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Abstract. Efficiency, reliability, and durability play a key role in modern drive systems in line with the Industry 4.0 paradigm 
and the sustainability trend. To ensure this, highly efficient motors and appropriate systems must be deployed to monitor their 
condition and diagnose faults during the operation. For these reasons, in recent years, more and more research has been focused 
on developing new methods for fault diagnosis of permanent magnet synchronous motors (PMSMs). This paper proposes a novel 
hybrid method for the automatic detection and classification of PMSM stator winding faults based on combining the continuous 
wavelet transform (CWT) analysis of the negative sequence component of the stator phase currents with a convolutional neural 
network (CNN). CWT scalogram images are used as the inputs of the CNN-based interturn short circuits fault classifier model. 
Experimental tests were carried out to verify the effectiveness of the proposed approach under various motor operating conditions 
and at an incipient stage of fault propagation. In addition, the effects of the input image format, CNN structure, and training 
process parameters on model accuracy and classification effectiveness were investigated. The results of the experimental tests 
confirmed the high effectiveness of fault detection (99.4%) and classification (97.5%), as well as other important advantages of 
the developed method.

Key  words: fault diagnosis; interturn  short  circuits; continuous  wavelet  transform; convolutional  neural

networks; permanent magnet synchronous motor. 

1. INTRODUCTION 

Significant advantages such as high efficiency, wide speed 

control range, high reliability, and power density have made 

permanent magnet synchronous motors (PMSMs) popular in 

recent years [1]. They are increasingly used in a wide variety of 

industries, such as aerospace, automotive, robotics, HVAC/R 

and others [2]. However, PMSMs, despite their high reliability, 

are subject to various types of damages, including mechanical, 

magnetic, and electrical faults. Electrical faults are primarily 

short circuits in the stator winding, which are among the most 

common, and most destructive, faults of PMSMs [3]. 

Depending on the type, a distinction can be made between 

interturn short circuits (ITSCs), short circuits between coils in 

a single phase, phase-to-phase short circuits, and ground faults. 

Most often, a stator winding fault begins with ITSCs and then 

spreads rapidly from a single coil to subsequent coils, 

eventually leading to a phase-to-phase or phase-to-ground fault 

[4]. 

A short circuit usually occurs due to stator winding insulation 

damage caused by excessive mechanical, thermal, and 

electrical stresses that motors are subjected to during operation, 

often under harsh environmental conditions. Other factors that 

can contribute to faster degradation of a stator winding 

insulation and consequent short-circuiting include high dv/dt of 

the inverters supplying the motors, operation under load 

conditions exceeding the rated values, field weakening, and 

chemicals that may accelerate insulation aging [5]. 

ITSC causes high amplitude current flow in a shorted circuit, 

which leads to local excessive overheating of the stator 

winding, which in turn can lead to critical damage to the motor 

and the need to take it out of service. To avoid unexpected 

downtime in the processes in which these motors are used, as a 

result of the need to interrupt their operation, the condition of 

the stator winding should be continuously monitored and its 

damage detected and classified as early as possible [6]. Early 

detection of a fault can enable proper scheduling of motor 

overhaul, which will translate into reduced repair costs, shorter 

delays, and lower production losses. In addition, it is extremely 

important for environmental concerns and sustainability, as it 

reduces the generation of additional waste. 

Considering the above-mentioned risks arising from the lack of 

implementation of diagnostic methods, as well as the growing 

popularity of PMSMs, diagnostics of their faults seems to be 

essential. It has been of great interest both to university 

researchers and to industry in recent years. To meet these 

requirements, the development of such methods forces research 
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into the possibility of using the latest technologies and 

innovative solutions. Appropriate selection and application of 

signal processing algorithms and artificial intelligence (AI) 

techniques make it possible to develop fully automated systems 

that allow real-time monitoring of motor conditions. 

Over the years, many fault diagnosis methods have been 

developed for AC motors, including high-efficiency PMSMs 

[7], [8], [9]. These methods are based on diagnostic signals that 

carry information about the condition of the motor, such as 

stator phase current [10], axial flux [11], vibration [12], or 

signals from the control structure [13]. Among these signals, the 

most commonly used is the stator phase current. 

To extract the fault symptoms from these diagnostic signals, 

signal processing algorithms are used. Among the most basic, 

and highly effective, is the spectral analysis of the signal using 

the Fast Fourier Transform (FFT) [14]. Advanced methods 

implementing frequency domain analysis used in PMSM fault 

diagnosis include higher order transforms (HOTs). One of the 

most popular and effective in fault diagnosis tasks HOT is the 

bispectrum transform [15]. However, these methods also have 

limitations, such as the lack of information about the time of 

occurrence of a given component, and thus the ability to 

determine the timing of early fault symptoms. 

Mathematical apparatuses that implement time-frequency 

domain analysis, such as the Hilbert-Huang transform [16], the 

Short-Time Fourier Transform (STFT) [17], and the 

Continuous Wavelet Transform (CWT) [18], are devoid of 

these disadvantages. In fault diagnosis, the effectiveness of 

CWT analysis has been verified mainly for fault diagnosis of 

induction motors [19]. However, despite the many advantages 

of this method, it has not been extensively studied in the past 

for its applicability to the detection of PMSM stator winding 

faults at an incipient stage of fault development - as early as the 

short-circuiting of single turns to avoid fault propagation, and 

over a wide range of motor operating conditions. 

