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Abstract. Efficiency, reliability, and durability play a key role in modern drive systems in line with the Industry 4.0 paradigm and the sustainability
trend. To ensure this, highly efficient motors and appropriate systems must be deployed to monitor their condition and diagnose faults during
the operation. For these reasons, in recent years, research has been increasingly focused on developing new methods for fault diagnosis of
permanent magnet synchronous motors (PMSMs). This paper proposes a novel hybrid method for the automatic detection and classification of
PMSM stator winding faults based on combining the continuous wavelet transform (CWT) analysis of the negative sequence component of the
stator phase currents with a convolutional neural network (CNN). CWT scalogram images are used as the inputs of the CNN-based interturn
short circuits fault classifier model. Experimental tests were conducted to verify the effectiveness of the proposed approach under various motor
operating conditions and at an incipient stage of fault propagation. In addition, the effects of the input image format, CNN structure, and training
process parameters on model accuracy and classification effectiveness were investigated. The results of the experimental tests confirmed the high
effectiveness of fault detection (99.4%) and classification (97.5%), as well as other important advantages of the developed method.

Keywords: fault diagnosis; interturn short circuits; continuous wavelet transform; convolutional neural networks; permanent magnet synchronous
motor.

1. INTRODUCTION
Significant advantages such as high efficiency, wide speed con-
trol range, high reliability, and power density have made perma-
nent magnet synchronous motors (PMSMs) popular in recent
years [1]. They are increasingly used in a wide variety of in-
dustries, such as aerospace, automotive, robotics, HVAC/R and
others [2]. However, PMSMs, despite their high reliability, are
subject to various types of damage, including mechanical, mag-
netic, and electrical faults. Electrical faults are primarily short
circuits in the stator winding, which are among the most com-
mon, and most destructive, faults of PMSMs [3]. Depending
on the type, a distinction can be made between interturn short
circuits (ITSCs), short circuits between coils in a single phase,
phase-to-phase short circuits, and ground faults. Most often, a
stator winding fault begins with ITSCs and then spreads rapidly
from a single coil to subsequent coils, eventually leading to a
phase-to-phase or phase-to-ground fault [4].

A short circuit usually occurs due to stator winding insulation
damage caused by excessive mechanical, thermal, and electrical
stresses that motors are subjected to during operation, often
under harsh environmental conditions. Other factors that can
contribute to faster degradation of a stator winding insulation
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and consequent short-circuiting include high 𝑑𝑣/𝑑𝑡 of the in-
verters supplying the motors, operation under load conditions
exceeding the rated values, field weakening, and chemicals that
may accelerate insulation aging [5].

ITSC causes high amplitude current flow in a shorted circuit,
which leads to local excessive overheating of the stator winding,
which in turn can lead to critical damage to the motor and the
need to take it out of service. To avoid unexpected downtime
in the processes in which these motors are used, as a result of
the need to interrupt their operation, the condition of the sta-
tor winding should be continuously monitored, and its damage
detected and classified as early as possible [6]. Early detec-
tion of a fault can enable proper scheduling of motor overhaul,
which will translate into reduced repair costs, shorter delays,
and lower production losses. In addition, it is extremely impor-
tant for environmental concerns and sustainability, as it reduces
the generation of additional waste.

Considering the above-mentioned risks arising from the lack
of implementation of diagnostic methods, as well as the growing
popularity of PMSMs, diagnostics of their faults seems to be es-
sential. It has been of great interest both to university researchers
and to industry in recent years. To meet these requirements, the
development of such methods forces research into the possibility
of using the latest technologies and innovative solutions. Appro-
priate selection and application of signal processing algorithms
and artificial intelligence (AI) techniques make it possible to de-
velop fully automated systems that allow real-time monitoring
of motor conditions.
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Over the years, many fault diagnosis methods have been de-
veloped for AC motors, including high-efficiency PMSMs [7–9].
These methods are based on diagnostic signals that carry infor-
mation about the condition of the motor, such as stator phase
current [10], axial flux [11], vibration [12], or signals from the
control structure [13]. Among these signals, the most commonly
used is the stator phase current.

To extract the fault symptoms from these diagnostic signals,
signal processing algorithms are used. Among the most basic,
and highly effective, is the spectral analysis of the signal us-
ing the fast Fourier transform (FFT) [14]. Advanced methods
implementing frequency domain analysis used in PMSM fault
diagnosis include higher order transforms (HOTs). One of the
most popular and effective fault diagnosis tasks HOT is the
bispectrum transform [15]. However, these methods also have
limitations, such as the lack of information about the time of oc-
currence of a given component, and thus the ability to determine
the timing of early fault symptoms.

Mathematical apparatuses that implement time-frequency do-
main analysis, such as the Hilbert-Huang transform [16], the
short-time Fourier transform (STFT) [17], and the continuous
wavelet transform (CWT) [18], are devoid of these disadvan-
tages. In fault diagnosis, the effectiveness of CWT analysis has
been verified mainly for fault diagnosis of induction motors [19].
However, despite the many advantages of this method, it was not
extensively studied in the past for its applicability to the detec-
tion of PMSM stator winding faults at an incipient stage of fault
development - as early as the short-circuiting of single turns to
avoid fault propagation, and over a wide range of motor operat-
ing conditions.

The above methods can be used to extract symptoms of
PMSM stator winding faults. To fully automate the process of
monitoring and detecting stator winding damage, it is necessary
to use a decision-making block that will generate information
about the condition of the motor based on the extracted symp-
toms. In recent years, to minimize the role of the human expert,
the process of automating this task has been implemented using
AI techniques, such as machine learning (ML) algorithms [20]
and artificial neural networks (ANNs) [21]. Proper selection
and application of signal processing algorithms and the latest
advances in AI make it possible to develop fully automated
systems that allow real-time monitoring of machine operation.
Among ANNs, research in recent years has focused most at-
tention on deep neural networks, especially convolutional neu-
ral networks (CNNs). In the case of CNNs, it is possible to
rely on raw diagnostic signals, omitting the signal processing
stage, and achieving noticeably short detection times and high
effectiveness, which has been studied and described in the lit-
erature [22]. However, this requires a CNN model with a more
advanced structure and a longer training time, which can be
reduced using advanced mathematical apparatuses-based sig-
nal preprocessing [15]. Combining the signal preprocessing
stage with CNNs, whose main application is image recogni-
tion, using mathematical apparatuses whose result can be repre-
sented in the form of an image, can make it possible to achieve
high effectiveness while reducing the network structure and
the difficulty of the training process. Such solutions have so

far been verified mainly for fault diagnosis of induction mo-
tors [23].

Nowadays, there is also a visible trend to apply advanced fi-
nite element method-based models of PMSMs with the ability
to simulate several types of faults to generate their symptoms
(features) that can be used for AI-based model training. This
technique is one type of a rapidly developing approach called
transfer learning (TF). In this type of TF, diagnostic methods
are developed based on features preserved in diagnostic signals
generated from the mathematical models of the motors. From
these, datasets used to train AI-based fault detector models are
prepared. The fault detector models, in turn, can be applied to
real objects. Examples of such solutions for PMSM fault diag-
nosis are presented in [24–26]. However, model-based detec-
tion methods require extremely high computational power and
a fully accurate representation of machine parameters, which
can be difficult to determine precisely under real-world condi-
tions.

