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Abstract. This research presents an advanced control approach for battery management in battery electric utility vehicles (BEUV) operating in
indoor logistics environments. The proposed approach utilizes a combination of proportional-integral (PI), fuzzy PI, and interval type 2 fuzzy PI
(IT2fuzzyPI) control structures to augment the state space model for battery management. The state space model incorporates the voltage and
current of each battery cell as state variables and considers the current demand from the electric motor as an input. By integrating fuzzy logic
with PI control and considering uncertainty, the IT2fuzzyPI structure offers improved control recital and system robustness in the occurrence of
nonlinearities, uncertainties, and turbulences. The outcomes of the simulation validate the effectiveness of the proposed scheme in managing
the battery pack system’s state of charge and controlling the rates of charging and discharging. The IT2fuzzyPI control significantly improves
the overall proficiency and longevity of the battery system, making it suitable for battery electric utility vehicles in logistics environments. This
research contributes to the field of battery management systems, providing a valuable tool for designing and evaluating high-performance electric
vehicles with enhanced control capabilities.
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1. INTRODUCTION
Electric vehicles (EVs) [1] have arisen as a promising solu-
tion aimed at sustainable transportation [2], offering reduced
emissions and energy consumption compared to conventional
vehicles. In indoor logistics environments, EVs are crucial in
the efficient transportation of goods within warehouses and dis-
tribution centers. However, effective battery management [3] is
essential to ensure reliable operation, extended battery life, and
optimal performance of these vehicles [4].

Effective battery management systems (BMS) [5] are inte-
grated into these electric vehicles to ensure efficient operation
and extend the lifespan. The BMS [6] monitors and controls var-
ious parameters such as current, voltage, temperature, and state
of charge for each battery cell. Proper battery management [7] is
essential for uninterrupted vehicle operation, cost-effectiveness,
and environmental sustainability.

One crucial aspect of battery management is regulating the
charging and discharging processes. The widely adopted con-
trol algorithm in battery management systems is the PI con-
troller [8–10], which holds a significant position in regulating
system performance. The PI controller is responsible for adapt-
ing the control output by considering the error and integrating
the error over time, guaranteeing the battery operation within
safe and optimal boundaries. The incorporation of the PI con-
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troller into the overall battery management system, alongside
techniques like state-of-charge (SOC) assessment [11], wavelet
neural network and BP neural network, charging of electric
vehicles [12], battery volume estimation, and thermal manage-
ment, leads to the establishment of a comprehensive system for
managing electric vehicles (EVs) in indoor logistics environ-
ments [13, 14].

Apart from the utilization of the PI controller, there has been
growing interest in the application of fuzzy logic control meth-
ods within battery management systems [15, 16]. Fuzzy logic
controllers utilize linguistic variables to capture expert knowl-
edge and emulate human-like decision-making processes. The
inclusion of fuzzy logic alongside the PI controller in the form
of the fuzzy PI controller [17] leads to improved control per-
formance and robustness, specifically in dealing with the un-
certainties and nonlinearities present in battery systems. To
tackle the uncertainties that arise in conventional fuzzy logic
controllers, a promising approach recognized as interval type
2 fuzzy logic (IT2-FL) has gained attention [18]. IT2-FL goes
beyond traditional fuzzy logic by integrating the notion of un-
certainty through the utilization of upper and lower membership
functions [19]. This enhancement enables better modeling and
control capabilities, especially in complex systems like battery
management in EVs operating in indoor logistics environments.

The impartial of this work is to create an enhanced state
space model for battery management in electric vehicles op-
erating in indoor logistics environments, using interval type 2
fuzzy PI (proportional-integral) control [20]. The proposed ap-
proach combines the benefits of interval type 2 fuzzy logic with
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PI control to effectively address the challenges of battery man-
agement in these specific operational conditions. By effectively
capturing and handling uncertainties, the model aims to enhance
the reliability, efficiency, and safety of EVs in indoor logistics
operations.

Through comprehensive simulations and experimental vali-
dations, this research seeks to exhibit the efficacy of the interval
type 2 fuzzy PI-enhanced state space model for battery man-
agement. The study will investigate the model performance in
terms of accurate state estimation, optimal control of charging
and discharging processes, and overall battery health manage-
ment. The outcomes of this research will make significant con-
tributions to the advancement of battery management systems
for battery electric utility vehicles (BEUVs), facilitating their
extensive usage in indoor logistics environments and encour-
aging the adoption of environmentally friendly transportation
practices.