The above methods can be used to extract symptoms of PMSM 

stator winding faults. To fully automate the process of 

monitoring and detecting stator winding damage, it is necessary 

to use a decision-making block that will generate information 

about the condition of the motor based on the extracted 

symptoms. In recent years, to minimize the role of the human 

expert, the process of automating this task has been 

implemented using AI techniques, such as machine learning 

(ML) algorithms [20] and artificial neural networks (ANNs) 

[21]. Proper selection and application of signal processing 

algorithms and the latest advances in AI make it possible to 

develop fully automated systems that allow real-time 

monitoring of machine operation. Among ANNs, research in 

recent years has focused most attention on deep neural 

networks, especially convolutional neural networks (CNNs). In 

the case of CNNs, it is possible to rely on raw diagnostic 

signals, omitting the signal processing stage, and achieving 

very short detection times and high effectiveness, which has 

been studied and described in the literature [22]. However, this 

requires a CNN model with a more advanced structure and a 

longer training time, which can be reduced using advanced 

mathematical apparatuses-based signal preprocessing [15]. 

Combining the signal preprocessing stage with CNNs, whose 

main application is image recognition, using mathematical 

apparatuses whose result can be represented in the form of an 

image, can make it possible to achieve high effectiveness while 

reducing the network structure and the difficulty of the training 

process. Such solutions have so far been verified mainly for 

fault diagnosis of induction motors [23]. 

Nowadays, there is also a visible trend to apply advanced finite 

element method-based models of PMSMs with the ability to 

simulate various types of faults to generate their symptoms 

(features) that can be used for AI-based model training. This 

technique is one type of a rapidly developing approach called 

transfer learning (TF). In this type of TF, diagnostic methods 

are developed based on features preserved in diagnostic signals 

generated from the mathematical models of the motors. From 

these, datasets used to train AI-based fault detector models are 

prepared. The fault detector models, in turn, can be applied to 

real objects. Examples of such solutions for PMSM fault 

diagnosis are presented in [24], [25], [26]. However, model-

based detection methods require very high computational 

power and a very accurate representation of machine 

parameters, which can be difficult to determine precisely under 

real-world conditions. 

This paper proposes a novel hybrid method for the automatic 

detection and classification of PMSM stator winding faults 

based on combining the CWT of the negative sequence 

component of the stator phase currents with the CNN model. 

CWT scalogram images are used as inputs of the CNN-based 

ITSC fault classifier. Experimental tests were carried out to 

verify the effectiveness of the proposed approach under various 

motor operating conditions. Moreover, the effect of the input 

image format, network structure, and learning process 

parameters on the model's accuracy and effectiveness were 

investigated. The results of the experimental studies confirmed 

the high effectiveness and advantages of the developed method. 

The three main contributions and original elements of this 

research can be summarized as follows: 

• Development of a novel hybrid method for automatic 

detection and classification of PMSM stator winding 

faults based on the combination of CWT analysis of the 

negative sequence component of the stator phase currents 

with the CNNs, which makes it possible to achieve very 

high detection and classification effectiveness already at 

the initial stage of fault propagation. 

• Detailed analysis of the influence of the CNN model 

structure, training parameters, and the input image format 

on the accuracy and effectiveness of the PMSM stator 

winding fault classifier models. 

• Appropriate selection of the symptom extraction stage 

(CWT-based) and preparation of the input image format 

(compression), which allowed the use of CNNs with a 

simple structure. This results in a short training time and a 

small model size, which is extremely important from the 

view of hardware (microcontroller) implementation of 

AI-based algorithms. 

The article consists of seven sections. The next two sections 

discuss the theoretical basis of the CWT and CNNs. This is 
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followed by a description of the laboratory stand on which the 

experimental tests were carried out. The next chapter presents 

the results of the extraction of PMSM stator winding fault 

symptoms from the signal of symmetrical components of the 

stator phase currents using CWT analysis. The penultimate 

chapter discusses the automation stage of the fault diagnosis 

process using CNN. The whole is concluded with a summary 

of the research presented in the paper. 

2. CONTINUOUS WAVELET TRANSFORM 

Methods implementing time-frequency analysis are applied to 

describe the relationship between signal information in the time 

domain and the corresponding spectral distribution in the 

frequency domain [27]. CWT is one of the transforms 

belonging to the group of these methods. It has found 

application in many fields, including electric motor fault 

diagnosis. The result of the CWT, called a scalogram, contains 

both time-of-occurrence information and the distribution of 

harmonics in the frequency domain of the analyzed signal. The 

CWT of a signal x(t) is defined by the following equation [28]: 
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where: a – a scale factor, τ – a shifting parameter (in the time 

domain), ψ – a mother wavelet, ψ*(∙) – a complex conjugate of 

function ψ(∙), ψ*
a,τ –a scaled and translated version of ψ*, called 

baby wavelet: 
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In the actual digital implementation, the integral in equation (1) 

is replaced by a summation operation, according to the 

following equation: 
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The CWT analysis result resolution in the time and frequency 

domain depends on the scale factor a. This factor allows for a 

change in the width of the wavelet - scaling it in the time domain 

(changing the duration of the wavelet). It is assumed that the 

scale is proportional to the inverse of the frequency. In the low-

frequency range of the signal, the frequency resolution is higher 

and the time resolution is lower, and vice versa in the high-

frequency part of the signal. This is consistent with slow 

changes in the low-frequency signal and fast changes in the 

high-frequency signal. The change in the shift factor τ 

corresponds to a change in the position of the wavelet in the 

time domain [25]. 

