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Abstract. Odor source location technology has important application value in environmental monitoring, safety emergency and search and rescue
operations. For example, it can be used in post-disaster search and rescue, detection of hazardous gas leakage, and fire source detection. Existing
odor source location methods have problems such as low search efficiency, inability to adapt to complex environments, and inaccurate odor source
location. In this study, based on unmanned aerial vehicle technology and using swarm intelligence optimization algorithm, an improved artificial
fish swarm algorithm (IAFSA) is proposed by combining curiosity in psychology on the basis of retaining the good optimization performance of
the artificial fish swarm algorithm. The algorithm quantifies the curiosity of artificial fish searching high-concentration areas through a model,
dynamically adjusts the artificial fish field of vision and step length with the calculated curiosity factor, and avoids the oscillation phenomenon
in the later stage of the algorithm. Simulation results show that the IAFSA has a higher success rate and smaller location error. Finally, odor
source location experiments were carried out in an indoor physical environment, the feasibility of the odor source location method proposed in
this study is verified in actual scenarios.
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1. INTRODUCTION

Odor source location technology is a technique used to deter-
mine the location of a gas leak or odor source. With this technol-
ogy, it is possible to track and locate odor sources within a spatial
range, enabling rapid response and management of issues such
as hazardous gas leaks, air quality problems, and environmental
monitoring. Traditionally, odor source location mainly relies on
biological olfaction, which has significant limitations and insta-
bility. To address this issue, scientists have begun researching
and developing odor source location methods based on sensor
and data processing technologies to accurately detect and locate
odor sources. With the continuous advancement of sensor tech-
nology and data processing algorithms, odor source location
technology has made significant improvements. Modern odor
source location technology uses various gas sensors to perceive
the concentration of the target gas, and collects relevant envi-
ronmental parameters such as wind direction and speed. These
data are input into algorithms to infer the location of the odor
source through model calculation.

In odor source location technology, common methods include
biological detection [1], fixed monitoring network [2, 3] and
active location [4–7]. Biological detection method means that
full-time personnel bring professional equipment to the scene
of the accident to search, or use professionally trained creatures
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to locate the source of the scene, this method has a long train-
ing period, low efficiency, and high risk. The fixed monitoring
network method refers to the use of a large number of sensors
to form a fixed monitoring network, and the odor source is lo-
cated by monitoring the changes in the gas concentration value
of each sensor node in the network. This method needs to de-
ploy a monitoring network in the fixed area in advance when
locating the odor source, and the monitoring range is limited
by the cost. The active location method is an approach to de-
tect, track, and locate odor sources by employing mobile robots
equipped with sensor devices. This method simulates the olfac-
tory location ability of certain animals, such as mosquitoes [8]
and male moths [9], which can perform behaviors such as for-
aging, mating, and repelling predators by tracking the direction
and location of odor sources. Compared with the biological de-
tection method and the fixed monitoring network method, the
active location method has great advantages in location accu-
racy, real-time capability, computational efficiency, adaptability
and scalability.

Classified according to the number of robots, the current ac-
tive odor source location methods include single-robot odor
source location method and multi-robot odor source location
method. Single-robot odor source location methods mainly in-
clude chemical tropism, wind tropism, information tropism, vi-
sual assistance, model and estimation based methods, etc. The
existing achievements include E. coli algorithm [10], Zigzag
algorithm [11], plume center upwind algorithm [12], informa-
tion trend algorithm [13], adaptive mission planner (AMP) al-
gorithm [14], bi-modal search algorithm, Kernel DM+V algo-
rithm [15], etc. The advantages of the single-robot odor source
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location method are low cost and easy implementation, but its
small search range and weak robustness make it difficult to
apply to practical problems. Compared with the single-robot
odor source location method, the multi-robot odor source loca-
tion method needs to rely on the cooperation and information
sharing between multiple robots, and related methods include
swarm intelligence based method, formation based method, evo-
lution based method and so on. Existing achievements include
pollution-driven UAV control (PdUC) algorithm [16], explo-
rative particle swarm optimization (EPSO) algorithm [17], im-
proved ant colony optimization (IACO) algorithm [18], flux
trend algorithm [19, 20], evolutionary gradient search algo-
rithm [21], etc. The multi-robot odor source location method
has the characteristics of large search range and strong robust-
ness. The search ability, perception ability and anti-interference
ability of multi-robot are much higher than that of single-robot.