The subsequent sections will present the state space model-
ing, fuzzy-based controller design, implementation in battery
electric vehicles, results, and discussions of the proposed IT2
fuzzy PI enhanced state space model for battery management in
BEUVs operating in indoor logistics environments.

2. BATTERY ELECTRIC UTILITY VEHICLE (BEUV)
IN INDOOR LOGISTICS ENVIRONMENT

Battery electric utility vehicles (BEUVs) serve as indispensable
assets within indoor logistics, facilitating the seamless move-
ment of goods and materials through confined spaces. With their
electric powertrain operating at 24V, BEUVs provide smooth
acceleration and precise control, ensuring compatibility with
indoor infrastructure. These vehicles boast a payload capacity
of up to 600kg, making them adept at efficiently transporting
various materials. Their compact dimensions, typically around
1.1 meters wide, enable agile navigation through narrow aisles
and congested areas. Equipped with advanced safety features
such as collision detection sensors and emergency braking sys-
tems, BEUVs prioritize operator safety and bystander protection.
Additionally, ergonomic design elements, including comfort-
able seating and intuitive controls, enhance operator comfort
and productivity during extended use. Integration of connectiv-
ity and telematics systems enables remote monitoring and fleet
management, while a sophisticated battery management system
(BMS) ensures optimal performance and longevity of the battery
pack [21].

To ensure the optimal performance and longevity of the bat-
tery system in BEUVs, a sophisticated battery management sys-
tem (BMS) is essential. The BMS is responsible for monitor-
ing the health and status of individual battery cells, managing
charging and discharging processes, and implementing safety
protocols to prevent overheating, overcharging, and other poten-
tial hazards. Our research focuses on developing an advanced
BMS tailored specifically for BEUV applications. By integrat-
ing state-of-the-art monitoring and control algorithms, we aim
to maximize the efficiency, reliability, and safety of the battery
system, thereby enhancing the overall performance of BEUVs
in indoor logistics operations.

In our research, we utilize a 24V battery system to power
the battery electric utility vehicles (BEUVs) employed in indoor
logistics operations. This battery pack comprises eight lithium-
ion cells, providing the necessary voltage and energy capacity to
operate the vehicles efficiently within indoor environments. To
ensure optimal performance and longevity of the battery pack, a
comprehensive battery management system (BMS) is essential.

A 12V 12 000mAh LiFePO4 (lithium iron phosphate) bat-
tery typically comprises four cells, with each cell contributing
3.2 volts to the overall voltage of the battery pack. When these
cells are connected in series, their voltages add up to provide
the desired 12.8V output. LiFePO4 chemistry offers advantages
such as high energy density, long cycle life, and enhanced safety,
making it a popular choice for various applications, including
electric vehicles, renewable energy storage, and portable elec-
tronic devices.

To meet the 24V requirement for battery electric utility vehi-
cles (BEUVs) in indoor operations, eight cells are needed. Each
cell typically has a nominal voltage of 3.2 volts, commonly found
in LiFePO4 batteries. When eight cells are connected in series,
their voltages add up to provide a total voltage of 25.6 volts,
effectively meeting the 24V requirement for the BEUV.

For charging the eight LiFePO4 cells connected in series to
achieve a total voltage of 25.6 volts (to meet the 24V requirement
for the BEUV), the typical charging voltage range would be be-
tween 30.4V to 31.2V. This range ensures that each cell receives
sufficient voltage for charging while avoiding overcharging. The
specifications of the LiFePO4 battery are listed in Table 1.

Table 1
LifePo4 battery specifications

Parameters Value

Type LifePo4 battery
Charging voltage 14. 6 V
Current 12 A
Nominal voltage 12.8 V
Capacity/nominal current 12 000 mAh
Dimensions (𝐿×𝑊 ×𝐻) 150 mm×98 mm×94 mm
Weight 1450 gms

This configuration ensures that the BEUV receives the nec-
essary power supply to operate its systems efficiently within
indoor environments. LiFePO4 batteries are often preferred for
such applications due to their high energy density, long cycle
life, and enhanced safety characteristics.

2.1. State space modeling of the battery pack unit

A comprehensive state-space model for the battery pack used
in BEUVs is derived in this section. This model captures the
dynamic behavior of individual lithium-ion cells and their in-
teractions within the pack, allowing for accurate prediction and
control of key parameters such as state of charge, and voltage.