As part of the research presented in this paper, the Morse 

wavelet, which is available in the MATLAB Wavelet Toolbox, 

is used after an earlier comparison with other types of wavelets, 

such as the Bump wavelet and Morlet wavelet. The scope of the 

study focused on verifying the feasibility of using CWT 

analysis to extract the PMSM stator winding (ITSC) fault 

symptoms, so the theoretical description of the CWT 

mathematical apparatus is limited to the above basics. 

Nevertheless, a detailed description of the theory, properties 

and implementation of these wavelets is described in [29], [30], 

[31]. 

3. CONVOLUTIONAL NEURAL NETWORKS 

The past decades have seen a significant increase in popularity 

and progress in the field of AI. A particularly rapidly growing 

area of AI is deep learning (DL). The main reason for the rapid 

growth in popularity of DL is the high effectiveness of this 

technique in solving problems that cannot be optimally solved 

by shallow neural networks, such as the widely used multilayer 

perceptron (MLP). 

The primary function of CNNs is to extract relevant features, 

including higher-order ones, from input information. The most 

popular application of CNNs is their use as image and speech 

recognition tools [32]. CNNs operate on images represented as 

three-dimensional tensors containing two spatial axes (height 

and width) and a depth axis, called the channel axis. For RGB 

images, the depth axis is three-dimensional, while for grayscale 

images it is one-dimensional [33]. 

CNNs consist of a collection of layers of different types. The 

basic layers present in their structure are convolution layers  

(CL), pooling layers (PL), flattening layers (FL), and fully 

connected (dense) layers. In addition, there may also be 

normalization and dropout layers. Each of the subsequent 

convolution layers allows the extraction of characteristic 

features of the input image. The first layer can be understood as 

a filter of basic, low-order features, such as image edges or 

pixels with similar textures. Successive convolution layers 

allow the extraction of features of increasingly higher order. 

The depth channels of the image are processed by a set of filters. 

The filter output (feature map) is then subject to a nonlinear 

activation function [34]. In the case of CNNs, the most 

commonly used activation function, also applied in this study, 

is the Rectified Linear Unit (ReLU) function. At the output of 

the convolutional layer, the number of extracted feature maps 

is much larger compared to the dimensionality of the input. For 

this reason, pooling layers are used in the CNN structure to limit 

the number of parameters. The flattening layers transform the 

resulting images, which have the form of three-dimensional 

tensors after the pooling operation, into a vector form that is 

passed to the fully connected layer. 

There are many methods for training CNNs. Among the most 

popular is the Stochastic Gradient Descent (SGD) algorithm. 

This algorithm is an optimization algorithm and is based on 

error estimation from a data packet containing N random 

samples from a data set. SGD iteratively updates the training 

parameters, i.e. kernels and weights. The algorithm is easy to 

implement and allows for online training. However, the weight 

updates have a large variance and the training speed is relatively 

low. The variance problem can be solved by using the mini-

batch SGD algorithm, while its acceleration after introducing 

the momentum parameter (γ). This algorithm is known by the 

acronym SGDM. Currently, this method is the most common 

choice for training CNNs, also applied within the framework of 

this work. The loss (objective) function used in the learning 

process is Sparse Categorical Cross-Entropy (SCCE): 
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where N is the number of samples corresponding to the selected 

batch size B, li is the actual class, and yi is the model response. 

Among the most important parameters to be determined in the 

initial training phase are the learning rate η and γ. The gradient 

of the LSCCE loss function determines the direction in which the 

function has the steepest rise. Each parameter (weight) w is 

updated in the negative direction of the gradient with a step size 

determined by η. The aforementioned SGDM learning method 

is a gradient descent acceleration technique, which accumulates 

a vector υ in the direction of constant decrease of the loss 

function. The parameter γ determines the percentage of 

previous gradients that are additionally taken into account when 

updating the weights, in addition to the current gradients. A 

single parameter update is implemented according to the 

following equations [35]: 
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4. EXPERIMENTAL SETUP 

Experimental tests were carried out on a specially prepared 

setup, consisting of two PMSM motors: the tested one, rated at 

2.5 kW, and the second one, rated at 4.7 kW, which provided 

the load torque. The real view of the experimental stand is 

shown in Figure 1. The parameters of the analyzed motor are 

grouped in Table A1 in the Appendix. This motor was powered 

by a Lenze Topline 8400 frequency converter and operated in 

closed-loop field-oriented control (FOC) with PI current and 

speed controllers. The stator winding of the PMSM under test 

was re-wound in such a way that its design allowed controlled 

ITSCs involving a given number of turns to be physically 

shorted. During the tests, a maximum of 5 turns were short-

circuited, which corresponded to 2% of all turns in a phase. The 

schematic diagram of the derived phase terminals of the PMSM 

stator winding is shown in Figure 2. The tests were conducted 

without limiting the additional resistance of the current in the 

shorted circuit. Diagnostic signals - stator phase currents were 

measured with LA 25-NP transducers by LEM. Output signals 

from the transducers were transferred to a data acquisition 

system - an 8-channel NI PXI-4492 DAQ measurement card by 

National Instruments (NI). The DAQ card was housed in an NI 

PXI 1082 industrial computer. The measurement application 

was prepared in the LabVIEW environment. A simplified block 

diagram of the test bench is shown in Figure 3. Speed control 

of the test motor was implemented using Lenze Engineer 

software, while load level control was realized using VeriStand. 