In the existing achievements, most of the research is to use
ground mobile robots to find the odor source, but they are easily
limited by complex terrain environments, including obstacles,
slopes, stairs, etc. The more complex the terrain environment
is, the more factors the robot considers when moving, the more
difficult the path planning is, and the efficiency of odor source
location will also be reduced. Unmanned aerial vehicle (UAV)
has the ability to move in the vertical direction, and flying in
the air can avoid the influence of most terrain environments.
Compared with ground mobile robots, UAV is more competent
to locate odor source in complex terrain environment.

Artificial fish swarm algorithm (AFSA) [22] is mainly in-
spired by the predatory prey behavior of fish in nature. In nature,
the location with the largest number of fish in a certain water en-
vironment is often the place with the most food in the water. The
fish will spontaneously gather towards the food-rich location. At
the same time, the larger the swarm, the more companions will
be attracted. The algorithm imitates the biological characteris-
tics of fish when searching for food, including foraging behavior,
random behavior, flocking behavior and tail-chasing behavior.
Through the imitation of these behaviors, it can perceive the
information in the area to be searched, so as to realize optimiza-
tion.

The odor source location problem of harmful gases is closely
related to human life and property safety. As a swarm intelli-
gence algorithm with high search efficiency and strong global
search capability, AFSA can significantly reduce the compu-
tational cost of odor source location if applied in this field.
However, the AFSA itself is susceptible to parameter influence
and prone to oscillation in the later stage of the algorithm. To ad-
dress this issue, based on UAV technology and AFSA, this study
introduces curiosity in psychology and proposes a multi-UAV
odor source location method based on improved artificial fish
swarm algorithm (IAFSA). This method quantifies the curiosity
of artificial fish in searching high-concentration areas through
a model. By dynamically adjusting the field of vision and step
length of the artificial fish based on the calculated curiosity fac-
tor, it effectively avoids the oscillation phenomenon in the later
stage of the algorithm. Moreover, this approach can maintain a
high success rate and a small location error in the odor source
location task.

2. IMPROVED ARTIFICIAL FISH SWARM ALGORITHM
BASED ON CURIOSITY

2.1. Traditional artificial fish swarm algorithm

2.1.1. Structure model of artificial fish

The optimization idea of the AFSA is bottom-up. First, the in-
dividual in the fish swarm is abstracted to construct a structure
model of the artificial fish, and then the individual is expanded to
the group, and obtained global optimal result from the free inter-
action between the groups. The structure model of the artificial
fish is shown in Fig. 1.

Fig. 1. Artificial fish structure model

The visual field of the artificial fish is visual, representing the
maximum perception distance of the artificial fish in the search
area; step is the step length of the artificial fish, representing
the maximum distance the artificial fish moves each time; 𝑋1
represents the current position of an artificial fish, 𝑋2, 𝑋3 and 𝑋4
represent the positions of the artificial fish partners; 𝑋𝑣 repre-
sents the position selected by the artificial fish in the visual field.
When the food concentration at the position of 𝑋𝑣 is greater than
the food concentration at the position of 𝑋1, the artificial fish
swims in the direction of 𝑋𝑣 and reaches the position of 𝑋next,
otherwise, the artificial fish will continue to perceive the food
concentration information of other positions in the field of vi-
sion. With the increase in perception times, the artificial fish
will have a more comprehensive cognition of the information in
the field of vision.