This paper proposes a novel hybrid method for the auto-
matic detection and classification of PMSM stator winding faults
based on combining the CWT of the negative sequence com-
ponent of the stator phase currents with the CNN model. CWT
scalogram images are used as inputs of the CNN-based ITSC
fault classifier. Experimental tests were conducted to verify the
effectiveness of the proposed approach under various motor
operating conditions. Moreover, the effect of the input image
format, network structure, and learning process parameters on
the accuracy and effectiveness of the model were investigated.
The results of the experimental studies confirmed the high ef-
fectiveness and advantages of the developed method. The three
main contributions and original elements of this research can be
summarized as follows:
• Development of a novel hybrid method for automatic de-

tection and classification of PMSM stator winding faults
based on the combination of CWT analysis of the nega-
tive sequence component of the stator phase currents with
the CNNs, which makes it possible to achieve remarkably
high detection and classification effectiveness already at the
initial stage of fault propagation.

• Detailed analysis of the influence of the CNN model struc-
ture, training parameters, and the input image format on the
accuracy and effectiveness of the PMSM stator winding fault
classifier models.

• Appropriate selection of the symptom extraction stage
(CWT-based) and preparation of the input image format
(compression) allowed the use of CNNs with a simple struc-
ture. This results in a short training time and a small model
size, which is extremely important from the view of hard-
ware (microcontroller) implementation of AI-based algo-
rithms.

The article consists of seven sections. The next two sections
discuss the theoretical basis of the CWT and CNNs. This is
followed by a description of the laboratory stand on which the
experimental tests were conducted. The next section presents the
results of the extraction of PMSM stator winding fault symp-
toms from the signal of symmetrical components of the stator
phase currents using CWT analysis. The penultimate section
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discusses the automation stage of the fault diagnosis process
using CNN. The whole is concluded with a summary of the
research presented in the paper.

2. CONTINUOUS WAVELET TRANSFORM

Methods implementing time-frequency analysis are applied to
describe the relationship between signal information in the time
domain and the corresponding spectral distribution in the fre-
quency domain [27]. CWT is one of the transforms belonging
to the group of these methods. It has found application in many
fields, including electric motor fault diagnosis. The result of
the CWT, called a scalogram, contains both time-of-occurrence
information and the distribution of harmonics in the frequency
domain of the analyzed signal. The CWT of a signal 𝑥(𝑡) is
defined by the following equation [28]:

CWT(𝜏, 𝑎) =
∞∫

−∞

𝑥(𝑡)𝜓∗
𝑎,𝜏 (𝑡) d𝑡

=
1√︁
|𝑎 |

∞∫
−∞

𝑥(𝑡)𝜓∗
( 𝑡 − 𝜏

𝑎

)
d𝑡, (1)

where: 𝑎 – a scale factor, 𝜏 – a shifting parameter (in the time
domain), 𝜓 – a mother wavelet, 𝜓∗ (·) – a complex conjugate
of function 𝜓(·), 𝜓∗

𝑎,𝜏 – a scaled and translated version of 𝜓∗,
called baby wavelet:

𝜓∗
𝑎,𝜏 =

1√︁
|𝑎 |

𝜓∗
( 𝑡 − 𝜏

𝑎

)
. (2)

In the actual digital implementation, the integral in equation (1)
is replaced by a summation operation, according to the following
equation:

𝐶𝑊𝑇 (𝜏, 𝑎) = 1√︁
|𝑎 |

∞∑︁
𝑛=−∞

𝑥(𝑡)𝜓∗
(𝑛− 𝜏

𝑎

)
. (3)

The CWT analysis result resolution in the time and frequency
domain depends on the scale factor 𝑎. This factor allows for
a change in the width of the wavelet – scaling it in the time
domain (changing the duration of the wavelet). It is assumed
that the scale is proportional to the inverse of the frequency. In
the low-frequency range of the signal, the frequency resolution
is higher, and the time resolution is lower, and vice versa in the
high-frequency part of the signal. This is consistent with slow
changes in the low-frequency signal and fast changes in the high-
frequency signal. The change in the shift factor 𝜏 corresponds o
a change in the position of the wavelet in the time domain [25].

As part of the research presented in this paper, the Morse
wavelet, which is available in the MATLAB Wavelet Toolbox, is
used after an earlier comparison with other types of wavelets,
such as the Bump wavelet and Morlet wavelet. The scope of
the study focused on verifying the feasibility of using CWT
analysis to extract the PMSM stator winding (ITSC) fault symp-
toms, so the theoretical description of the CWT mathematical

apparatus is limited to the above basics. Nevertheless, a de-
tailed description of the theory, properties, and implementation
of these wavelets is described in [29–31].

3. CONVOLUTIONAL NEURAL NETWORKS

The past decades have seen a significant increase in popularity
and progress in the field of AI. A particularly rapidly growing
area of AI is deep learning (DL). The main reason for the rapid
growth in popularity of DL is the high effectiveness of this
technique in solving problems that cannot be optimally solved
by shallow neural networks, such as the widely used multilayer
perceptron (MLP).

The primary function of CNNs is to extract relevant features,
including higher-order ones, from input information. The most
popular application of CNNs is their use as image and speech
recognition tools [32] CNNs operate on images represented as
three-dimensional tensors containing two spatial axes (height
and width) and a depth axis, called the channel axis. For RGB
images, the depth axis is three-dimensional, while for grayscale
images it is one-dimensional [33].

CNNs consist of a collection of layers of different types. The
basic layers present in their structure are convolution layers (CL),
pooling layers (PL), flattening layers (FL), and fully connected
(dense) layers. In addition, there may also be normalization
and dropout layers. Each of the subsequent convolution layers
allows the extraction of characteristic features of the input image.
The first layer can be understood as a filter of basic, low-order
features, such as image edges or pixels with similar textures.
Successive convolution layers allow the extraction of features of
increasingly higher order. The depth channels of the image are
processed by a set of filters. The filter output (feature map) is
then subject to a nonlinear activation function [34]. In the case
of CNNs, the most commonly used activation function, also
applied in this study, is the rectified linear unit (ReLU) function.
At the output of the convolutional layer, the number of extracted
feature maps is much larger compared to the dimensionality of
the input. For this reason, pooling layers are used in the CNN
structure to limit the number of parameters. The flattening layers
transform the resulting images, which have the form of three-
dimensional tensors after the pooling operation, into a vector
form that is passed to the fully connected layer.