Equations (1), (2), and (3) elucidate the electrical character-
istics and behavior of an individual cell denoted as 𝑖. These
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equations mathematically capture the dynamic interactions and
relationships among different variables within the cell. Addi-
tionally, Fig. 1 provides a visual representation of these electrical
dynamics, facilitating a clearer understanding and visualization
of the system

¤SoC𝑖 (𝑡) = −𝐼 (𝑡)/𝑄𝑖 . (1)

Equation (1) relates the rate of change of the state of charge
(SoC) of cell 𝑖 to the current flowing through it (𝐼 (𝑡)) and the
cell’s capacity 𝑄𝑖

¤𝑉1𝑖 (𝑡) = − 1
𝑅1𝑖𝐶1𝑖

·𝑉1𝑖 (𝑡) +
1
𝐶1𝑖

· 𝐼 (𝑡) , (2)

where ¤𝑉1𝑖 (𝑡) is the time derivative of the voltage across the ca-
pacitor𝐶1𝑖 of the cell 𝐼;𝑉1𝑖 (𝑡) is the voltage across the capacitor
𝐶1𝑖 , 𝑅1𝑖 and 𝐶1𝑖 represent the polarization resistance and cell 𝑖
capacitance, respectively, and the current flowing through cell 𝑖
is 𝐼 (𝑡)

𝑉𝑇𝑖 (𝑡) =𝑉𝑜𝑐𝑖 (SoC𝑖) −𝑉1𝑖 (𝑡) − 𝐼 (𝑡)𝑅0𝑖 , (3)

where 𝑉𝑇𝑖 (𝑡) is the overall voltage of cell 𝐼; 𝑉𝑜𝑐𝑖 (SoC𝑖) is the
open circuit voltage of cell 𝑖 at the assumed SOC; 𝑉1𝑖 (𝑡) is the
voltage through the capacitor 𝐶1𝑖; 𝐼 (𝑡) is the current flowing
over cell 𝑖, and 𝑅0𝑖 is the series resistance of cell 𝑖.

Fig. 1. Circuit diagram of a single-cell

These equations describe the electrical dynamics of a single
cell in the battery pack. The dynamics of the entire battery
pack can be modeled by applying Kirchoff’s voltage law to the
series-connected cells.

Eight lithium-ion cells are connected in series to create a
24V battery module with a nominal voltage of 25.6V, which
is modeled as a lithium-ion battery pack to power BEUVs in
indoor logistics using KVL based on equations (1), (2), and (3)

𝑉𝑇1 (𝑡) +𝑉𝑇2 (𝑡) + . . .+𝑉𝑇8 (𝑡) =𝑉pack (𝑡), (4)

where 𝑉pack (𝑡) is the voltage across the entire battery pack. By
applying suitable initial and boundary conditions, the electrical
dynamics of the eight-cell battery pack using 𝑅 and 𝐶 elements
are simulated. By incorporating the equations specific to each
cell and employing Kirchhoff’s voltage law for the cells con-
nected in series, it is possible to derive the state-space model for
the eight-cell battery pack. The state variables are described in
equation (5)

𝑥1 = SoC1 (𝑡), 𝑥2 =𝑉11 (𝑡), 𝑦 =𝑉pack (𝑡), 𝑢 = 𝐼 (𝑡). (5)

Then, the state space prototypical for the eight-cell battery pack
is given by

¤𝑥1𝑖 = − 1
𝑄𝑖

𝑢, (6)

¤𝑥2𝑖 = − 1
𝑅1𝑖𝐶1𝑖

· 𝑥2𝑖 +
1
𝐶1𝑖

·𝑢, (7)

𝑦 =

8∑︁
𝑖=1

(𝑉oci𝑥1𝑖 − 𝑥2𝑖 −𝑢(𝑅0𝑖 +𝑅total)) , (8)

where ¤𝑥1, ¤𝑥2 denote the time derivative of the state variables 𝑥1,
𝑥2 respectively; 𝑦 denotes the output of the battery pack and 𝑢

is the current smoothing over the cells. Simulating the electri-
cal dynamics of the eight-cell battery pack and devising control
algorithms for the system can be accomplished by utilizing the
state space model. The matrix custom of the state space proto-
typical is utilized to express it concisely and systematically.

𝐴 =


𝐴11 0 . . . 0
0 𝐴22 . . . 0
...

...
. . .

...

0 0 . . . 𝐴88


, 𝐵 =


𝐵1

𝐵2
...

𝐵8


, (9)

𝐶 =

[
𝐶1 𝐶2 . . . 𝐶8

]
,

𝐷 =


𝐷11 𝐷12 . . . 𝐷18

𝐷21 𝐷22 . . . 𝐷28
...

...
. . .

...