2.1.2. Basic behaviors of artificial fish

Artificial fish has four basic behaviors, random behavior, forag-
ing behavior, clustering behavior and tail-chasing behavior. The
artificial fish will evaluate according to its own environment and
choose the best behavior for its next state. The specific behaviors
are described as follows:

Random behavior is a supplementary behavior of foraging
behavior. The implementation is relatively simple, that is, ran-
domly select a direction to move in the field of vision. The
expression is as follows:

𝑋next = 𝑋𝑖 + step ·Rand. (1)
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In equation (1), 𝑋𝑖 represents the current position of artificial
fish 𝑖; 𝑋next represents the moved position of artificial fish 𝑖; step
represents the maximum moving step length of artificial fish;
Rand represents a random number in the interval [0,1].

The foraging behavior simulates the behavior of fish shoals
to obtain the food they need for survival in the natural environ-
ment. The artificial fish selects the moving direction by sensing
the food concentration information in the field of vision, and
gradually approaches the food source. The expression is as fol-
lows:

𝑋 𝑗 = 𝑋𝑖 + visual ·Rand, (2)

𝑋next = 𝑋𝑖 +
𝑋 𝑗 − 𝑋𝑖𝑋 𝑗 − 𝑋𝑖

 · step ·Rand, (3)

𝑋next = 𝑋𝑖 + step ·Rand. (4)

In the equations, 𝑋 𝑗 represents the randomly selected position
of the artificial fish 𝑖 in the field of vision; visual represents the
field of vision of the artificial fish.

In the foraging behavior, the artificial fish 𝑖 randomly selects
a position 𝑋 𝑗 within the visual field, obtains the food concen-
tration 𝑌 𝑗 at the position 𝑋 𝑗 , and compares it with the food
concentration 𝑌𝑖 at the position 𝑋𝑖 , when 𝑌 𝑗 is greater than 𝑌𝑖 ,
the artificial fish will move in the direction of the position 𝑋 𝑗 ,
and the position information of the artificial fish is updated ac-
cording to equation (3). Otherwise, the artificial fish continues
to search within the field of vision. When the search reaches
try_number times, the position with higher food concentration
is still not found. The artificial fish will perform random behav-
ior, and the position information on the artificial fish is updated
according to equation (4).

In nature, clustering is a common behavior of fish. Due to the
needs of hunting food and defending against natural enemies,
fish tend to spontaneously form clusters. The clustering behav-
ior in the AFSA imitates this habit of fish. The expression of
clustering behavior is as follows:

𝑋next = 𝑋𝑖 +
𝑋𝑐 − 𝑋𝑖

∥𝑋𝑐 − 𝑋𝑖 ∥
· step ·Rand. (5)

In equation (5), 𝑋𝑐 represents the center position of the fish
swarm within the field of vision of the artificial fish 𝑖.

When the artificial fish performs clustering behavior, it will
first determine the number of partners 𝑁 in the field of vision
and the center position 𝑋𝑐 of the fish swarm, and then judge
whether the center of the fish swarm meets the two conditions
of high food concentration and not overcrowded. When the value
of 𝑌𝑐/𝑁 is greater than 𝛿 ·𝑌𝑖 (𝛿 is the crowding factor), it means
that the condition is satisfied, the artificial fish moves towards
the center position 𝑋𝑐 of the fish swarm, and the position infor-
mation of the artificial fish is updated according to equation (5),
otherwise the artificial fish executes foraging behavior.

The tail-chasing behavior is the behavior that the fish learns
from the optimal individual in the population, which means that
the artificial fish moves towards the position where the food
concentration is the highest among the partners. The expression
of the tail-chasing behavior is as follows:

𝑋next = 𝑋𝑖 +
𝑋𝑏 − 𝑋𝑖

∥𝑋𝑏 − 𝑋𝑖 ∥
· step ·Rand. (6)

In equation (6), 𝑋𝑏 represents the position with the largest food
concentration in the positions of the partners within the visual
field of artificial fish 𝑖.

When the artificial fish performs tail-chasing behavior, it first
determines the position 𝑋𝑏 of the optimal partner in the field of
vision and the food concentration 𝑌𝑏. When the value of 𝑌𝑏/𝑁
is greater than 𝛿 ·𝑌𝑖 , it means that the food concentration at 𝑋𝑏

is high and not overcrowded, the artificial fish moves towards
the 𝑋𝑏 direction, the position information of the artificial fish is
updated according to equation (6), otherwise the artificial fish
performs foraging behavior.