5. PMSM STATOR WINDING FAULT SYMPTOM 
EXTRACTION USING CWT 

The occurrence of ITSC in the PMSM winding causes an 

increase in the amplitude of stator currents, their fluctuation, 

and notable asymmetry [14]. Asymmetry occurring due to a 

short circuit, in turn, affects the value of the symmetrical 

components of the stator phase currents [36]. In this study, the 

possibility of extracting the symptoms of PMSM stator winding 

faults by means of CWT analysis of these components is 

analyzed. 

 

Fig.1. Experimental stand – real view. 

 

Fig.2. Diagram of the derived phase terminals of the PMSM stator 
winding. 

 

Fig.3. Simplified block diagram of the test bench. 

 

The instantaneous values of stator phase current symmetrical 

components are calculated using a 90° phase shift operator in 

the time domain, according to equation (6) [32]. 

 90
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Where isA, isB, isC - instantaneous values of the stator phase 

currents in the a-b-c coordinate system, i1, i2, - instantaneous 

values of the positive and negative sequence components of the 

stator phase currents, S90 - 90° time domain phase shift operator. 

The waveforms of the i1 and i2 for different levels of load torque 

TL, rated supply voltage frequency fs=fsN=100 Hz, and 

instantaneous short-circuiting of 1 to 5 turns, are shown in 

Fig. 4. The amplitude changes of the i1 as a result of ITSCs are 

evident, but the effect of the TL level is much more visible. The 

percentage increase in the amplitude of i1 caused by ITSC, 

especially in the incipient stage of the fault, decreases 

significantly at higher load. The effect of short circuits on the 

waveform of the i2 is much more clear. Compared to the i1, it 

PMSM - TESTED PMSM - LOAD

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



     5 

 

can be seen that the amplitude of i2 is less dependent on the TL. 

This is a notable advantage, because in fault diagnosis, it is 

necessary to extract fault symptoms whose value does not 

depend on the operating conditions of the drive system, such as 

TL and fs, and only changes as a result of the fault. Nevertheless, 

the increase in amplitude at the early stage of damage - at 1 and 

2 shorted turns (Nsh = 1, Nsh = 2), is small. A signal 

preprocessing step will be implemented to extract the 

symptoms of ITSCs, which are also apparent at an early stage 

of its development. CWT analysis will be applied to accomplish 

this task. CWT scalograms of the negative and positive stator 

phase current symmetrical component for the same PMSM 

operating and stator winding conditions as in the analysis of the 

waveforms of these components (Figure 4) are shown in Fig. 5a 

and Fig. 5b, respectively.  

Analyzing the Fig. 5 – CWT scalogram of the i1, an increase in 

the amplitude value of the fundamental component, 

corresponding to the frequency of the supply voltage (fs = fsN = 

100 Hz), can be observed as the TL level increases. Analysis of 

the scalogram did not make it possible to isolate the frequency 

components whose amplitude value increased as a result of 

ITSCs. Nevertheless, in the case of the i2 CWT scalogram, a 

significant increase in the values of the amplitudes of the 

coefficients corresponding to the fs component |CWTi2(fs,t)| as a 

result of the occurrence of a short-circuit is evident, over the 

entire range of the analyzed TL and Nsh. Also important, only a 

small effect of TL on the value of these amplitudes is visible. 

CWT scalograms for rated TL and three different fs (rotation 

speeds) are shown in Figure 6. As in the case of operation at 

rated fs, in the case of the i1 CWT result, there are no visible 

symptoms that could indicate PMSM stator winding fault. 

 

Fig.4. The waveforms of the (a) i1 and (b) i2 for TL = var, rated supply voltage frequency (fs=fsN=100 Hz), and momentary short-circuiting of 1 
to 5 turns in the PMSM stator winding. 

 

Fig.5. CWT scalograms of the (a) i1 and (b) i2 for TL = var, rated supply voltage frequency (fs=fsN=100 Hz), and momentary short-circuiting of 
1 to 5 turns in the PMSM stator winding. 

 

Fig.6. CWT scalograms the (a) i1 and (b) i2 for fs = var, rated load torque (TL= TN), and momentary short-circuitng of 1 to 5 turns in the 
PMSM stator winding. 

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



     6 

 

Nevertheless, the value increase of the amplitudes of the 

fundamental harmonic fs on the CWT scalogram of the i2 due 

to the ITSC fault is visible also at reduced supply voltage 

frequency. 