𝐷81 𝐷82 . . . 𝐷88


, (10)

where

𝐴𝑖𝑖 =


0 0

0
−1

𝑅𝑖𝑖𝐶𝑖𝑖

 , 𝐵𝑖 =


−1
𝑄𝑖

1
𝐶1𝑖

 , (11)

𝐶𝑖 = [𝑉𝑜𝑐𝑖 −1] , 𝐷𝑖𝑖 = [−(𝑅0𝑖 +𝑅total)] . (12)

Open-loop simulations are performed based on the battery
specifications enumerated in Table 2 and it is depicted in Fig. 2.
The system is controllable and observable, but it is unstable in
open-loop system analysis.

Table 2
Single cell specifications

Parameters Values

𝑅11 0.02 ohm

𝐶11 500 F

𝑄1 12 000 mAh

𝑉𝑜𝑐1 12.8 V

𝑅01 0.2 ohm
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Fig. 2. Open loop battery pack response with SoC

3. PI-BASED BATTERY CONTROLLER DESIGN

The PI controller can be designed to measure the battery voltage
and current [22] and use this information to adjust the charging
and discharging currents accordingly. The proportional com-
ponent of the controller allows for fine-tuning the charging or
discharging current based on variations in the battery voltage.
On the other hand, the integral component helps rectify any per-
sistent discrepancies in the battery voltage, ensuring accurate
regulation during steady-state conditions. The PI controller can
be incorporated into the state equations by modifying the input
vector 𝑢. In the state space model with the PI controller, the
input vector 𝑢 is

𝑢 =
[
𝐼, 𝑢1

]
, (13)

where 𝐼 is the input current and 𝑢1 the yield of the PI controller.
The PI controller output 𝑢1 can be calculated as

𝑢1 = 𝑘 𝑝𝑒(𝑡) + 𝑘𝑖
∫

𝑒(𝑡) = 𝑘 𝑝𝑒 + 𝑘𝑖𝑒int , (14)

where 𝑘 𝑝 and 𝑘𝑖 are the proportional and integral gains of the
PI controller; 𝑒 = 𝑒(𝑡) is the error amid the anticipated and real
yield voltage, and 𝑒int =

∫
𝑒(𝑡) is the integral of the error.

The modified state space model with the PI controller incor-
porated can be expressed as

State variables:

𝑥 =
[
SoC𝑖;𝑉1𝑖; 𝑒; 𝑒int

]
= [𝑥1𝑖 , 𝑥2𝑖 , 𝑥3𝑖 , 𝑥4𝑖] . (15)

State equations:

¤𝑥1𝑖 = − 1
𝑄𝑖

𝑢1 ,

¤𝑥2𝑖 = − 1
𝑅1𝑖𝐶1𝑖

𝑥2𝑖 +
1
𝐶1𝑖

𝑢1 + 𝑘𝑖𝑥3𝑖 ,

¤𝑥3𝑖 = 𝑒,

¤𝑥4𝑖 = 𝑒int .

(16)

Output equations:

𝑦 =

8∑︁
𝑖=1

(𝑉𝑜𝑐𝑖𝑥1𝑖 − 𝑥2𝑖) −𝑢1 (𝑅0𝑖 +𝑅total) − 𝑘 𝑝𝑒, (17)

where 𝑥1𝑖 , 𝑥2𝑖 , 𝑥3𝑖 , and 𝑥4𝑖 represents the state of charge, the
voltage across the capacitor, the error, and the integral of the
error term for cell 𝑖 respectively. 𝑄𝑖 , 𝑅1𝑖 , 𝐶1𝑖 and 𝑉0𝑖 are the
parameters specific to each cell; 𝑒 is the error between the desired
and actual output voltage; 𝑒int is the integral of the error; 𝐼 is the
input current; 𝑢1 is the control signal for the PI controller, and 𝑘 𝑝

and 𝑘𝑖 are the proportional and integral gains, correspondingly.
An additional state variable 𝑒int was added to represent the

integral of the error signal, and it was included in the state vector
𝑥. The corresponding input 𝑘𝑖 was added to the input matrix 𝐵.

When using a PI controller for battery pack control, the con-
troller adjusts the output voltage to maintain a constant voltage
level. During the charging process, the controller will raise the
voltage to uphold the desired set point, while during discharging,
the controller will lower the voltage to sustain the set point. This
ensures that the battery operates within safe limits and that the
performance is optimized. However, if the voltage is maintained
at a constant level for too long, it can lead to a decrease in the
state of charge (SOC) of the battery. This is because the constant
voltage prevents the battery from fully charging or discharging,
leading to a lower SOC over time. Hence, regular set point ad-
justments of the PI controller are crucial to guarantee complete
charging and discharging of the battery, besides preventing a
gradual decline in the state of charge (SOC) over time.