2.1.3. Existing problems

AFSA is an algorithm with high optimization efficiency and
strong global search ability, which is usually used to deal
with complex function optimization problems. In this study,
the AFSA is introduced into the odor source location problem,
and still retains many advantages in numerical solutions. When
using the AFSA to locate the odor source, multiple artificial fish
can be used to search in parallel, which improves the search
efficiency. In addition, the odor source location result is not af-
fected by the initial position of the artificial fish, so the initial
position of the artificial fish can be set randomly. However, the
AFSA still has its shortcomings. Although the AFSA adopts
random field of vision and step length, the value ranges of them
are fixed, and the maximum field of vision and step length are
fixed values. This has an impact on the locating effect of odor
source.

Figure 2a is the traceability route map when setting large field
of vision and step length. It can be seen from the figure that in the
later stage of the odor source location task, the artificial fish are
close to the odor source, but the field of vision and step length
of the artificial fish are still random in a large range. Therefore,
the phenomenon of oscillation occurs. The artificial fish moves
back and forth in the area close to the odor source, and it is
difficult to accurately locate the odor source. Figure 2b is the
change curve in the maximum concentration monitored during
the odor source location process. The figure shows the change of
the maximum concentration value searched by the artificial fish
after each iteration. The wide field of vision and step length are
conducive to improving the efficiency of the traceability task in
the early stage, and can approach the high-concentration area in
a short period of time, but the odor source cannot be accurately
located in the later stage.

When setting small field of vision and step length, the artificial
fish can search for the odor source meticulously and accurately,
but to a certain extent, it increases the time of the odor source
location task and reduces the efficiency. In addition, it is also
easy to cause the artificial fish to fall into a local peak area with
a large range. Figure 3 shows the moving routes of the artificial
fish when searching for the odor source with small field of vision
and step length, the five artificial fish all fall into the local peak
areas and can not jump out of the areas after many attempts.
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(a) Traceability route map

(b) Gas concentration change curve

Fig. 2. Oscillation phenomenon

Fig. 3. Artificial fish fall into local peak areas

2.2. Improved artificial fish swarm algorithm based on
curiosity

Aiming at the problems existing in the application of AFSA to
odor source location, this study proposes an AFSA incorporat-
ing curiosity. Curiosity is a psychological concept that expresses
the psychological tendency of humans or other creatures to en-
counter novel things or enter a new environment. Curiosity is

also the key motivation for individuals to conduct exploratory
behaviors such as searching, investigating and learning. Inspired
by this, this study based on the AFSA to construct the artificial
fish with curiosity. The artificial fish search time, the number of
partners in the field of vision and the food concentration value
are used as indicators to measure the artificial fish curiosity, and
dynamically adjusts the field of vision and step length of the
artificial fish with the calculated curiosity factor to avoid the
algorithm defects caused by the fixed value of the maximum
field of vision and step length. Artificial fish with strong curios-
ity have a stronger desire to search for areas with higher food
concentration, and their search ranges are larger. On the other
hand, artificial fish with weak curiosity have a lower desire to
search for areas with higher food concentration, prefer to stay in
familiar areas, so their search ranges are smaller.

The artificial fish search time, the number of partners in the
field of vision, and the food concentration are the indicators
that affect the artificial fish curiosity. The curiosity factor of the
artificial fish can be calculated from these three parameters. The
value range of the curiosity factor is the interval [0, 1], and its
value represents the curiosity of the artificial fish. The larger
the value, the stronger the curiosity. Finally, the visual field and
step length of the artificial fish are dynamically adjusted by the
curiosity factor.

Equations for updating the visual field and step length of
artificial fish:

𝑠𝑡𝑒𝑝 = 𝑠𝑡𝑒𝑝×𝛼, (7)
𝑣𝑖𝑠𝑢𝑎𝑙 = 𝑣𝑖𝑠𝑢𝑎𝑙 ×𝛼. (8)

In the equations, step is the step length; visual is the field of
vision; 𝛼 is the curiosity factor of artificial fish.