There are many methods for training CNNs. Among the most
popular is the stochastic gradient descent (SGD) algorithm. This
algorithm is an optimization algorithm and is based on error es-
timation from a data packet containing 𝑁 random samples from
a data set. SGD iteratively updates the training parameters, i.e.
kernels and weights. The algorithm is easy to implement and
allows for online training. However, the weight updates have
a large variance, and the training speed is relatively low. The
variance problem can be solved by using the mini-batch SGD
algorithm, while its acceleration after introducing the momen-
tum parameter (𝛾). This algorithm is known by the acronym
SGDM. Currently, this method is the most common choice for
training CNNs, also applied within the framework of this work.
The loss (objective) function used in the learning process is
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sparse categorical cross-entropy (SCCE):

𝐿SCCE = − 1
𝑁

𝑁∑︁
𝑖=1

[𝑙𝑖 log(𝑦𝑖) + (1− 𝑙𝑖) log(1− 𝑦𝑖)] , (4)

where 𝑁 is the number of samples corresponding to the selected
batch size 𝐵, 𝑙𝑖 is the actual class, and 𝑦𝑖 is the model response.

Among the most important parameters to be determined in
the initial training phase are the learning rate 𝜂 and 𝛾. The gradi-
ent of the 𝐿SCCE loss function determines the direction in which
the function has the steepest rise. Each parameter (weight) 𝑤 is
updated in the negative direction of the gradient with a step size
determined by 𝜂. The aforementioned SGDM learning method
is a gradient descent acceleration technique, which accumulates
a vector 𝜐 in the direction of constant decrease of the loss func-
tion. The parameter 𝛾 determines the percentage of previous
gradients that are additionally taken into account when updat-
ing the weights, in addition to the current gradients. A single
parameter update is implemented according to the following
equations [35]:

𝜐𝑖+1 = 𝛾𝜐𝑖 −𝜂
𝜕𝐿SCCE
𝜕𝑤𝑖

,

𝑤𝑖+1 = 𝑤𝑖 +𝜐𝑖+1 .

. (5)

4. EXPERIMENTAL SETUP

Experimental tests were conducted on a specially prepared
setup, consisting of two PMSM motors: the tested one, rated
at 2.5 kW, and the second one, rated at 4.7 kW, which provided
the load torque. The real view of the experimental stand is shown
in Fig. 1. The parameters of the analyzed motor are grouped in
Table A.1 in the Appendix. This motor was powered by a Lenze
Topline 8400 frequency converter and operated in closed-loop
field-oriented control (FOC) with PI current and speed con-
trollers. The stator winding of the PMSM under test was re-
wound in such a way that its design allowed controlled ITSCs
involving a given number of turns to be physically shorted.
During the tests, a maximum of five turns were short-circuited,
which corresponded to 2% of all turns in a phase. The schematic
diagram of the derived phase terminals of the PMSM stator
winding is shown in Fig. 2. The tests were conducted without
limiting the additional resistance of the current in the shortened
circuit. Diagnostic signals – stator phase currents were measured

Fig. 1. Experimental stand – real view

with LA 25-NP transducers by LEM. Output signals from the
transducers were transferred to a data acquisition system – an
eight-channel NI PXI-4492 DAQ measurement card by National
Instruments (NI). The DAQ card was housed in an NI PXI 1082
industrial computer. The measurement application was prepared
in the LabVIEW environment. A simplified block diagram of
the test bench is shown in Fig. 3. Speed control of the test motor
was implemented using Lenze Engineer software, while load
level control was realized using VeriStand.

Fig. 2. Diagram of the derived phase terminals of the PMSM
stator winding

Fig. 3. Simplified block diagram of the test bench

5. PMSM STATOR WINDING FAULT SYMPTOM
EXTRACTION USING CWT

The occurrence of ITSC in the PMSM winding causes an in-
crease in the amplitude of stator currents, their fluctuation, and
notable asymmetry [14]. Asymmetry occurring due to a short
circuit, in turn, affects the value of the symmetrical components
of the stator phase currents [36]. In this study, the possibility of
extracting the symptoms of PMSM stator winding faults through
CWT analysis of these components is analyzed.

The instantaneous values of stator phase current symmetrical
components are calculated using a 90◦ phase shift operator in
the time domain, according to equation (6) [32]:

[
𝑖1

𝑖2

]
=

1
3


𝑖𝑠𝐴−

1
2
(𝑖𝑠𝐵 + 𝑖𝑠𝐶 ) +

√
3

2
𝑆90 (𝑖𝑠𝐵 − 𝑖𝑠𝐶 )

𝑖𝑠𝐴−
1
2
(𝑖𝑠𝐵 + 𝑖𝑠𝐶 ) −

√
3

2
𝑆90 (𝑖𝑠𝐵 − 𝑖𝑠𝐶 )

 , (6)
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where 𝑖𝑠𝐴, 𝑖𝑠𝐵, 𝑖𝑠𝐶 – instantaneous values of the stator phase
currents in the 𝑎−𝑏−𝑐 coordinate system, 𝑖1, 𝑖2 – instantaneous
values of the positive and negative sequence components of the
stator phase currents, 𝑆90 – 90◦ time domain phase shift operator.

The waveforms of the 𝑖1 and 𝑖2 for different levels of load
torque 𝑇𝐿 , rated supply voltage frequency 𝑓𝑠 = 𝑓𝑠𝑁 = 100 Hz,
and instantaneous short-circuiting of 1 to 5 turns are shown in
Fig. 4. The amplitude changes of the 𝑖1 as a result of ITSCs
are evident, but the effect of the 𝑇𝐿 level is much more visi-
ble. The percentage increase in the amplitude of 𝑖1 caused by
ITSC, especially in the incipient stage of the fault, decreases
significantly at higher load. The effect of short circuits on the
waveform of the 𝑖2 is much clearer. Compared to the 𝑖1, it can be
seen that the amplitude of 𝑖2 is less dependent on the 𝑇𝐿 . This is
a notable advantage, because in fault diagnosis, it is necessary
to extract fault symptoms whose value does not depend on the
operating conditions of the drive system, such as 𝑇𝐿 and 𝑓𝑠 , and
only changes as a result of the fault. Nevertheless, the increase in
amplitude at the early stage of damage – at 1 and 2 shorted turns
(𝑁𝑠ℎ = 1, 𝑁𝑠ℎ = 2), is small. A signal preprocessing step will be
implemented to extract the symptoms of ITSCs, which are also
apparent at an early stage of its development. CWT analysis will
be applied to accomplish this task. CWT scalograms of the neg-
ative and positive stator phase current symmetrical component
for the same PMSM operating and stator winding conditions as
in the analysis of the waveforms of these components (Fig. 4)
are shown in Fig. 5a and Fig. 5b, respectively.

Analyzing Fig. 5 – the 𝑖 CWT scalogram, an increase in the
amplitude value of the fundamental component, corresponding
to the frequency of the supply voltage ( 𝑓𝑠 = 𝑓𝑠𝑁 = 100 Hz), can
be observed as the 𝑇𝐿 level increases. Analysis of the scalogram
did not facilitate isolating the frequency components whose
amplitude value increased as a result of ITSCs. Nevertheless, in
the case of the 𝑖2 CWT scalogram, a significant increase in the
values of the amplitudes of the coefficients corresponding to the
𝑓𝑠 component |CWT𝑖2 ( 𝑓𝑠 , 𝑡) | as a result of the occurrence of a
short-circuit is evident, over the entire range of the analyzed 𝑇𝐿
and 𝑁𝑠ℎ. It is also important that only a small effect of 𝑇𝐿 on the
value of these amplitudes is visible. CWT scalograms for rated
𝑇𝐿 and three different 𝑓𝑠 (rotation speeds) are shown in Fig. 6.
As in the case of operation at rated 𝑓𝑠 , in the case of the 𝑖1 CWT
result, there are no visible symptoms that could indicate PMSM
stator winding fault.