4. FUZZY PI-BASED BATTERY CONTROLLER DESIGN

The fuzzy PI controller structure, illustrated in Fig. 3, offers
a fundamental and effective solution for battery pack manage-
ment. To enhance the voltage regulation of a battery pack, it is
possible to integrate a fuzzy PI controller [23–25] into the state
space model. This integration consents for real-time alteration
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of the proportional and integral gains, considering the current
error and its rate of change. By adapting to variations in load
and other disturbances, the fuzzy PI controller can provide a
more efficient response, ensuring better overall performance.
The control accomplishment of the fuzzy PI regulator can be
assimilated into the overall structure model by altering the effort
matrix, 𝐵, and the yield matrix, 𝐶, of the state space model.

Fig. 3. Fuzzy PI control structure

The input matrix 𝐵 (11) represents the effect of the control in-
put u on the state variables. To incorporate the regulator accom-
plishment of the fuzzy PI controller, input Matrix 𝐵 is modified
by multiplying it with the control action equation (14). Then the
modified input matrix 𝐵′ is represented in the equation (18)

𝐵′ = 𝐵

[
𝑘 𝑝𝑒(𝑡) + 𝑘𝑖

∫
𝑒(𝑡) d𝑡

]
. (18)

The modified input matrix 𝐵′ is dogged by the specific config-
uration of the fuzzy PI governor equation and how the control
action is linked to the state variables in your control strategy.
This customization ensures the alignment of the input matrix
with the control approach, accounting for the interplay between
control actions and the system state variables.

The output matrix 𝐶 (12) relates the state variables to the
yield of the structure. To integrate the control action, the output
matrix 𝐶 is modified to include the effect of the control action
𝑢1 on the output. One possible modification is to add a term
that represents the influence of 𝑢1 on the output voltage. The
modified output matrix 𝐶′ can be formulated as

𝐶′ =
[
𝑉𝑜𝑐1 −1 𝑉𝑜𝑐2 −1 . . . 𝑉𝑜𝑐8 −1 𝑢1

]
. (19)

The adjustment of the output matrix depends on how the con-
trol action is related to the output variable within your control
strategy. The specific modification is tailored to ensure compat-
ibility and appropriate mapping between the control action and
the system output variable. With this modification, the behavior
of the battery pack with the fuzzy PI controller can be simulated,
and the performance in terms of regulating the output voltage
can be evaluated.

4.1. Fuzzy logic tuner design

The inference structure centered on Mamdani’s fuzzy sense
methodology is a regulator that utilizes rules and input values to
calculate the control output. Fuzzification involves transforming
crisp input data into association values by likening them to fuzzy
sets, thereby capturing the degree of membership to each set.
This involves assigning degrees of membership to each fuzzy

set based on the similarity between the effort rate and the faces
of the uncertain set.

In this fuzzy PI controller, both fuzzy logic and the
proportional-integral (PI) governor procedure are used to gener-
ate the control output. The fuzzy controller employs fuzzy logic
and membership functions to handle system nonlinearities. On
the flip side, the PI controller employs integral control through
the integration of the error signal over the period, which enables
the eradication of steady-state errors and boosts the system per-
formance during steady-state conditions.

The regulator yield of the fuzzy PI structure is obtained by
combining the outputs of both the fuzzy logic controller and
the PI controller. The fuzzy logic controller provides linguistic
decision-making and handles complex system behaviors, while
the PI controller contributes integral control to improve steady-
state performance. By combining these two components, the
fuzzy PI controller achieves a balance between precise control
action and the ability to handle system uncertainties and non-
linearities.

The Mamdani-based fuzzy PI controller [26] utilizes a rule
matrix based on expert knowledge, which incorporates five
Gaussian-shaped membership functions: Negative Large (NgL),
Negative Small (NgS), Zero (ZE), Positive Small (PoS), and
Positive Large (PoL). This rule matrix allows for the effective
mapping of input variables and facilitates the fuzzy inference
process. The error input range is configured to span from −15 to
50, while the range of response variation is set from −7.5 to 25.
The output range, on the other hand, is defined from −25 to 50.