Equations for calculating the curiosity factor of artificial fish:

𝛼 = 0.5×
(
1− 𝑖𝑡𝑒𝑟

max_𝑖𝑡𝑒𝑟

) 1
4

+0.25× 𝑁

𝑁max −1

+ 0.25×
(
𝑌max −𝑌𝑖
𝑌max −𝑌min

)2
.

In equation (9), iter is the number of operation iterations;
max_iter is the maximum number of iterations; 𝑁 is the number
of partners in the field of vision; 𝑁max is the total number of
artificial fish;𝑌max is the maximum concentration value found in
the fish swarm; 𝑌min is the minimum concentration value found
in the fish swarm; 𝑌𝑖 is the concentration value at the current
position of artificial fish 𝑖.

The iteration times iter can represent the search time of the
artificial fish. The larger the iter, the longer the artificial fish will
search for food. A long search time will cause the artificial fish to
be tired. The more tired the artificial fish are, the more they want
to stay where they are, and the curiosity to search for areas with
higher food concentration will be reduced; when the number 𝑁
of artificial fish in the field of vision is larger, it means that the
current area is being searched by multiple artificial fish, so the
unknown information in the current area is gradually decreasing,
and it is an important factor affecting curiosity. In nature, people
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and other animals usually have great curiosity about unknown
and novel things. Therefore, the larger the number 𝑁 of artificial
fish in the field of vision, the stronger the curiosity of artificial
fish to search the unknown area outside the current area; 𝑌max
represents the food concentration information obtained by the
optimal artificial fish in the population, and 𝑌𝑖 is the food con-
centration at the current location of artificial fish 𝑖. When the
difference between artificial fish 𝑖 and the optimal artificial fish
in the population is greater, the artificial fish 𝑖 is more curious
to search for areas with higher food concentration.

Figure 4 is the numerical change curve of the curiosity fac-
tor 𝛼 under the control of a single parameter change, where,
the value of iteration number iter is an integer in the interval
[0,max_𝑖𝑡𝑒𝑟]; the value of the number 𝑁 of partners in the field
of vision is an integer in the interval [0, 𝑁max−1]; the concen-
tration value 𝑌𝑖 of the current location point is in the interval
[𝑌min, 𝑌max]. When the value of parameter 𝑁 is 0, the value of
parameter𝑌𝑖 is𝑌max, the value of parameter iter increases from 0
to max_𝑖𝑡𝑒𝑟 , the value of 𝑖𝑡𝑒𝑟/max_𝑖𝑡𝑒𝑟 will increase from 0 to
1, and the value of curiosity factor 𝛼 will decrease from 0.5 to 0,
the curiosity factor 𝛼 will decrease with the increase of iteration
number iter, and the larger the iteration number iter, the faster
the curiosity factor𝛼 decreases; when the value of parameter iter
is 0, the value of parameter𝑌𝑖 is𝑌max, and the value of parameter
𝑁 increases from 0 to 𝑁max −1, the value of 𝑁/(𝑁max −1) will
increase from 0 to 1, and the value of the curiosity factor 𝛼 will
increase from 0 to 0.25, the curiosity factor 𝛼 will increase with
the increase of the number 𝑁 of partners in the field of vision;
when the value of parameter iter is 0, the value of parameter 𝑁
is 0, and the value of parameter 𝑌𝑖 increases from 𝑌min to 𝑌max,
the value of (𝑌max −𝑌𝑖)/(𝑌max −𝑌min) will decrease from 1 to 0,
the value of curiosity factor 𝛼 will decrease from 0.25 to 0, and
the value of curiosity factor 𝛼 will decrease with the increase of
the concentration value 𝑌𝑖 of the current location point.

