-makers can optimize resource allocation,
scheduling maintenance activities at a frequency that
minimizes costs while simultaneously maintaining the
integrity and performance of the Pitch Bearing.

Fig. 2. Optimal PM frequency for Pitch Bearing

Figure 3 shows, the optimal (PM) frequency deter-
mined by the simulation is to inspect the Main Bearing
every 74 Months. This means that maintenance activ-
ities should be performed at this interval to minimize
the total maintenance cost within 1640. This numeri-
cal result carries substantial operational implications.
The 74-month frequency emerges as a strategically
determined interval that harmonizes the imperative of
cost reduction with the imperative of sustaining the
Main Bearing’s reliability.

Figure 4 shows, the optimal preventive maintenance
(PM) frequency determined by the simulation is to
inspect the Gearbox every 78 Months. This means
that maintenance activities should be performed at
this interval to minimize the total maintenance cost
within 4637.

Figure 5 shows, the optimal preventive maintenance
(PM) frequency determined by the simulation is to
inspect the Generator Bearing every 77 Months. This

Table 1
Parameters values

Wind Turbine
components

Shape
parameter

Scale
parameter

MTBF
(Months)

Corrective
action time
(Months)

PM action
time

(Months)

Corrective
action cost

($)

PM action
cost
($)

Pitch bearings 1.2 16 30 7 2 4000 1100

Main bearings 2.6 22 34 5 1 2000 1200

Gearbox bearings 1.9 17 52 15 5 6100 3000

Generator bearings 1.7 19 34 20 8 5100 2400
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means that maintenance activities should be performed
at this interval to minimize the total maintenance cost
within 3752.

These interpretations underscores the practical util-
ity of the simulation results, providing actionable guid-
ance for real-world decision-making in wind turbine
preventive maintenance. It showcases the power of the
proposed methodology not only in offering specific
numerical outputs but also in guiding stakeholders

Fig. 3. Optimal PM frequency for Main Bearing

Fig. 4. Optimal PM frequency for Gearbox

Fig. 5. Optimal PM frequency for Gearbox

towards strategically timed and cost-effective main-
tenance practices, thereby enhancing the overall effi-
ciency and longevity of wind energy systems.

The optimal values obtained from the program are
presented in (Tab. 2).

Table 2
Optimal individual strategy

Wind Turbine
components

Optimal PM
interval

Minimal expected
cost

Pitch bearings 92 months 3484 ($)

Main bearings 74 months 1640 ($)

Gearbox bearings 78 months 4637 ($)

Generator
bearings 77 months 3752 ($)

Total cost 13513 ($)

The findings indicate that both the main bearing
and gearbox bearing share the same optimal preven-
tive maintenance (PM) interval. Consequently, the
pitch bearing also exhibits a PM interval that is very
close to the optimal interval of the main bearing and
gearbox bearing. Additionally, the PM interval for the
generator bearings is also close to that of the pitch
bearings. Taking these results into account, it is viable
to investigate the optimal values of the expected to-
tal cost under a grouping strategy while considering
clustered optimal PM interval.
While the wind turbine’s maintenance is closely

linked to its production. The optimal preventive main-
tenance strategy for a wind turbine must strike a bal-
ance between minimizing maintenance costs and mini-
mizing production losses due to downtime. Maximizing
the efficiency and profitability of the wind turbine re-
quires careful consideration of the trade-off between
maintenance activities and the impact of production
loss. Therefore, production loss due to downtime is
a critical factor in determining the optimal preven-
tive maintenance strategy. When the turbine is under
maintenance, it is unavailable for power generation,
resulting in a loss of revenue. Hence, it is crucial to
minimize the frequency and duration of maintenance
activities while ensuring the turbine operates reliably
and safely. For that, the MATLAB program can find
the optimal PM frequency that minimizes the average
total maintenance cost in a grouped preventive main-
tenance strategy, taking into account the associated
production losses. The decision variable is the PM
frequency, representing the number of years between
preventive maintenance activities by striking the right
balance between maintenance activities and minimiz-
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ing production losses, the wind turbine can operate at
its optimal level, ensuring reliable and efficient power
generation.

Figure 6 illustrates the optimal PM frequency and the
corresponding minimal expected cost under a grouped
strategy, represented by the red dashed circle.