To execute fuzzy inference within the Mamdani inference
system, the Max-Min strategy is employed. This strategy entails
identifying the minimum membership value for the antecedent
of each rule and subsequently aggregating them to compute the
complete degree of instigation for every rule. For defuzzifica-
tion, the largest of maximum (LOM) technique is utilized. This
technique selects the output value with the highest membership
degree among all the activated rules as the final control out-
put. The rule matrix, which specifies the relationships between
the linguistic variables and the control actions, is provided in
Table 3.

Table 3
Fuzzy rule matrix for fuzzy PI structure

C\DC NgL NgS ZE PoS PoL

NgL Diminution Diminution Diminution Retain Retain

NgS Diminution Diminution Retain Retain Upsurge

ZE Diminution Retain Retain Upsurge Upsurge

PoS Retain Retain Upsurge Upsurge Upsurge

PoL Retain Upsurge Upsurge Upsurge Upsurge

Within Table 3, the charging level is denoted by the rows,
while the discharging level is represented by the columns. The
aforementioned linguistic rapports are employed to depict the
fuzzy sets corresponding to the charging and discharging lev-
els. The table entries represent the corresponding control output
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based on the combination of the charging level and discharging
level. The control outputs are linguistic terms such as Diminu-
tion, Retain, and Upsurge.

The Mamdani-based fuzzy inference system employs If-Then
rules to execute learning-based thoughts for control behavior.
The fuzzified response from the fuzzy PI controller is obtained
using the Mamdani technique. To use it in the battery pack state
space model, the fuzzy output is de-fuzzified to obtain a crisp
control response.

In general, the fuzzy PI improves the recital of the control
scheme by capitalizing on the advantages of both fuzzy sense
and PI control. It effectively manages nonlinearities and facil-
itates linguistic decision-making, while the PI controller offers
integral control to rectify steady-state errors.

5. INTERVAL TYPE 2 FUZZY PI (IT2 FUZZY PI) BASED
BATTERY CONTROLLER DESIGN

By integrating indeterminacy into the membership utilities, the
IT2 fuzzy PI controller [27] extends the capabilities of the con-
ventional fuzzy PI controller. It allows for more robust control
by considering the indeterminacy in the system and adjusting
the control action accordingly, leading to improved adaptability.

Indeterminacy is inherent in battery systems due to variations
in parameters and operating conditions. The IT2 fuzzy PI con-
troller addresses this uncertainty through interval arithmetic or
alpha cuts. Interval arithmetic considers the range of possible
values for fuzzy membership degrees, while alpha cuts provide
a more precise representation of uncertainty.

The TSK (Takagi Sugeno Kang) model [28, 29] is a fuzzy
rule-based approach utilized for modeling and control systems
with a large number of variables. V2G Battery charging station
using various techniques [30, 31], fuzzy rubrics are employed,
resembling an “IF this happens, THEN do that” structure. In-
stead of fuzzy consequents, the TSK model is distinguished by
functional-type consequents. Despite utilizing a concise set of
rules, the TSK (Takagi Sugeno Kang) model excels in accurately
capturing intricate nonlinear systems. In contrast to the Mam-
dani fuzzy model, the TSK model provides enhanced versatility
when representing complex relationships.

TSK fuzzy rules are specified as

Rule𝑖 : if 𝑟1 is 𝑠𝑖1 and 𝑟2 is 𝑠𝑖2 and 𝑟𝑘 is 𝑠𝑖𝑘

Then fun𝑖 (𝑟1, 𝑟2, . . . 𝑟𝑘), where 𝑖 = 1,2, . . . , 𝑛
or

Rule𝑖 : if 𝑟𝑖 is 𝑠𝑖 Then fun𝑖 (𝑟), 𝑖 = 1,2, . . . , 𝑛,

where
fun1 fun2 . . . fun𝑛 are functions,

𝑟1, 𝑟2, . . . , 𝑟𝑛 are input variables,
𝑠𝑖1, 𝑠𝑖2, . . . , 𝑠𝑖𝑛 are designated fuzzy sets across
input regions 𝑟1, 𝑟2, . . . , 𝑟𝑛.

The rules are aggregated to obtain a unified function

Rule(𝑟) =
𝑠1 (𝑟)fun1 (𝑟) + 𝑠2 (𝑟) fun2 (𝑟) + . . . 𝑠𝑛 (𝑟) fun𝑛 (𝑟)

𝑠1 (𝑟) + 𝑠2 (𝑟) + . . . 𝑠𝑛 (𝑟)
. (20)

IT2 fuzzy sets have membership values ranging from 0 to 1. To
represent IT2-FLS and manage suspicions in the instruction, the
third aspect of type-2 fuzzy sets is bounded by the constraints
of whichever 0 or 1. IT2-FLS incorporates an additional form-
lessening procedure. The functional diagram of the IT2-FLS
arrangement is prearranged in Fig. 4.