Fig. 4. Curiosity factor 𝛼 numerical variation curve

In the IAFSA, larger field of vision and step length can be
set at the beginning, so as to improve the efficiency of artificial
fish to search for the odor source, and in the later stage of the
odor source location task, the field of vision and step length of
the artificial fish can be significantly reduced by the regulation

of curiosity factor to avoid the occurrence of oscillation. When
the artificial fish falls into the local optimal solution, the field of
vision and step length can also be appropriately increased by the
regulation of curiosity factor, so as to improve the probability
of the artificial fish jumping out of the local high concentration
area.

2.3. The procedural steps of the algorithm

The flow of AFSA incorporating curiosity is shown in Fig. 5.

Fig. 5. Flow chart of AFSA incorporating curiosity

The main steps of the AFSA incorporating curiosity are as
follows:
Step 1: Initialize the UAV swarm, including setting parameters
such as the initial position of the UAVs, the congestion degree 𝛿
and the maximum search times try_number;
Step 2: Obtain the odor concentration at the location of each
UAV, and record the optimal individual and the worst individual;
Step 3: Calculate the curiosity factor of the UAV according to
equation (9), and update the field of vision and step length of
the UAV according to equation (7) and equation (8);
Step 4: Evaluate the operation status of the UAV, and obtain the
position information 𝑋swarm, 𝑋follow and the odor concentration
𝑌swarm, 𝑌follow after the UAV performs clustering behavior and
tail-chasing behavior;
Step 5: Select the behavior to be performed by the artificial fish
based on the odor concentration 𝑌swarm and 𝑌follow, and update
its position information;
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Step 6: Determine whether the number of iterations of the al-
gorithm has reached the upper limit. If not, execute the step 2.
If yes, output coordinates of the odor source.

3. SIMULATION EXPERIMENT

3.1. Simulation experiment environment

In this study, the ANSYS Workbench software and computa-
tional fluid dynamics (CFD) model [23] were used to build the
indoor diffusion simulation experiment environment of smoke
plume, which is called CFD simulation concentration field for
short. Figure 6 shows the gas concentration distribution on the
𝑍 = 2.5 m plane in the simulation concentration field. The gas
is distributed on a plane with a length of 20 m and a width of
12 m. The coordinates of the odor source are (2, 6.5), and the
maximum gas concentration is 16.63 mg/m3.

Fig. 6. CFD simulation concentration field

3.2. Performance evaluation index

In this study, the success rate, location error and operation time
are selected to evaluate the performance of the multi-UAV odor
source location method based on the IAFSA. The success rate
refers to the ratio of the number of times the UAV successfully
locates the odor source to the total number of experiments in a
group of experiments; the location error refers to the distance
between the odor source position located by the UAV and the
actual odor source position in the simulation experiment, which
means the accuracy of locating the odor source; the operation
time refers to the average operation time of the simulation ex-
periment that successfully locates the odor source.

3.3. Results and analysis

3.3.1. Influence of the number of UAV on odor source
location

Setting up different numbers of UAVs for experiments in the CFD
simulation concentration field and controlling the same initial
positions of the same number of UAVs. Each group of simulation
experiments was conducted 200 times, and the performance of
the odor source location method proposed in this study was

analyzed through the experimental results. The results of the
simulation experiment are shown in Fig. 7.

Figure 7a shows the change curve of the success rate of the
simulation experiment results. It can be seen from the figure
that when the number of UAV is 1, the success rate of locating
the odor source using the three algorithms is similar, and the
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success rate of using a single UAV to search for the odor source
is less than 30%. However, with the increase in the number of
UAV, the success rate of locating the odor source also gradually
increases, and the success rate of using the IAFSA to locate the
odor source is significantly higher than the AFSA and particle
swarm optimization (PSO). When the number of UAV is 4,
the success rate of using the IAFSA to locate the odor source
reaches 100%, when using the AFSA and PSO to locate the odor
source, the success rate can reach 100% when the number of
UAV reaches 7 and 8 respectively. This indicates that the IAFSA
has a higher success rate in locating the odor source.