Fig. 6. Optimal grouping strategy of the wind turbine
bearings

Based on (Tab. 3) and comparing it to the indi-
vidual maintenance strategy, the results indicate that
the grouped strategy is more economical, as it demon-
strates the lowest minimal expected cost.

Table 3
Optimal grouped strategy

Wind Turbine Optimal PM
interval

Minimal expected
cost

Grouped strategy 93 months 9997 ($)

During production, the wind turbine experiences
failures that result in downtime and energy loss. Each
time a failure occurs, the energy loss is equal to the
rated capacity of the wind turbine, which is given
as 2 MW. The energy loss is accumulated for each
maintenance scenario. The total energy loss is divided
by the number of scenarios to calculate the average
energy loss.

Figure 7 provides valuable insights into the impact
of different frequencies of preventive maintenance on
the energy losses of the system over the defined period.
By visually representing the observed frequencies of
each energy loss range in the maintenance scenarios,
the histogram allows for a clear understanding of the
distribution and evolution of energy losses over time.
For instance, where the histogram shows a value of
30-32 on the X-axis and 1050 on the Y-axis. This
means that the average energy loss is 32.014 MWh per

Months, and this range has been observed with a fre-
quency of 1050. The X-axis value of 32 MWh indicates
that the energy loss range considered in this histogram
is from 30 to 32 MWh, and all the energy losses gen-
erated during the simulation fell within this range.
The high frequency of 1050 on the Y-axis suggests
that the energy loss range of 30 to 32 MWh occurred
frequently.

Fig. 7. Energy loss based on Monte Carlo simulation

This analysis aids in the identification of the most
frequent energy loss ranges and their relationship with
the chosen preventive maintenance frequency. With
this information, informed decisions can be made to de-
termine the optimal preventive maintenance frequency,
leading to minimized energy losses and enhanced sys-
tem performance.
Therefore, it is crucial in understanding the eco-

nomic implications of wind turbine operations. For
that, a maintenance cost distribution is determined to
provide insights into the variability and likelihood of
different maintenance cost scenarios.

Figure 8 shows the distribution of maintenance costs,
which exhibits a shape similar to a normal distribution.
This distribution represents the likelihood or probabil-
ity density of different maintenance cost values.
The curve indicates that moderate maintenance

costs occur less frequently, while higher and lower costs
are more common. In particular, a specific probability
density value of 0.0004639 stands out, indicating a rel-
atively higher likelihood for a particular maintenance
cost. Notably, this value is close to the minimum cost
observed when using a grouped strategy for the opti-
mal PM frequency. This suggests that the maintenance
cost associated with the 0.0004639 probability density
value aligns with the minimum cost achieved through
the grouped strategy for the optimal PM frequency.
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Fig. 8. Maintenance cost distribution

The results indicate that by optimizing the PM fre-
quency and implementing the suggested maintenance
strategy, the wind turbine can achieve an acceptable
balance between minimizing costs and ensuring opti-
mal performance. The estimated energy loss and main-
tenance costs provide valuable insights for decision-
making regarding wind turbine maintenance strategy,
and operational efficiency improvement. Hence, a vari-
ability analysis is performed to provide a deeper un-
derstanding of the reliability, predictability, with the
Wind Turbine maintenance strategy. More specifically,
variability analysis evaluates multiple (PM) frequen-
cies to compare how the variability in key performance
metrics (Energy loss and total cost) varies with differ-
ent PM frequencies. This comparison helps in selecting
the most robust and predictable frequency.
Figure 9 shows the variability of energy loss refers

to the extent to which the energy loss in Wind Tur-
bine, fluctuates or varies over time. A higher standard
deviation indicates greater variability, meaning that
in scenarios with a higher standard deviation, the en-
ergy loss tends to vary more widely from the average
energy loss or maintenance cost. Conversely, a lower
standard deviation indicates less variability, suggest-
ing that the energy loss and maintenance cost values
are closer to the mean and tend to cluster around
a more predictable value. Understanding the variabil-
ity is essential in risk assessment and decision-making
for maintenance strategies.