Based on the analysis of the results shown in Fig. 4÷6, the 

results of the CWT analysis of the i2 will be used as inputs of 

the fault classifier models in the process of the automatic 

detection and classification of the PMSM stator winding 

condition. The images (scalograms) resulting from CWT 

processing of this signal, after selecting the parts in which ITSC 

symptoms (covering the fs component) are visible and properly 

preparing their size and color depth channels, will be used as 

input images. Details of the preparation of the images and the 

training and test sets will be discussed in the next sections. 

6. CNN-BASED AUTOMATION OF THE PMSM STATOR 
WINDING FAULT DETECTION AND CLASSIFICATION 

While conducting research on fault diagnosis methods, to meet 

the requirements for modern diagnostic systems, in addition to 

the stage of fault symptom extraction, it is necessary to ensure 

full automation of the fault detection and classification process. 

The novel method proposed in this paper combines a symptom 

extraction step using CWT analysis with a deep neural network 

- CNN, which acts as a fault classifier. CNNs’ effectiveness in 

image recognition has been confirmed in research papers from 

many different scientific fields. To carry out the training 

process of the CNN model, it is necessary to prepare a dataset. 

The dataset, which was collected during the experimental tests, 

consists of 1080 images that are parts of the CWT scalogram - 

with the range of the frequency axis limited to 200 Hz. This 

range was chosen based on the analysis presented in the 

previous section. It covers changes that occur due to ITSC. The 

horizontal axis covers the range from 0 to 0.25 s, which is due 

to the adopted size of the data package on which the CWT 

analysis is implemented. This packet contains 2048 samples, 

which at a sampling rate of fp = 8192 Hz corresponds to 0.25 s. 

The data set was randomly divided into a training set (70% - 

756 images) and a test set (30% - 324 images). The images 

correspond to different conditions of the stator winding: Nsh = 

{0; 1; 2; 3; 4; 5}, load torques: TL = {0; 0.2TN; 0.4TN; 0.6TN; 

0.8TN; TN} and supply voltage frequency: fs = {80 Hz; 90 Hz; 

100 Hz}. Example images before compression included in the 

dataset for different Nsh and TL are shown in Figure 7. 

Nevertheless, within the scope of this work, the influence of the 

format of the input image on the training process and the 

classification effectiveness of CNN models will also be 

investigated. Image format (type) is meant the size (resolution) 

of the image expressed in pixels (px) and the number of color 

depth channels. Four types of input images were studied and 

compared: RGB images compressed to 32x32 and 64x64 

pixels, as well as processed to grayscale (reduced from 3 to 1 

color depth channels) with the same size as RGB images. 

Example compressed images for each of the four types tested 

are shown in Figure 8. 

Based on a comparison of these images, it can be concluded that 

both the resolution and the number of color channels have a 

significant impact on the resulting image format. It can also 

affect the size of the model, the time of training, as well as the 

accuracy (precision) and effectiveness of the model, which will 

be further investigated. 

A simplified diagram illustrating the stages of diagnostic 

information processing in the developed method is shown in 

Figure 9. There are three main stages: 

1) Measurement and acquisition of the stator phase currents, 

determination of the i2, and collection of a vector (data packet), 

consisting of 2048 samples. 

2) Signal processing of the i2 using CWT analysis, and selecting 

and compressing to a certain size a part of the scalogram, which 

is the input of the CNN model. 

3) Automatic classification of the stator winding condition (Nsh) 

by the CNN model based on the input image. 

 

Fig.7. Example images included in the dataset for different stator 
winding conditions and load torques. 

 

Fig.8. Example compressed images for each of the four types of input 
images analyzed. 

 

The CWT analysis of the signal was implemented using the 

Wavelet Toolbox available in the MATLAB software, while the 

script implementing the input image preparation process, the 

training process and the CNN model verification were 

implemented in the Python language (interpreter: Python 3.9.3). 
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There are no clear rules for selecting the best CNN structure 

for a given application. Nevertheless, it directly affects the 

accuracy and effectiveness of the model [23], [37]. This study 

analyzes not only the impact of CNN structure on these metrics 

but also the format of the input image. The key parameters and 

details of the structure of four of the CNN models studied 

(CNN-1, CNN-2, CNN-3, CNN-4) are grouped in Table 1. 

Each of these structures consists of an input layer (IL) whose 

size corresponds to the size of the input image - 32x32x1 and 

64x64x1 for grayscale images, and 32x32x3 and 64x64x3 for 

RGB images, CL(s), PL(s), FL layer and fully connected layer. 

The CNN-1 and CNN-2 models have only one convolution and 

pooling layer in their structure, containing 16 filters in the case 

of CNN-1 and 32 filters in the case of CNN-2, while CNN-3 

has two convolution (32 and 64 filters) and pooling layers. The 

CNN-4 model has the most extensive structure and has as many 

as three convolution layers (32x64x128) and three pooling 

layers. The ACC (accuracy) value, also known as the precision 

of the CNN models, during the training process for the default 

training parameters (η=0.0001, B=8, γ=0.5) for tested structures 

and different types of input images described earlier, is shown 

in Figure 10. The model accuracy is the ratio of the number of 

correct classifications of the PMSM winding condition to the 

size of the training dataset and therefore indicates how effective 

the developed model is at a given stage of training. Based on 

the analysis of the results shown in Figure 10, it can be 

concluded that in the case of the 32x32 RGB input image, in the 

initial stage of the training process (from 1 to about 100 

epochs), the fastest matching (maximum accuracy) is achieved 

by the models with a more advanced structure: CNN-3 and 

CNN-4. At the end of the training process, the maximum 

accuracy ACCMAX, equal to 99.87%, is achieved by the CNN-2, 

CNN-3, and CNN-4 models. 