Nevertheless, the value increase of the amplitudes of the fun-
damental harmonic 𝑓𝑠 on the CWT scalogram of the 𝑖2 due to the
ITSC fault is visible also at reduced supply voltage frequency.

Based on the analysis of the results shown in Figs. 4–6, the
results of the CWT analysis of the 𝑖2 will be used as inputs of the
fault classifier models in the process of the automatic detection
and classification of the PMSM stator winding condition. The
images (scalograms) resulting from CWT processing of this sig-
nal, after selecting the parts in which ITSC symptoms (covering
the 𝑓𝑠 component) are visible and properly preparing their size
and color depth channels, will be used as input images. Details

Fig. 4. The waveforms of the (a) 𝑖1 and (b) 𝑖2 for 𝑇𝐿 = var, rated supply voltage frequency ( 𝑓𝑠 = 𝑓𝑠𝑁 = 100 Hz), and momentary short-circuiting
of 1 to 5 turns in the PMSM stator winding

Fig. 5. CWT scalograms of the (a) 𝑖1 and (b) 𝑖2 for 𝑇𝐿 = var, rated supply voltage frequency ( 𝑓𝑠 = 𝑓𝑠𝑁 = 100 Hz), and momentary short-circuiting
of 1 to 5 turns in the PMSM stator winding

Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 5, p. e150202, 2024 5



P. Pietrzak and M. Wolkiewicz

Fig. 6. CWT scalograms the (a) 𝑖1 and (b) 𝑖2 for 𝑓𝑠 = var, rated load torque (𝑇𝐿 = 𝑇𝑁 ), and momentary short-circuiting of 1 to 5 turns
in the PMSM stator winding

of the preparation of the images and the training and test sets
will be discussed in the next sections.

6. CNN-BASED AUTOMATION OF THE PMSM STATOR
WINDING FAULT DETECTION AND CLASSIFICATION

While researching fault diagnosis methods, to meet the require-
ments for modern diagnostic systems, in addition to the stage of
fault symptom extraction, it is necessary to ensure full automa-
tion of the fault detection and classification process. The novel
method proposed in this paper combines a symptom extraction
step using CWT analysis with a deep neural network - CNN,
which acts as a fault classifier. CNNs effectiveness in image
recognition has been confirmed in research papers from many
different scientific fields. To conduct the training process of the
CNN model, it is necessary to prepare a dataset. The dataset,
which was collected during the experimental tests, consists of
1080 images that are parts of the CWT scalogram – with the
range of the frequency axis limited to 200 Hz. This range was
chosen based on the analysis presented in the previous section.
It covers changes that occur due to ITSC. The horizontal axis
covers the range from 0 to 0.25 s, which is due to the adopted
size of the data package on which the CWT analysis is imple-
mented. This packet contains 2048 samples, which at a sampling
rate of 𝑓𝑝 = 8192 Hz corresponds to 0.25 s. The data set was
randomly divided into a training set (70% – 756 images) and a
test set (30% – 324 images). The images correspond to differ-
ent conditions of the stator winding: 𝑁𝑠ℎ = {0; 1; 2; 3; 4; 5};
load torques: 𝑇𝐿 = {0; 0.2𝑇𝑁 ; 0.4𝑇𝑁 ; 0.6𝑇𝑁 ; 0.8𝑇𝑁 ; 𝑇𝑁 } and
supply voltage frequency: 𝑓𝑠 = {80 Hz; 90 Hz; 100 Hz}. Ex-
ample images before compression included in the dataset for
different 𝑁𝑠ℎ and 𝑇𝐿 are shown in Fig. 7. Nevertheless, within
the scope of this work, the influence of the format of the input
image on the training process and the classification effective-
ness of CNN models will also be investigated. Image format
(type) is meant to be the size (resolution) of the image ex-
pressed in pixels (px) and the number of color depth channels.
Four types of input images were studied and compared: RGB
images compressed to 32× 32 and 64× 64 pixels, as well as
processed to grayscale (reduced from three to one color depth
channels) with the same size as RGB images. Example com-

Fig. 7. Example images included in the dataset for different stator
winding conditions and load torques

pressed images for each of the four types tested are shown
in Fig. 8.

Based on a comparison of these images, it can be concluded
that both the resolution and the number of color channels have
a significant impact on the resulting image format. It can also
affect the size of the model, the time of training, as well as the
accuracy (precision) and effectiveness of the model, which will
be further investigated.

A simplified diagram illustrating the stages of diagnostic in-
formation processing in the developed method is shown in Fig. 9.
There are three main stages:
1. Measurement and acquisition of the stator phase currents,

determination of the 𝑖2, and collection of a vector (data
packet), consisting of 2048 samples.

2. Signal processing of the 𝑖2 using CWT analysis and selecting
and compressing to a certain size a part of the scalogram,
which is the input of the CNN model.

3. Automatic classification of the stator winding condition
(𝑁𝑠ℎ) by the CNN model based on the input image.
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Fig. 8. Example compressed images for each of the four types
of input images analyzed

The CWT analysis of the signal was implemented using the
Wavelet Toolbox available in the MATLAB software, while the
script implementing the input image preparation process, the
training process and the CNN model verification were imple-
mented in the Python language (interpreter: Python 3.9.3).

There are no clear rules for selecting the best CNN structure
for a given application. Nevertheless, it directly affects the accu-
racy and effectiveness of the model [23,37]. This study analyzes
not only the impact of CNN structure on these metrics but also
the format of the input image. The key parameters and details
of the structure of four of the CNN models studied (CNN-1,
CNN-2, CNN-3, CNN-4) are grouped in Table 1.

Each of these structures consists of an input layer (IL) whose
size corresponds to the size of the input image – 32×32×1 and
64×64×1 for grayscale images, and 32×32×3 and 64×64×3
for RGB images, CL(s), PL(s), FL layer and fully connected
layer. The CNN-1 and CNN-2 models have only one convolution
and pooling layer in their structure, containing 16 filters in the
case of CNN-1 and 32 filters in the case of CNN-2, while CNN-
3 has two convolution (32 and 64 filters) and pooling layers.
The CNN-4 model has the most extensive structure and has
as many as three convolution layers (32× 64× 128) and three
pooling layers. The ACC (accuracy) value, also known as the
precision of the CNN models, during the training process for the
default training parameters (𝜂 = 0.0001, 𝐵 = 8, 𝛾 = 0.5) for tested
structures and different types of input images described earlier, is
shown in Fig. 10. The model accuracy is the ratio of the number
of correct classifications of the PMSM winding condition to the
size of the training dataset and therefore indicates how effective
the developed model is at a given stage of training. Based on the
analysis of the results shown in Fig. 10, it can be concluded that
in the case of the 32×32 RGB input image, in the initial stage
of the training process (from 1 to about 100 epochs), the fastest
matching (maximum accuracy) is achieved by the models with
a more advanced structure: CNN-3 and CNN-4. At the end of
the training process, the maximum accuracy ACC𝑀𝐴𝑋, equal
to 99.87%, is achieved by the CNN-2, CNN-3, and CNN-4
models.