In this study the variability of energy loss refers to
how much the amount of energy lost due to failures and
maintenance activities varies. It is quantified by calcu-
lating the standard deviation of energy loss for each
preventive maintenance (PM) frequency being evalu-
ated. A higher standard deviation indicates greater
variability, meaning that in scenarios with a higher

Fig. 9. Variability of energy loss

standard deviation, the energy loss tends to vary more
widely from the average energy loss. Conversely, a lower
standard deviation indicates less variability, suggesting
that the energy loss values are closer to the mean and
tend to cluster around a more predictable value. Un-
derstanding the variability of energy loss is essential in
risk assessment and decision-making for maintenance
strategies. Higher variability may indicate less pre-
dictability and more risk in terms of energy loss, while
lower variability suggests greater consistency and reli-
ability in the Wind turbine performance. In summary,
the data provides valuable insights into how energy
loss variability corresponds to different PM frequency.
It can be useful for evaluating the stability and con-
sistency of energy loss under different maintenance
strategies.
Based on the obtained data, we can draw several

conclusions:
• Variability in Energy Loss: The standard deviation
values for energy loss under various PM frequencies
indicate the extent of variability in energy loss
across different simulation scenarios.

• Consistency: When comparing the standard devia-
tions, we can observe that they are relatively close
in value for the different PM frequencies (ranging
from approximately 7.936 to 8.063 MWh). This
suggests that the variability in energy loss does
not vary significantly with changes in the PM fre-
quency.
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• Lack of Strong Dependence: The results do not
exhibit a strong pattern were increasing the PM
frequency consistently leads to lower variability in
energy loss. In some cases, higher PM frequencies
may have slightly lower standard deviations, but
the differences are not substantial.
Figure 10 illustrates the variability of total cost

over time, pertaining to fluctuations in the overall
maintenance costs for a wind turbine.. In this study
the variability calculates the standard deviation of
total maintenance costs across multiple simulation
scenarios for each PM frequency.

Fig. 10. Variability of energy loss

A higher standard deviation of total cost points to
greater variability. In scenarios with a higher standard
deviation, the total maintenance costs exhibit wider vari-
ations from the average total cost. Conversely, a lower
standard deviation indicates less variability, signifying
that the total maintenance cost figures tend to cluster
closely around a more predictable average. Understand-
ing the variability of total cost is pivotal for assessing
the financial risk entailed by a maintenance strategy.

The data illustrates a clear trend: as the PM frequency
decreases, the standard deviation of total maintenance
cost decreases as well. In other words, costs become
more stable and predictable with longer intervals be-
tween inspections. Longer inspection intervals can lead
to more consistent maintenance costs, which can be
advantageous for budgeting and financial planning.

Hence, the results demonstrate that:
• When maintenance is conducted every 11 months,
the standard deviation of total maintenance cost
is $3,313. This implies that the maintenance cost
can fluctuate by approximately $3,313 from the
average cost within this 11-month PM cycle.

• Extending the PM frequency to 30 months results
in a reduced standard deviation of $1,877. This
suggests that the maintenance cost variability de-
creases with less frequent inspections, leading to
more predictable costs over the 30-month interval.

• With a 60 months PM frequency, the standard de-
viation drops further to $1,038. This indicates that
maintenance costs are even more stable and consis-
tent when inspections are performed every 5 years.

• With a 93 months PM frequency, the standard
deviation stands at $954.8, indicating that mainte-
nance cost variability remains minimal even with
extended inspection intervals. This represents the
optimal choice for achieving lower variability, align-
ing with the optimal value observed in the Grouped
strategy, as illustrated in Fig. 6.

• 100 Months PM Frequency: When maintenance oc-
curs every 100 months, the standard deviation in-
creases slightly to $1,124. This suggests that the cost
variability, while still relatively low, starts to show
a slight uptick with even longer inspection intervals.

In order to emphasize the advantages of the grouped
maintenance strategy and underscore the pivotal role
of wind turbine maintenance in the production process,
we conducted a thorough and comprehensive analysis
of energy production. This analysis involved a detailed
comparison of energy production levels both before and
after the implementation of the grouped maintenance
optimization.

The findings of our study regarding the energy pro-
duction prior to optimization are represented in Fig-
ure 11. This illustration provides a baseline energy
production, serving as a valuable reference point for
understanding the subsequent improvements achieved
through the grouped maintenance strategy.