Fig. 4. Functional diagram of an interval type 2 fuzzy logic diagram

The IT2-FLS toolbox [28] incorporates the TSK kind for
intuitive operations, catering to all stages of control design. It
is designed as an extension of the viable Fuzzy Logic Toolbox
accessible in MATLAB, with the addition of new functions
specifically tailored for the type reduction (TR) procedure. The
structure of the IT2-FLS toolbox is denoted by the file extension
‘*.it2fis’.

5.1. Type 2 fuzzy rubrics and membership utilities

The IT2 fuzzy PI control structure based on the TSK model
utilizes a rule matrix derived from knowledge, incorporating
ten membership functions. Out of ten, five membership func-
tions for error (charging): Slow Charging, Moderate Charging,
Fast Charging, Rapid Charging, Peak Charging, and other five
membership functions for change (discharging): Slow Discharg-
ing, Moderate Discharging, Fast Discharging, Rapid Discharg-
ing, and Peak Discharging. The output membership functions
are Upsurge, Diminution, and Retain. Membership functions in
type 2 fuzzy logic are outlined by a lower membership func-
tion (LMF) and an upper membership function (UMF), which
together form the path of uncertainty (POU).

The type 2 trapezoidal membership functions are used to
leverage suspicions. The error input spans a range of −15 to 50,
the derivative of error varies from −7.5 to 25, and the regulator
yield extends from −25 to 50. The K_p, K_i, K_a, and K_b
are the effort and yield ascending aspects, respectively. The
IT2-FLS structure is elevated with 𝑁 = 25 rules delivered in
Table 4. The enhanced Karnik Mendel (EKM) procedure is
employed as the technique for type lessening and defuzzification
in this context. The parameter values for scaling in IT2 fuzzy
PID are set as K_p = 150, K_i = 15, K_a = 0.2, and K

¯
= 10

toward examining the effect of the type lessening tactic on the
controller’s accomplishment.
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The structure of the interval type 2 fuzzy PI-controlled state
space model of the battery package is exposed in Fig. 5. The
membership functions of error (charging) and change (discharg-

ing) are depicted in Figs. 6 and 7, respectively, using type-2
trapezoidal shapes. Table 4 displays the fuzzy rule matrix for
the interval type 2 fuzzy PI controller.

Table 4
Fuzzy rule matrix for IT2 fuzzy PI controller

Error (charging)\
Change (discharging)

Slow
discharging

Moderate
discharging

Fast
discharging

Rapid
discharging

Peak
discharging

Slow charging Retain Diminution Diminution Diminution Diminution

Moderate charging Upsurge Retain Diminution Diminution Diminution

Fast charging Upsurge Upsurge Retain Diminution Diminution

Rapid charging Upsurge Upsurge Upsurge Retain Decrease

Peak charging Upsurge Upsurge Upsurge Upsurge Retain

Fig. 5. Interval type 2 fuzzy PI control structure

Fig. 6. The membership function representing the error (charging) utilizes a trapezoidal shape

Fig. 7. The membership function representing the change in error (discharging) employs a trapezoidal shape
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6. IMPLEMENTATION OF IT2 FUZZY PI-BASED BATTERY
CONTROLLER FOR BATTERY MANAGEMENT SYSTEM
IN BEUVS OPERATING IN INDOOR LOGISTICS
ENVIRONMENT

An evaluation of the effectiveness of the interval type 2 fuzzy PI
(IT2FPI) centered battery controller for battery utility electric
vehicles (BEUVs) in an indoor logistics environment is con-
ducted through simulation using SIMULINK, as depicted in
Fig. 8, within the battery management system (BMS). The im-
itation model encompasses a battery model that captures the
battery dynamic behavior, an indoor logistics environment with
servo and regulatory conditions, and the IT2FPI battery regula-
tor that syndicates interval type 2 fuzzy logic and PI mechanism.
The simulation process includes battery initialization, indoor lo-
gistics environment simulation, computation of the SOC error
amid the anticipated and real values, utilization of fuzzy logic
control to determine the appropriate control action, adjustment
of charging and discharging currents using the PI control algo-
rithm, and subsequent update of the battery.