For the 64x64 RGB image, the highest ACCMAX among the 

compared structures, which is as high as 100%, is achieved by 

the CNN-3 model. The CNN-4 model, despite its more 

advanced structure (3 convolutional layers compared to 2 layers 

in the CNN-2 model), achieved a lower ACCMAX (99.87%), 

which indicates that the network structure for this dataset is 

excessive – the over-fitting occurred. The lowest precision for 

 

Fig.9. Schematic diagram of the developed PMSM stator winding intelligent fault diagnosis method. 

TABLE 1. Key parameters of the analyzed CNN structures 

             Layer 

Model 

IL 

Conv. 1 Pooling 1 Conv. 2 Pooling 2 Conv. 3 Pooling 3 

FL 

Fully 

connected 

CNN-1 

NF: 16 

FS: 3x3 

AF: ReLU 

Pooling: Max 

Mask size: 2x2 

Not applied Not applied Not applied Not applied 

ON: Max 

AF: Softmax 

TM: SGDM 

 

CNN-2 

NF: 32 

FS: 3x3 

AF: ReLU 

Not applied Not applied Not applied Not applied 

CNN-3 
NF: 64 

FS: 3x3 

AF: ReLU 

Pooling: Max 

Mask size: 2x2 

Not applied Not applied 

CNN-4 

NF: 128 

FS: 3x3 

AF: ReLU 

Pooling: Max 

Mask size: 2x2 

IL – input layer, NF – number of filters, FS – filter size, AF – activation function, ON – number of output neurons, TM – training method 
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both sizes of RGB images is achieved by the CNN-1 model, 

whose structure is the most simple. In the case of grayscale 

images, all of the analyzed models showed a similar accuracy. 

Nevertheless, ACCMAX is lower than for the RGB images - none 

of the models achieved ACCMAX = 100%. The lower accuracy is 

particularly evident at the initial stage of training - in the first 

several epochs, there is a later stabilization of precision at the 

maximum value. For grayscale images, the CNN-1 network 

achieved significantly better results than for RGB images. This 

is because, due to only one convolution layer with a small 

number of filters (16), it was not taught redundant higher-order 

features (patterns), irrelevant to the task (evaluation of the 

PMSM stator winding condition), and ultimately resulted in 

achieving a higher accuracy (99.87%).  

 

Fig.10. CNN models accuracy during the training process for different structures and input images: a) RGB (32x32), b) RGB (64x64), 
c) grayscale (32x32), c) grayscale (64x64) (η=0.0001,B=8, γ=0.5). 

 

Fig.11. CNN models accuracy during the training process for different input images and network structures: a) CNN-1, b) CNN-2, c) CNN-3, 
c) CNN-4 (η=0.0001,B=8, γ=0.5). 
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To accurately analyze the course of the training process of a 

given CNN model for different forms of the input image, Figure 

11 shows a comparison of the accuracy of the tested models for 

different formats of input images. Figure 11a shows the results 

for the CNN-1 model. The analysis of the training process for 

this model confirms the previous conclusions - the highest 

accuracy and the fastest stabilization of the training process at 

the maximum value occurs for grayscale images. In the case of 

the CNN-2 model, the highest precision was achieved for 64x64 

RGB images. Both CNN-3 and CNN-4 models, due to their 

more advanced structure (2 and 3 convolutional layers, 

respectively), achieved the best accuracy for RGB images. 

These networks, with more convolutional layers, can learn 

higher-order, task-relevant patterns (PMSM stator winding 

condition classification) that are visible in RGB images. A 

comprehensive comparison of ACCMax, training time (ttrain), a 

minimum value of the loss function (Lmin) and the size of 

individual models (Msize) for different input image formats are 

grouped in Table 2. Based on the analysis of the results, it can 

be concluded that the more complex the structure of the CNN, 

the longer the training time. In addition, the same trend can be 

seen for the size of the model, which is extremely important 

from the point of view of embedded (microcontroller) 

implementation, where memory is significantly limited and it is 

necessary to use optimized solutions. Comparing the size of the 

CNN-2 and CNN-3 models, it was found that the use of an 

additional pooling layer (CNN-3) results in a reduction of 

parameters and, consequently, network size. A comparison of 

training time for different input image formats and CNN model 

structures is shown in Figure 12. From this comparison, it can 

be seen that in addition to the structure size, the longer training 

time is also significantly affected by image size (resolution). 

For 64x64 images, the training time is significantly longer than 

for 32x32 images. Summarizing the comparative analysis of the 

models, each model achieved a high accuracy of more than 

99.0%. The CNN-3 model has the highest precision (100.0%).  

However, due to its more advanced structure, the training time 

is longer compared to the CNN-1 and CNN-2 models 

The above comparison and evaluation of model accuracy for 

different structures and forms of input images are not sufficient, 

because, despite the high precision of the model, it may have 

insufficient generalization capabilities and not provide correct 

responses for new, unknown data. For this reason, the 

effectiveness of the models for the images that are in the test set 

is analyzed. The confusion matrices for the responses of the 

analyzed models for this set, different input image formats, and 

network structures are shown in Figure 13. 