For the 64×64 RGB image, the highest ACCMAX among the
compared structures, which is as high as 100%, is achieved by
the CNN-3 model. The CNN-4 model, despite its more advanced
structure (three convolutional layers compared to two layers in
the CNN-2 model), achieved a lower ACCMAX (99.87%), which
indicates that the network structure for this dataset is excessive –
the over-fitting occurred. The lowest precision for both sizes of
RGB images is achieved by the CNN-1 model, whose structure
is the simplest. In the case of grayscale images, all the analyzed
models showed a similar accuracy. Nevertheless, ACCMAX is

Table 1
Key parameters of the analyzed CNN structures
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Fig. 9. Schematic diagram of the developed PMSM stator winding intelligent fault diagnosis method

Fig. 10. CNN models accuracy during the training process for different structures and input images: (a) RGB (32× 32), (b) RGB (64× 64),
(c) grayscale (32×32), (d) grayscale (64×64) (𝜂 = 0.0001, 𝐵 = 8, 𝛾 = 0.5)

lower than for the RGB images - none of the models achieved
ACCMAX = 100%. The lower accuracy is particularly evident at
the initial stage of training – in the first several epochs, there
is a later stabilization of precision at the maximum value. For
grayscale images, the CNN-1 network achieved significantly
better results than for RGB images. This is because, due to only
one convolution layer with a small number of filters (16), it was
not taught redundant higher-order features (patterns), irrelevant
to the task (evaluation of the PMSM stator winding condition),
and ultimately resulted in achieving a higher accuracy (99.87%).

To accurately analyze the course of the training process of a
given CNN model for different forms of the input image, Fig. 11
shows a comparison of the accuracy of the tested models for
different formats of input images. Figure 11a shows the results
for the CNN-1 model. The analysis of the training process for
this model confirms the previous conclusions – the highest ac-
curacy and the fastest stabilization of the training process at the
maximum value occurs for grayscale images. In the case of the
CNN-2 model, the highest precision was achieved for 64× 64
RGB images. Both CNN-3 and CNN-4 models, due to their more
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advanced structure (two and three convolutional layers, respec-
tively), achieved the best accuracy for RGB images. These net-
works, with more convolutional layers, can learn higher-order,
task-relevant patterns (PMSM stator winding condition clas-
sification) that are visible in RGB images. A comprehensive
comparison of ACCMAX, training time (𝑡train), a minimum value
of the loss function (𝐿min), and the size of individual models
(𝑀size) for different input image formats are grouped in Table 2.
Based on the analysis of the results, it can be concluded that the
more complex the structure of the CNN, the longer the training
time. In addition, the same trend can be seen for the size of the
model, which is extremely important from the point of view of
embedded (microcontroller) implementation, where memory is
significantly limited, and it is necessary to use optimized solu-

tions. Comparing the size of the CNN-2 and CNN-3 models, it
was found that the use of an additional pooling layer (CNN-3)
results in a reduction of parameters and, consequently, network
size. A comparison of training time for different input image
formats and CNN model structures is shown in Fig. 12. From
this comparison, it can be seen that in addition to the structure
size, the longer training time is also significantly affected by
image size (resolution). For 64× 64 images, the training time
is significantly longer than for 32× 32 images. Summarizing
the comparative analysis of the models, each model achieved a
high accuracy of more than 99.0%. The CNN-3 model has the
highest precision (100.0%). However, due to its more advanced
structure, the training time is longer compared to the CNN-1
and CNN-2 models.

Fig. 11. CNN models accuracy during the training process for different input images and network structures: (a) CNN-1, (b) CNN-2, (c) CNN-3,
(d) CNN-4 (𝜂 = 0.0001, 𝐵 = 8, 𝛾 = 0.5)

Fig. 12. Comparison of training time for the tested CNN models and different formats of input images
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Table 2
Comparison of accuracy, size and training time for different CNN model structures and input image formats

The above comparison and evaluation of model accuracy for
different structures and forms of input images are not sufficient,
because, despite the high precision of the model, it may have
insufficient generalization capabilities and not provide correct
responses for new, unknown data. For this reason, the effec-
tiveness of the models for the images that are in the test set is

analyzed. The confusion matrices for the responses of the an-
alyzed models for this set, different input image formats, and
network structures are shown in Fig. 13.

Comparisons of classification effectiveness (the ratio of cor-
rect model responses to the size of the test set) are grouped in
Table 3. For the CNN-1 model, numerous misclassifications are

Fig. 13. Comparison of training time for the tested CNN models and different forms of input image
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Table 3
Comparison of PMSM stator winding condition classification effectiveness for different models and input image formats

evident between undamaged winding (𝑁𝑠ℎ = 0) and one shorted
turn (𝑁𝑠ℎ = 1) for all four input image forms analyzed. For this
model, fewer misclassifications (efficiency equal to 97.53%) oc-
cur for the grayscale images, confirming previous conclusions.
The CNN-2, CNN-3 and CNN-4 models achieved the highest
effectiveness for RGB images, which also confirms that some
higher-order features characteristic of ITSC are not visible in
grayscale images.

The highest effectiveness, equal to 99.38%, is achieved by
the CNN-3 model, with a structure containing two CLs and
two PLs. The CNN-4 model, despite three CLs, achieved a
lower efficiency (98.87%), which may be indicative of a too-
advanced structure and learning patterns that are not relevant to
PMSM winding condition classification and result in erroneous
responses.

It should be noted that each of the developed models achieved
high classification efficiency, which confirms the validity of us-
ing CWT of the negative sequence stator phase currents com-
ponent to extract ITSC symptoms in the PMSM stator winding
and the high effectiveness of the developed method.

In addition to the structure of the CNN model and the form of
the input image, the training process can also be influenced by
key training parameters, which were comprehensively studied
and confirmed in [37]. The analysis of the possibility of increas-
ing the accuracy and classification effectiveness of the model
was conducted for the CNN-3 structure, which has a relatively
simple structure (two CLs) and achieved the best results in the
comparative analysis presented before.