The IAFSA not only improves the success rate, but also en-
sures the accuracy of locating the odor source. It can be seen
from Fig. 7b that the location error of the IAFSA is smaller than
that of the AFSA and PSO as a whole. When the number of
UAV is greater than 4, the location error is kept within 0.1 m.
Figure 7c shows the change in the operation time required to
locate the odor source with the increase in the number of UAV.
The operation time required by the three algorithms to locate
the odor source is on the rise as a whole. When the numbers
of UAV are the same, the operation time required to locate the
odor source by the IAFSA is lower than the AFSA and PSO,
which proves that the IAFSA can locate the odor source faster.
By analyzing the experimental results in the CFD simulation
concentration field, it can be concluded that the improvement of
the AFSA in this study is effective, and the IAFSA can achieve
better results in locating the odor source.

3.3.2. Influence of UAV’s initial position on odor source
location

Five UAVs were set up for experiments with different initial
positions. The initial coordinates of the UAVs are shown in
Table 1. Each group of simulation experiments was conducted
200 times, and the experimental results are shown in Fig. 8.

Table 1
Initial coordinates of UAVs

Initial positions of UAVs Coordinates/m

Position 1 (15, 8), (10, 8), (18, 5), (12, 2), (11, 11)

Position 2 (16, 8), (11, 8), (19, 5), (13, 2), (12, 11)

Position 3 (17, 8), (12, 8), (18, 5), (14, 2), (13, 11)

Position 4 (14, 8), (9, 8), (17, 5), (11, 2), (10, 11)

Position 5 (13, 8), (8, 8), (16, 5), (10, 2), (9, 11)

Position 6 (15, 9), (10, 9), (18, 6), (12, 3), (11, 12)

Position 7 (15, 7), (10, 7), (18, 4), (12, 1), (11, 10)

Position 8 (15, 6), (10, 6), (18, 3), (12, 5), (11, 9)

Position 9 (13, 6), (8, 6), (16, 3), (10, 2), (9, 9)

As can be seen in Fig. 8a, in terms of success rate, the success
rate of IAFSA is between 91.5% and 100%, the success rate of
AFSA is between 89.5% and 96.5%, the success rate of PSO is
between 86.5% and 93%, the success rate of IAFSA is always

(a) Success rate

(b) Location error
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Fig. 8. Comparison of experimental results of different initial positions
of UAVs

greater than AFSA and PSO. At the same time, it can be seen
from Fig. 8a that the success rate of the three algorithms on odor
source location does not fluctuate significantly, and the different
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initial positions of UAVs have little impact on the success rate
of odor source location. In terms of location error, the location
error of IAFSA is between 0.25 m and 0.55 m, the location
error of AFSA is between 0.36 m and 0.63 m, the location error
of PSO is between 0.52 m and 0.67 m, the location error of
IAFSA is always smaller than the other two algorithms. At the
same time, it can be seen from Fig. 8b that the location error of
the three algorithms on odor source location does not fluctuate
significantly, and the different initial positions of UAVs have little
impact on the location error of odor source location; In terms of
operation time, the operation time of IAFSA is between 6.6 ms
and 9.5 ms, the operation time of AFSA is between 12 ms and
16.5 ms, the operation time of PSO is between 12.7 ms and
14.6 ms, the operation time of IAFSA is always less than the
other two algorithms. At the same time, it can be seen from
Fig. 8c that the operation time of the three algorithms on odor
source location does not fluctuate significantly, and the different
initial positions of UAVs have little impact on the operation time
of odor source location.

From the experimental results, no matter the success rate,
location error or operation time, the experimental results of the
IAFSA are better than the AFSA and PSO. At the same time,
different initial positions have little impact on the results of odor
source location.

3.3.3. Process of simulation experiments on odor source
location

Figure 9 shows the process of five UAVs searching for the odor
source in the CFD simulation concentration field. The UAVs
search for the odor source with a larger field of vision and step
length first, and then after approaching the odor source, the step
length is adaptively changed for searching under the regulation
of the algorithm. And the field of vision and step length are also

(a) Iteration = 5 (b) Iteration = 10

(c) Iteration = 20 (d) Iteration = 40
Fig. 9. Process of odor source location in CFD simulation concentration

field

increased under the regulation of the algorithm for some UAVs
caught in the local peak area, so that they jump out of the local
peak area and continue to join the odor source search task.