Comparisons of classification effectiveness (the ratio of correct 

model responses to the size of the test set) are grouped in Table 

3. For the CNN-1 model, numerous misclassifications are 

evident between undamaged winding (Nsh=0) and one shorted 

turn (Nsh=1) for all four input image forms analyzed. For this 

model, fewer misclassifications (efficiency equal to 97.53%) 

occur for the grayscale images, confirming previous 

conclusions. The CNN-2, CNN-3 and CNN-4 models achieved 

the highest effectiveness for RGB images, which also confirms 

that some higher-order features characteristic of ITSC are not 

visible in grayscale images.  

TABLE 2. Comparison of accuracy, size and training time for different CNN model structures and input image formats. 

       Image 

 

Model 

RGB (32x32) RGB (64x64) Grayscale (32x32) Grayscale (64x64) 

ACCMAX Lmin Msize ttrain ACCMAX Lmin Msize ttrain ACCMAX Lmin Msize ttrain ACCMAX Lmin Msize ttrain 

CNN-1 99.34% 0.0439 98 kB 107 s 99.47% 0.0333 385 kB 207 s 99.87% 0.0252 97 kB 94 s 99.87% 0.0147 384 kB 186 s 

CNN-2 99.87% 0.0063 196 kB 126 s 99.87% 0.0058 772 kB 300 s 99.74% 0.0272 193 kB 113 s 99.87% 0.0173 769 kB 268 s 

CNN-3 99.87% 0.0075 172 kB 198 s 100.00% 0.0039 460 kB 528 s 99.74% 0.0333 170 kB 164 s 99.87% 0.0200 458 kB 484 s 

CNN-4 99.87% 0.0069 412 kB 250 s 99.87% 0.0081 557 kB 712 s 99.48% 0.0379 410 kB 213 s 99.60% 0.0278 554 kB 560 s 

ACCMAX - maximum model accuracy, Lmin - minimum loss function value, Msize - model size, ttrain - training time 

 

 

Fig.12. Comparison of training time for the tested CNN models and different formats of input images. 
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The highest effectiveness, equal to 99.38%, is achieved by the 

CNN-3 model, with a structure containing two CLs and two 

PLs. The CNN-4 model, despite three CLs, achieved a lower 

efficiency (98.87%), which may be indicative of a too-

advanced structure and learning patterns that are not relevant to 

PMSM winding condition classification and result in erroneous 

responses. 

It should be noted that each of the developed models achieved 

high classification efficiency, which confirms the validity of 

using CWT of the negative sequence stator phase currents 

component to extract ITSC symptoms in the PMSM stator 

winding and the high effectiveness of the developed method. 

In addition to the structure of the CNN model and the form of 

the input image, the training process can also be influenced by 

key training parameters, which were comprehensively studied 

and confirmed in [37]. The analysis of the possibility of 

increasing the accuracy and classification effectiveness of the 

model was carried out for the CNN-3 structure, which has a 

relatively simple structure (two CLs) and achieved the best 

results in the comparative analysis presented before. 

The effect of the value of the learning rate η on model accuracy 

is shown in Figure 14a. Based on this comparison, it can be 

concluded that if the value of η is too high, there is a stuck in 

the local minimum of the loss function, and consequently the 

model accuracy is low because the loss function does not reach 

the global minimum. For lower values of the learning rate, the 

maximum model accuracy oscillates around a similar value 

(100%), but the time to reach the maximum value is longer - the 

training process is less dynamic. The best CNN performance 

was obtained for η = 0.0001 which was also the default value 

when comparing models at an earlier stage of this study. As can  

be seen, for η = 0.001 the training process was less stable, and 

a large variance and slower convergence to the maximum value 

are evident. 

During the CNN training process, it is not possible to 

simultaneously train the model from all the samples in the 

dataset. This is due, among others, to the limited memory size 

of the central processing unit (CPU) or graphics processing unit 

(GPU). For this reason, the training dataset is divided into 

packets (batches) of a given dimension - B. The accuracy of the 

 

Fig.13. Comparison of training time for the tested CNN models and different forms of input image 
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CNN model for different values of B is shown in Figure 14b. 

Based on the analysis of the results shown in this figure, it can 

be seen that too high B causes the accuracy value to settle on a 

maximum value much later. Moreover, the maximum model 

precision is lower than in the case of B <= 16. Nevertheless, the 

lower the value of B, the longer the training process. The best 

compromise is B=8. In the last step, the effect of the γ factor on 

the CNN accuracy was verified. The slowest stabilization of the 

model accuracy occurred for γ= 0.3. For the other γ analyzed, 

the results were similar. The model accuracy and the value of 

the loss function for CNN-3 after tuning the training parameters 

(η = 0.0001, B = 8, γ= 0.9) are shown in Figure 14d. 

By tuning the training parameters, the classification 

effectiveness (the response to images being in the test set) 

slightly increased from 99.38% to 99.69%. 