The effect of the value of the learning rate 𝜂 on model ac-
curacy is shown in Fig. 14a. Based on this comparison, it can

Fig. 14. CNN models accuracy during the training process for different input images and network structures: (a) CNN-1, (b) CNN-2, (c) CNN-3,
(d) CNN-4 (𝜂 = 0.0001, 𝐵 = 8, 𝛾 = 0.5)
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Fig. 15. The (a) 𝑖2 waveform and (b) CNN model responses for the test during the online operation of the drive system

be concluded that if the value of 𝜂 is too high, there is a stuck
in the local minimum of the loss function, and consequently
the model accuracy is low because the loss function does not
reach the global minimum. For lower values of the learning rate,
the maximum model accuracy oscillates around a similar value
(100%), but the time to reach the maximum value is longer – the
training process is less dynamic. The best CNN performance
was obtained for 𝜂 = 0.0001 which was also the default value
when comparing models at an earlier stage of this study. As it
can be seen, for 𝜂 = 0.001 the training process was less stable,
and a large variance and slower convergence to the maximum
value are evident.

During the CNN training process, it is not possible to simulta-
neously train the model from all the samples in the dataset. This
is due, among others, to the limited memory size of the central
processing unit (CPU) or graphics processing unit (GPU). For
this reason, the training dataset is divided into packets (batches)
of a given dimension – 𝐵. The accuracy of the CNN model for
different values of 𝐵 is shown in Fig. 14b. Based on the analysis
of the results shown in this figure, it can be seen that too high 𝐵

causes the accuracy value to settle on a maximum value much
later. Moreover, the maximum model precision is lower than in
the case of 𝐵 ≤ 16. Nevertheless, the lower the value of 𝐵, the
longer the training process. The best compromise is 𝐵 = 8. In
the last step, the effect of the 𝛾 factor on the CNN accuracy
was verified. The slowest stabilization of the model accuracy
occurred for 𝛾 = 0.3. For the other 𝛾 analyzed, the results were
similar. The model accuracy and the value of the loss function
for CNN-3 after tuning the training parameters (𝜂 = 0.0001,
𝐵 = 8, 𝛾 = 0.9) are shown in Fig. 14d.

By tuning the training parameters, the classification effec-
tiveness (the response to images being in the test set) slightly
increased from 99.38% to 99.69%.

In the final stage of the research, the developed method was
verified during the online operation of the drive system. During
this test, one to five turns were momentarily short-circuited

sequentially for different load torque – from 0 to the rated value
𝑇𝑁 with a step of 0.2𝑇𝑁 . An example from the verification for
a motor running without a load is shown in Fig. 15. Figure 15a
shows the 𝑖2 waveform and Fig. 15b shows the CNN model
response and the actual winding condition. Based on the analysis
of the actual winding condition and the model response, its
high precision can be observed. The achieved model detection
efficiency is equal to 99.38%, while the classification efficiency
equals 97.5%.

In the ITSC fault detection and classification, the detection
time is especially important. The time needed to generate in-
formation about the current PMSM stator winding condition
consists of measurement (stator phase current signal data col-
lection) time, signal processing (CWT) time, input image export
time, and CNN model response time. The data collection time is
set to 250 ms. The times required to realize each of the remain-
ing steps of the developed method are presented in Fig. 16. The
average time for 300 trials of the CWT analysis, the export of the
input image, and the CNN model response are equal to 3 ms,
23 ms, and 54 ms, respectively. It gives 80 ms on average in
total. Adding the data collection time, the longest time required
to detect the PMSM stator winding fault is equal to 330 ms.

Fig. 16. The times required to realize each step of the developed method
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7. CONCLUSIONS

This paper proposes and verifies experimentally a novel hybrid
method for automatic PMSM stator winding fault detection and
classification, which is based on the combination of CWT of
the negative sequence component of the stator phase currents
and CNN model. Compressed images - parts of the CWT anal-
ysis result (scalogram) were used as input values of the CNN
model, which allowed full automation of the process of inferring
the winding condition, achieving extremely high effectiveness.
Compared to the use of classical machine learning algorithms
and shallow neural networks, such as MLP, in combination with
STFT or CWT [38], the developed solution made it possible
to achieve a fault classification efficiency higher by about 2%
(97.5%), despite the lack of the need to include in the input vec-
tor the information on load torque or supply voltage frequency.
Moreover, due to the use of signal and image preprocessing as
input to the CNN model, the training time achieved is several
times less than when based on the raw current signal. These are
the undoubted advantages of the developed solution.

Based on the analysis of experimental studies, it can be con-
cluded that it is a solution that has a remarkably high effective-
ness of winding classification already at an incipient stage of
the fault propagation - with only one shorted turn, so it can be
perfectly suitable as a module of diagnostic systems in modern
drive systems.

According to the literature review and the authors’ best knowl-
edge, this research seems to be the first paper to propose a com-
bination of CWT of the negative sequence stator phase current
component with CNN for fault diagnosis of PMSM stator wind-
ings. In addition to the influence of the structure and training
parameters, this paper analyzes in detail the influence of the
form of the input image on the accuracy and effectiveness of the
models, which is another original contribution. Compared to the
CNN structures described in the literature used in fault diagno-
sis of AC motors, the proposed structure, thanks to the use of an
appropriately selected symptom extraction stage and prepara-
tion of the input image format, allows the use of networks with a
much less complex structure (only two convolutional and pool-
ing layers). This results not only in the aforementioned shorter
training time but also in a smaller model size, which is extremely
important from the point of view of hardware implementation
of artificial intelligence-based algorithms.

To apply the developed fault diagnostic method in a real drive
system during online operation, it is necessary to have access to
the measurement of three motor phase currents, which should be
used to calculate their negative sequence component, and then
process this signal using CWT analysis. Images of the scalo-
gram (CWT result) should be used to train a CNN model de-
veloped using the Python programming language and the Keras
open-source library. The computerized fault diagnosis system
developed based on the proposed method will allow real-time
monitoring of the condition of the PMSM stator winding. Fur-
ther research will focus on the implementation of the proposed
method in such a fault diagnostic system and the extension of
functionality to include localization of the faulty phase, includ-
ing in transients.

Further work will also focus on analyzing the possibility of
hardware implementation (using a low-cost microcontroller) of
solutions based on deep learning.

APPENDIX

Table A.1
Rated parameters of the tested PMSM

Parameter Symbol Value

Power 𝑃𝑁 2500 W
Torque 𝑇𝑁 16 Nm
Rotation speed 𝑛𝑁 1500 rpm
Stator phase voltage 𝑈𝑠𝑁 325 V
Stator phase current 𝐼𝑠𝑁 6.6 A
Frequency 𝑓𝑠𝑁 100 Hz
Pole pairs number 𝑝𝑝 4
Number of turns in one phase 𝑁𝑠 2×125

REFERENCES

[1] T. Peng, C. Ye, C. Yang, Z. Chen, K. Liang, and X. Fan, “A novel
fault diagnosis method for early faults of PMSMs under multiple
operating conditions”, ISA Trans., vol. 130, pp. 463–476, Nov.
2022, doi: 10.1016/j.isatra.2022.04.023.

[2] X. Zhou, J. Sun, P. Cui, Y. Lu, M. Lu, and Y. Yu, “A Fast and
Robust Open-Switch Fault Diagnosis Method for Variable-Speed
PMSM System”, IEEE Trans Power Electron, vol. 36, no. 3, pp.
2598–2610, 2021, doi: 10.1109/TPEL.2020.3013628.