Therefore, as depicted in Figure 12 the graphical rep-
resentation provides a comprehensive view of the total
energy produced subsequent to the optimization of the
grouped maintenance strategy. The results light the
profound impact of adopting the grouped maintenance
approach on energy production.
Upon closer examination of the data, it becomes

evident that the grouped maintenance strategy stands
out as a pivotal factor influencing energy production
positively. This outcome is particularly noteworthy,
emphasizing the strategic advantage and consequen-
tial benefits of implementing a grouped maintenance
strategy for wind turbines.
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Fig. 11. Energy production before optimization

Fig. 12. Energy production after optimization

Hence, Figure 13 is a comparative analysis of total
energy production between two scenarios: before and
after the optimization of the grouped maintenance
strategy.
Following the optimization, there is a substantial

increase in wind turbine production, amounting to
1695.6142 MWh. This marked improvement positions
the grouped maintenance strategy as a standout per-
former, surpassing other strategies in its impact on
energy production. Emphasizing its effectiveness, this
approach enables the turbine to achieve a noteworthy
4.29% increase in overall energy production. The sig-
nificance of (Fig. 13) lies in its depiction of tangible
improvements resulting from the implementation of
the grouped maintenance strategy. This strategic opti-
mization not only demonstrates a harmonious balance
between increased energy production and minimized
maintenance costs but also highlights a prudent man-
agement of wind turbine energy losses.

Fig. 13. Comparison of energy production

Comparative study

To determine the effect of the proposed maintenance
strategy on the energy-cost tradeoff and gain in produc-
tion, a comparative study is conducted, summarized
on (Tab. 4), to compare our results with those of other
studies, which have used different methods.

Table 4
Comparative studies

Study Method Finding

(Azizi &
Jahangirian,

2020)

Genetic algorithm
optimization

Gain in energy
production by

4.45%

(Benmessaoud et
al., 2013)

Stochastic
degradation

model

Gain in energy
production of

4.22%

We can conclude that our findings indicate a close
alignment with existing studies, suggesting that these
various optimization methods operate within a com-
parable range of effectiveness.

Conclusion

The Monte Carlo simulation was conducted to iden-
tify the PM frequency that corresponds to the minimal
cost for the wind turbine. The simulation involved
generating multiple random scenarios to assess the
impact of different PM frequencies on energy loss and
maintenance costs. The following general results and
discussions were obtained:
• The simulation results indicated that the grouped

strategy is more economical compared to the indi-
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vidual strategy. This finding suggests that coordi-
nating maintenance activities and performing them
in a grouped manner can lead to cost savings.

• The simulation revealed that there is an optimal
PM frequency that minimizes the total mainte-
nance cost. By varying the PM frequency, it was
possible to identify the specific frequency that
achieved the lowest cost. This optimal frequency
strikes a balance between the costs of preventive
maintenance activities and the potential costs of
unexpected failures.

• The simulation provided insights into the relation-
ship between PM frequency and energy loss. It
was observed that higher PM frequencies tended to
reduce the occurrence of unexpected failures, result-
ing in lower energy loss. However, excessively high
PM frequencies also incurred unnecessary main-
tenance costs, which impacted the overall cost-
effectiveness.

• The analysis of maintenance costs revealed to tend
a normal distribution. The distribution represented
the range of observed maintenance costs and their
associated likelihoods. This allowed for a compre-
hensive understanding of the variability in mainte-
nance costs and helped in assessing the cost land-
scape.

• The minimal cost associated with the optimal PM
frequency was analyzed within the context of the
maintenance cost distribution. This provided a ref-
erence point to evaluate the achieved cost optimiza-
tion outcome. The optimal cost was often aligned
with the lowest cost values in the distribution, in-
dicating successful cost reduction through the op-
timization process.

• Variability analysis indicates that as PM frequency
increases, maintenance cost variability tends to
decrease. Longer intervals between maintenance
activities result in more stable and predictable out-
comes. Hence, the findings do not reveal a robust
trend where an increase in the PM frequency con-
sistently results in reduced energy loss variability.
While higher PM frequencies occasionally display
slightly lower standard deviations, these variations
are not significant.

• The implementation of a grouped maintenance
strategy has demonstrated remarkable success, re-
sulting in a substantial 4.29% increase in energy
production. This outcome underscores the effec-
tiveness of this strategy in optimizing energy gen-
eration and highlights its potential to contribute
significantly to production process.

• A comparative study was conducted to validate
the proposed maintenance strategy in comparison
to alternative approaches.

Our future research will continue in investigating the
application of Monte Carlo simulation in conjunction
with artificial intelligence for a large wind park.
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