4. EXPERIMENT ON ODOR SOURCE LOCATION
IN SMALL INDOOR SPACES

4.1. Indoor experimental environment construction

Considering that dangerous gases such as methane and carbon
monoxide can cause harm to the human body, this study did
not choose to use these dangerous gases for experiment when
constructing the indoor experimental environment, but chose
to use non-toxic, harmless and volatile ethanol to construct an
experimental environment. As shown in Fig. 10a, in order to
facilitate the volatilization and diffusion of ethanol solution in
the room, the ethanol solution with a volume concentration of
75% was loaded into a humidifier in this experiment, so that the
ethanol solution was sprayed in the form of a mist, and a small
fan with low wind speed was used to assist the volatilization
and diffusion of the ethanol solution. As shown in Fig. 10b,
due to the limited range of ethanol gas diffusion, as well as
other factors such as gas sensors and other restrictions, a small
confined space with a length, width and height of 10 m, 10 m
and 3 m was chosen as the experimental site for this study.

(a) Odor source (b) Experimental site
Fig. 10. Indoor experimental environment

4.2. Indoor experiment

The initial placement positions of the UAVs and the odor source
in the indoor experiment are shown in Fig. 11a. The initial
coordinates of the three UAVs are (1,3.3,0), (1,4.4,0) and
(1,5.2,0), respectively, and the coordinates of the odor source
are (9,4.4,0.4). The flight trajectories of the UAVs when search-
ing for the odor source in the indoor experiment are shown
in Fig. 11b, which represents the result of the indoor exper-
iment. According to the search paths in Fig. 11b, each UAV
autonomously searched for the odor source and cooperated with
each other. When searching for the odor source, UAV 3 fell into
the local peak area at a certain moment and hovered around
the pseudo-odor source, and then the field of vision and step
length of UAV 3 gradually increased through the information
sharing among UAVs and the adjustment of the odor source
location method, which improved the possibility of UAV 3 to
jump out of the local peak area. In this experiment, UAV 3 fi-
nally jumped out of the local peak area and successfully located
the odor source. It took a total of 26 seconds for the three UAVs
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to successfully locate the odor source in this experiment, and
the experimental results verified the effectiveness and feasibility
of the odor source location method proposed in this study.

(a) Initial positions of the UAVs

(b) Traceability trajectories of the UAVs

Fig. 11. Indoor experiment

5. CONCLUSIONS

In this study, artificial fish swarm algorithm (AFSA) is applied
to the odor source location problem, and the advantages and
disadvantages of traditional AFSA in odor source location are
analyzed. Combined with the curiosity factor, the field of vi-
sion and step length of artificial fish are dynamically adjusted
through curiosity, and a multi-unmanned aerial vehicle (UAV)
odor source location method based on improved artificial fish
swarm algorithm (IAFSA) is proposed. In the simulation ex-
periment, the effect of the number of UAVs on odor source
location is first analyzed, and it is proved that when the success
rate of odor source location reaches 100%, the number of UAVs
required by the IAFSA is less than that required by the basic
AFSA and particle swarm optimization (PSO), indicating that
the success rate of odor source location by using the IAFSA is
higher. And when the number of UAVs is greater than 4, the
location error of the IAFSA can be kept within 0.1 m. Then,
the effect of the initial positions of the UAVs on the odor source
location is analyzed. According to the experimental results, un-

der the conditions of nine different initial positions of the UAVs,
the success rate of the IAFSA is maintained between 91.5% and
100%, which is always higher than that of the AFSA and PSO,
and the location error of the IAFSA is kept between 0.25 m and
0.55 m. In the indoor traceability experiment, after the UAV fell
into the local peak area, the field of vision and step length of the
UAV were increased to a certain extent through the adjustment
of the IAFSA, so that the UAV jumped out of the local peak area
in a short time, which verifies the feasibility and high efficiency
of the algorithm, and shows that the multi-UAV odor source
location method based on the IAFSA is able to accurately and
efficiently complete the odor source location task.
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