7. SIMULATION RESULTS AND DISCUSSIONS

This section aims to compare the recital of three different con-
trollers: proportional-integral (PI), fuzzy PI, and interval type
2 fuzzy PI, in the context of battery management intended for
BEU vehicles operating in indoor logistics environments. The
objective was to evaluate their effectiveness in regulating the
battery charging and discharging processes, with a particu-
lar emphasis on their servo and regulatory responses. To as-
sess the performance of the controllers, several key metrics
were considered, including the battery state of charge (SoC)
and the integral of error, which reflects the cumulative error
between the desired setpoint and the actual response. These
metrics provide insights into the controllers’ ability to track
set points and maintain stable battery operation accurately. To
meet the 24V requirement for the battery electric utility vehicle
(BEUV), eight LiFePO4 cells are connected in series, result-
ing in a total voltage of 25.6 volts. For effective charging, the
typical voltage range is between 30.4V to 31.2V, ensuring that
each cell receives sufficient voltage without the risk of over-

Fig. 8. Simulink model of implementing battery management system (BMS) in battery electric utility vehicle

Fig. 9. Comparative servo response of three battery controllers including SoC and integral of error
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Fig. 10. Regulator response of IT2 fuzzy PI-based battery control including SoC and integral of error

charging. In steady-state conditions, the servo response of the
interval type 2 fuzzy PI-enhanced battery controller in a battery
management system achieves 31.36V, the fuzzy PI controller
reaches 30.95V, and the PI controller attains 30.71V. Based on
these values, the interval type 2 fuzzy PI-enhanced battery con-
troller demonstrates superiority in maintaining optimal charging
voltage.

The simulation results unequivocally indicated the superior
recital of the interval type 2 fuzzy PI over both the PI and
fuzzy PI controllers, as evidenced by its remarkable servo and
regulatory responses. Figure 9 presented a comprehensive com-
parison of the responses from all three controllers, allowing for
a direct visual assessment of their performance. In terms of
servo response, which measures how quickly and accurately the
controllers respond to changes in set points, the IT2 Fuzzy PI
controller exhibited superior performance. It effectively tracked
the desired set points, minimizing overshoot and settling time,
and achieving faster and more precise responses compared to
the other two controllers.

Furthermore, in terms of regulatory response shown in
Fig. 10, which evaluates how well the controllers maintain the
system within desired operational limits, the IT2 fuzzy PI con-

troller again outperformed the other regulators. It demonstrated
robust control, effectively minimizing deviations from the de-
sired setpoints and maintaining stable battery operation over
time.

Figures 9 and 10 also included the responses of the battery
state of charge (SoC) and the integral of error for each con-
troller. The IT2 fuzzy PI controller consistently maintained the
SoC close to the desired setpoint, with minimal fluctuations and
deviations. Additionally, it exhibited the lowest integral of er-
ror, indicating better overall control performance and reduced
cumulative error.

These simulation results and discussions confirm that the IT2
fuzzy PI controller offers significant advantages in battery man-
agement for electric vehicles in indoor logistics environments.
Its superior performance in both servo and regulatory responses
demonstrates its effectiveness in accurately regulating the bat-
tery charging and discharging processes and maintaining stable
battery operation.

Figure 11 represents the speed response of the BEU vehicles
operating in an indoor logistics environment using an interval
type 2 fuzzy PI-enhanced battery controller in a battery man-
agement system.

Fig. 11. Speed response of the battery utility electric vehicles operating in indoor logistics environment
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8. CONCLUSIONS AND FUTURE SCOPE

In conclusion, the interval type 2 fuzzy PI-enhanced state space
model presented in this work delivers an inclusive and effective
approach for battery management in BEU vehicles operating
in indoor logistics environments. By integrating interval type
2 fuzzy logic with the PI and state space modeling, the pro-
posed model offers enhanced control performance, robustness
to uncertainties, and accurate estimation of battery state vari-
ables. The model addresses the challenges of nonlinearities, un-
certainties, and disturbances commonly encountered in battery
systems. The outcomes of the simulation illustrate the model ca-
pacity to enhance battery charging and discharging processes,
optimize energy efficiency, and ensure the long-term durability
of the battery pack. Furthermore, the model contributes to the
development of sustainable transportation practices by promot-
ing efficient battery management and reducing the environmen-
tal impact of electric vehicles. Imminent exploration can em-
phasize the practical implementation besides validation of the
model in real-world scenarios, as well as exploring advanced op-
timization techniques and adaptive control strategies. Overall,
the interval type 2 fuzzy PI-enhanced state space model holds
great promise for advancing battery management systems and
optimizing the performance of battery electric utility vehicles
in indoor logistics environments. In the future, the cyber-related
issues while charging the EVs will give better opportunities for
designing charging stations in a good way.
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