[3] S. Huang, A. Aggarwal, E.G.Strangas, K. Li, F. Niu, and
X. Huang, “Robust Stator Winding Fault Detection in PMSMs
With Respect to Current Controller Bandwidth”, IEEE Trans.
Power Electron., vol. 36, no. 5, pp. 5032–5042, 2021, doi:
10.1109/TPEL.2020.3030036.

[4] K.H.Baruti, C. Li, F. Erturk, and B. Akin, “Online Stator Inter-
Turn Short Circuit Estimation and Fault Management in Perma-
nent Magnet Motors”, IEEE Trans. Energy Convers., vol. 38, no.
2, pp. 1016–1027, 2023, doi: 10.1109/TEC.2022.3220544.

[5] P. Pietrzak and M. Wolkiewicz, “Stator winding fault detection of
permanent magnet synchronous motors based on the bispectrum
analysis”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 7, no. 2, p. e140556,
2022, doi: 10.24425/bpasts.2022.140556.

[6] L. Liu, K. Wang, L.L.Guo, and J. Li, “Analysis of Inter-Turn Short
Circuit Faults in Dual Three-Phase PMSM for Electromechanical
Actuator”, EEE Trans. Transp. Electrif., vol. 9, no. 3, pp. 4059–
4070, Sep. 2023, doi: 10.1109/TTE.2023.3239632.

[7] G. Niu, X. Dong, and Y. Chen, “Motor Fault Diagnostics Based
on Current Signatures: A Review”, IEEE Trans. Instrum. Meas.,
vol. 72, pp. 1–19, 2023, doi: 10.1109/TIM.2023.3285999.

[8] T. Orlowska-Kowalska et al., “Fault Diagnosis and Fault-Tolerant
Control of PMSM Drives–State of the Art and Future Chal-
lenges”, IEEE Access, vol. 10, pp. 59979–60024, 2022, doi:
10.1109/ACCESS.2022.3180153.

[9] Y. Chen, S. Liang, W. Li, H. Liang, and C. Wang, “Faults
and Diagnosis Methods of Permanent Magnet Synchronous Mo-
tors: A Review”, Appl. Sci., vol. 9, no. 10, p.‘2116, 2019, doi:
10.3390/app9102116.

Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 5, p. e150202, 2024 13

https://doi.org/10.1016/j.isatra.2022.04.023
https://doi.org/10.1109/TPEL.2020.3013628
https://doi.org/10.1109/TPEL.2020.3030036
https://doi.org/10.1109/TEC.2022.3220544
https://doi.org/10.24425/bpasts.2022.140556
https://doi.org/10.1109/TTE.2023.3239632
https://doi.org/10.1109/TIM.2023.3285999
https://doi.org/10.1109/ACCESS.2022.3180153
https://doi.org/10.3390/app9102116


P. Pietrzak and M. Wolkiewicz

[10] Z. Dogan and K. Tetik, “Diagnosis of Inter-Turn Faults Based
on Fault Harmonic Component Tracking in LSPMSMs Work-
ing Under Nonstationary Conditions”, IEEE Access, vol. 9, pp.
92101–92112, 2021, doi: 10.1109/ACCESS.2021.3092605.

[11] M. Skowron, “Application of deep learning neural networks for
the diagnosis of electrical damage to the induction motor using
the axial flux”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 5, pp.
1031–1038, 2020, doi: 10.24425/bpasts.2020.134664.

[12] P. Ewert, T. Orlowska-Kowalska, and K. Jankowska, “Effective-
ness Analysis of PMSM Motor Rolling Bearing Fault Detectors
Based on Vibration Analysis and Shallow Neural Networks”,
Energies, vol. 14, no. 3, p. 712, 2021, doi: 10.3390/en14030712.

[13] M. Krzysztofiak, T. Zawilak, and G. Tarchała, “Online con-
trol signal-based diagnosis of interturn short circuits of PMSM
drive”, Arch. Electr. Eng., vol. 72, no. 1, pp. 103–124, 2023, doi:
10.24425/aee.2023.143692.

[14] P. Pietrzak and M. Wolkiewicz, “Comparison of Selected Meth-
ods for the Stator Winding Condition Monitoring of a PMSM
Using the Stator Phase Currents”, Energies, vol. 14, no. 6, p.
1630, 2021, doi: 10.3390/en14061630.

[15] P. Pietrzak, M. Wolkiewicz, and T. Orlowska-Kowalska, “PMSM
Stator Winding Fault Detection and Classification Based on Bis-
pectrum Analysis and Convolutional Neural Network”, IEEE
Trans. Ind.l Electron., vol. 70, no. 5, pp. 5192–5202, 2023, doi:
10.1109/TIE.2022.3189076.

[16] J. Urresty, J. Riba, L. Romeral, J. Rosero, and J. Serna, “Sta-
tor short circuits detection in PMSM by means of Hilbert-
Huang transform and energy calculation”, in 2009 IEEE In-
ternational Symposium on Diagnostics for Electric Machines,
Power Electronics and Drives, IEEE, 2009, pp. 1–7, doi:
10.1109/DEMPED.2009.5292789.

[17] P. Pietrzak and M. Wolkiewicz, “Stator Phase Current STFT anal-
ysis for the PMSM Stator Winding Fault Diagnosis”, in 2022 In-
ternational Symposium on Power Electronics, Electrical Drives,
Automation and Motion (SPEEDAM), IEEE, 2022, pp. 808–813.
doi: 10.1109/SPEEDAM53979.2022.9841990.

[18] P. Pietrzak and M. Wolkiewicz, “Condition Monitoring and
Fault Diagnosis of Permanent Magnet Synchronous Motor Stator
Winding Using the Continuous Wavelet Transform and Machine
Learning”, Power Electron. Drives, vol. 9, no. 1, pp. 106–121,
Jan. 2024, doi: 10.2478/pead-2024-0007.

[19] G.R.Agah, A. Rahideh, H. Khodadadzadeh, S.M. Khoshnazar,
and S. Hedayati Kia, “Broken Rotor Bar and Rotor Eccentricity
Fault Detection in Induction Motors Using a Combination of
Discrete Wavelet Transform and TeagerKaiser Energy Operator”,
IEEE Trans. Energy Convers., vol. 37, no. 3, pp. 2199–2206,
2022, doi: 10.1109/TEC.2022.3162394.

[20] K.-J. Shih, M.-F. Hsieh, B.-J. Chen, and S.-F. Huang, “Machine
Learning for Inter-Turn Short-Circuit Fault Diagnosis in Perma-
nent Magnet Synchronous Motors”, IEEE Trans. Magn., vol. 58,
no. 8, pp. 1–7, Aug. 2022, doi: 10.1109/TMAG.2022.3169173.

[21] M. Skowron, T. Orlowska-Kowalska, and C.T.Kowalski, “Diag-
nosis of Stator Winding and Permanent Magnet Faults of PMSM
Drive Using Shallow Neural Networks”, Electronics, vol. 12, no.
5, p. 1068, 2023, doi: 10.3390/electronics12051068.