In the final stage of the research, the developed method was 

verified during the online operation of the drive system. During 

this test, 1 to 5 turns were momentarily short-circuited 

sequentially for different load torque - from 0 to the rated value 

TN with a step of 0.2TN. An example from the verification for a 

motor running without a load is shown in Figure 15. Figure 15a 

shows the i2 waveform and Figure 15b shows the CNN model 

response and the actual winding condition. Based on the 

analysis of the actual winding condition and the model's 

response, its high precision can be observed. The achieved 

model's detection efficiency is equal to 99.38%, while the 

classification efficiency equals 97.5%. 

In the ITSC fault detection and classification, the detection time 

is very important. The time needed to generate information 

about the current PMSM stator winding condition consists of 

measurement (stator phase current signal data collection) time, 

signal processing (CWT) time, input image export time, and 

CNN model response time. The data collection time is set to 

250 ms. The times required to realize each of the remaining 

steps of the developed method are presented in Figure 16. The 

average time for 300 trials of the CWT analysis, the export of 

the input image and the CNN model response is equal to 3 ms, 

23 ms and 54 ms, respectively. It gives 80 ms in average in total. 

Adding the data collection time, the longest time required to 

detect the PMSM stator winding fault is equal to 330 ms. 

TABLE 3. Comparison of PMSM stator winding condition classification effectiveness for different models and input image formats. 

       Image 

 

Model 

RGB (32x32) RGB (64x64) Grayscale (32x32) Grayscale (64x64) 

Classification effectiveness Classification effectiveness Classification effectiveness Classification effectiveness 

CNN-1 95.99% 97.22% 97.53% 97.53% 

CNN-2 99.07% 99.07% 98.15% 97.84% 

CNN-3 99.38% 99.38% 97.84% 99.07% 

CNN-4 98,.77% 98.77% 97.84% 97.84% 

 

 

 

Fig.14. CNN models accuracy during the training process for different input images and network structures: a) CNN-1, b) CNN-2, c) CNN-3, 
c) CNN-4 (η=0.0001,B=8, γ=0.5). 
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Fig.16. The times required to realize each step of the developed 
method. 

 

7. CONCLUSIONS 

This paper proposes and verifies experimentally a novel hybrid 

method for automatic PMSM stator winding fault detection and 

classification, which is based on the combination of CWT of 

the negative sequence component of the stator phase currents 

and CNN model. Compressed images - parts of the CWT 

analysis result (scalogram) were used as input values of the 

CNN model, which allowed full automation of the process of 

inferring the winding condition, achieving very high 

effectiveness. Compared to the use of classical machine 

learning algorithms and shallow neural networks, such as MLP, 

in combination with STFT or CWT [38], the developed solution 

made it possible to achieve a fault classification efficiency 

higher by about 2% (97.5%), despite the lack of the need to 

include in the input vector the information on load torque or 

supply voltage frequency. Moreover, due to the use of signal 

and image preprocessing as input to the CNN model, the 

training time achieved is several times less than when based on 

the raw current signal. These are the undoubted advantages of 

the developed solution. 

Based on the analysis of experimental studies, it can be 

concluded that it is a solution that has a very high effectiveness 

of winding classification already at an incipient stage of the 

fault propagation - with only one shorted turn, so it can be 

perfectly suitable as a module of diagnostic systems in modern 

drive systems. 

According to the literature review and the authors' best 

knowledge, this research seems to be the first paper to propose 

a combination of CWT of the negative sequence stator phase 

current component with CNN for fault diagnosis of PMSM 

stator windings. In addition to the influence of the structure and 

training parameters, this paper analyzes in detail the influence 

of the form of the input image on the accuracy and effectiveness 

of the models, which is another original contribution. 

Compared to the CNN structures described in the literature used 

in fault diagnosis of AC motors, the proposed structure, thanks 

to the use of an appropriately selected symptom extraction stage 

and preparation of the input image format, allows the use of 

networks with a much less complex structure (only two 

convolutional and pooling layers). This results not only in the 

aforementioned shorter training time but also in a smaller model 

size, which is extremely important from the point of view of 

hardware implementation of artificial intelligence-based 

algorithms. 

To apply the developed fault diagnostic method in a real drive 

system during online operation, it is necessary to have access to 

the measurement of 3 motor phase currents, which should be 

used to calculate their negative sequence component, and then 

process this signal using CWT analysis. Images of the 

scalogram (CWT result) should be used to train a CNN model 

developed using the Python programming language and the 

Keras open-source library. The computerized fault diagnosis 

system developed based on the proposed method will allow 

real-time monitoring of the condition of the PMSM stator 

winding. Further research will focus on the implementation of 

the proposed method in such a fault diagnostic system and the 
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Fig.15. The a) i2 waveform and b) CNN model responses for the test during the online operation of the drive system. 
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extension of functionality to include localization of the faulty 

phase, including in transients.  

Further work will also focus on analyzing the possibility of 

hardware implementation (using a low-cost microcontroller) of 

solutions based on deep learning. 

APPENDIX 

TABLE A1. Rated parameters of the tested PMSM 

Parameter Symbol Value 

Power PN 2500 W 

Torque TN 16 Nm 

Rotation speed nN 1500 rpm 

Stator phase voltage UsN 325 V 

Stator phase current IsN 6.6 A 

Frequency fsN 100 Hz 

Pole pairs number pp 4 

Number of turns in one phase Ns 2x 125 
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