[22] M. Skowron, T. Orlowska-Kowalska, and C.T. Kowalski, “De-
tection of Permanent Magnet Damage of PMSM Drive Based
on Direct Analysis of the Stator Phase Currents Using Convolu-
tional Neural Network”, IEEE Trans. Ind. Electron.,, vol. 69, no.
12, pp. 13665–13675, 2022, doi: 10.1109/TIE.2022.3146557.

[23] S. Shao, R. Yan, Y. Lu, P. Wang, and R.X.Gao, “DCNN-
Based Multi-Signal Induction Motor Fault Diagnosis”, IEEE

Trans Instrum. Meas., vol. 69, no. 6, pp. 2658–2669, 2020, doi:
10.1109/TIM.2019.2925247.

[24] Z. Li et al., “Data-Driven Diagnosis of PMSM Drive with
Self-Sensing Signal Visualization and Deep Transfer Learn-
ing”, IEEE Trans. Energy Convers., pp. 1–12, 2024, doi:
10.1109/TEC.2023.3331580.

[25] M. Skowron, “Development of a universal diagnostic system
for stator winding faults of induction motor and PMSM based
on transfer learning”, in 2023 IEEE 14th International Sympo-
sium on Diagnostics for Electrical Machines, Power Electronics
and Drives (SDEMPED), IEEE, Aug. 2023, pp. 517–523, doi:
10.1109/SDEMPED54949.2023.10271444.

[26] M. Skowron, M. Krzysztofiak, and T. Orlowska-Kowalska, “Ef-
fectiveness of Neural Fault Detectors of Permanent Magnet Syn-
chronous Motor Trained With Symptoms From Field-Circuit
Modeling”, IEEE Access, vol. 10, pp. 104598–104611, 2022,
doi: 10.1109/ACCESS.2022.3211087.

[27] L. Cohen, “Time-frequency distributions-a review”, Proc. IEEE,
vol. 77, no. 7, pp. 941–981, 1989, doi: 10.1109/5.30749.

[28] N. Diao, Z. Wang, H. Ma, and W. Yang, “Fault Diagnosis of
Rolling Bearing Under Variable Working Conditions Based on
CWT and T-ResNet”, J. Vibr. Eng. Technol., vol. 11, pp. 3747–
3757, 2022, doi: 10.1007/s42417-022-00780-w.

[29] J.M.Lilly and S.C.Olhede, “Higher-Order Properties of Analytic
Wavelets”, IEEE Trans. Signal Process., vol. 57, no. 1, pp. 146–
160, 2009, doi: 10.1109/TSP.2008.2007607.

[30] J.M. Lilly and S.C. Olhede, “On the Analytic Wavelet Trans-
form”, IEEE Trans. Inf. Theory, vol. 56, no. 8, pp. 4135–4156,
Aug. 2010, doi: 10.1109/TIT.2010.2050935.

[31] J.M. Lilly and S.C. Olhede, “Generalized Morse Wavelets as
a Superfamily of Analytic Wavelets”, IEEE Trans. Signal Pro-
cess., vol. 60, no. 11, pp. 6036–6041, 2012, doi: 10.1109/
TSP.2012.2210890.

[32] S. Osowski, “Deep neural networks in application to data min-
ing”, Przegląd Telekomunikacyjny i Wiadomości Telekomunika-
cyjne, vol. 5, pp. 112–121, 2018.

[33] F. Chollet, Deep learning with Python. New York: Manning Pub-
lications, 2017.

[34] S. Lawrence, C.L.Giles, Ah Chung Tsoi, and A.D.Back, “Face
recognition: a convolutional neural-network approach”, IEEE
Trans. Neural Netw., vol. 8, no. 1, pp. 98–113, 1997, doi:
10.1109/72.554195.

[35] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the im-
portance of initialization and momentum in deep learning”, in
Proc. 30th International Conference on Machine Learning, USA:
PMLR, 2013, vol. 28, pp. 1139–1147.

[36] P. Pietrzak and M. Wolkiewicz, “On-line Detection and Classifi-
cation of PMSM Stator Winding Faults Based on Stator Current
Symmetrical Components Analysis and the KNN Algorithm”,
Electronics, vol. 10, no. 15, p. 1786, 2021, doi: 10.3390/elec-
tronics10151786.

[37] M. Skowron, C.T.Kowalski, and T. Orlowska-Kowalska, “Impact
of the Convolutional Neural Network Structure and Training Pa-
rameters on the Effectiveness of the Diagnostic Systems of Mod-
ern AC Motor Drives”, Energies, vol. 15, no. 19, p. 7008, 2022,
doi: 10.3390/en15197008.

[38] P. Pietrzak and M. Wolkiewicz, “Fault Diagnosis of PMSM Sta-
tor Winding Based on Continuous Wavelet Transform Analysis
of Stator Phase Current Signal and Selected Artificial Intelli-
gence Techniques”, Electronics, vol. 12, no. 7, p. 1543, 2023,
doi: 10.3390/electronics12071543.

14 Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 5, p. e150202, 2024

https://doi.org/10.1109/ACCESS.2021.3092605
https://doi.org/10.24425/bpasts.2020.134664
https://doi.org/10.3390/en14030712
https://doi.org/10.24425/aee.2023.143692
https://doi.org/10.3390/en14061630
https://doi.org/10.1109/TIE.2022.3189076
https://doi.org/10.1109/DEMPED.2009.5292789
https://doi.org/10.1109/SPEEDAM53979.2022.9841990
https://doi.org/10.2478/pead-2024-0007
https://doi.org/10.1109/TEC.2022.3162394
https://doi.org/10.1109/TMAG.2022.3169173
https://doi.org/10.3390/electronics12051068
https://doi.org/10.1109/TIE.2022.3146557
https://doi.org/10.1109/TIM.2019.2925247
https://doi.org/10.1109/TEC.2023.3331580
https://doi.org/10.1109/SDEMPED54949.2023.10271444
https://doi.org/10.1109/ACCESS.2022.3211087
https://doi.org/10.1109/5.30749
https://doi.org/10.1007/s42417-022-00780-w
https://doi.org/10.1109/TSP.2008.2007607
https://doi.org/10.1109/TIT.2010.2050935
https://doi.org/10.1109/TSP.2012.2210890
https://doi.org/10.1109/TSP.2012.2210890
https://doi.org/10.1109/72.554195
https://doi.org/10.3390/electronics10151786
https://doi.org/10.3390/electronics10151786
https://doi.org/10.3390/en15197008
https://doi.org/10.3390/electronics12071543

	INTRODUCTION
	CONTINUOUS WAVELET TRANSFORM
	CONVOLUTIONAL NEURAL NETWORKS
	EXPERIMENTAL SETUP
	PMSM STATOR WINDING FAULT SYMPTOM EXTRACTION USING CWT
	CNN-BASED AUTOMATION OF THE PMSM STATOR WINDING FAULT DETECTION AND CLASSIFICATION
	CONCLUSIONS

