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Abstract. In the paper a new, fractional order, discrete model of a two-dimensional temperature field is addressed. The proposed model 
uses Grünwald-Letnikov definition of the fractional operator. Such a model has not been proposed yet. Elementary properties of the model:
practical stability, accuracy and convergence are analysed. Analytical conditions of stability and convergence are proposed and they allow to 
estimate the orders of the model. Theoretical considerations are validated using exprimental data obtained with the use of a thermal imaging 
camera. Results of analysis supported by experiments point that the proposed model assures good accuracy and convergence for low order and 
relatively short memory length.
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1. INTRODUCTION

Non integer order or Fractional Order (FO) models of different 
physical phenomena have been presented by many Authors 
for years. Fundamental results can be found e.g. in books and 
papers [32], [5], [7] (the heat transfer in an one dimensional 
beam), [4] (u.a. fractional models of chaotic systems and 
Ionic Polymer Metal Composites). FO models of diffusion 
processes are proposed u.a. by [8, 33, 36]. Results using 
new Atangana-Baleanu operator are collected in [9]. This 
paper presents also the use of FO approach to express of 
the FO blood alcohol model, the Christov diffusion equation 
and fractional advection-dispersion equation for groundwater 
transport processes.

Recently FO models are used u.a. to describe a spread of 
diseases. This issue is considered e.g. in the papers given by
[1] (the modeling of the dynamics of COVID using Caputo- 
Fabrizio operator), [16] (the modeling of a transmission of 
Zika virus using Atangana-Baleanu operator).

  The state space FO models of the one dimensional heat 
transfer have been proposed in many previous papers of 
author, e.g. [24, 25, 19, 27, 28, 23, 26, 20]. These models 
used different FO operators: Grünwald-Letnikov, Caputo, 
Caputo-Fabrizio and Atangana-Baleanu as well as discrete 
operators: Continuous Fraction Expansion (CFE) and Frac- 
tional Order Backward Difference (FOBD). Each model has 
been thoroughly theoretically justified and validated using 
experimental results. In addition, each of them assures better 
accuracy in the sense of square cost function than its IO 
analogue.

∗e-mail: kop@agh.edu.pl

The time-continuous, two-dimensional generalization of FO
models mentioned above is proposed in the papers [29, 30]. A
discrete-time, FO model of this class of thermal processes has
no been proposed yet.

Models of temperature fields obtained with the use of ther-
mal cameras are discussed e.g. in papers:[6, 35]. Analytical
solution of a two-dimensional, IO heat transfer equation is
presented in the paper [14]. Numerical solving of partial
differential equations has been discussed in many books
(see e.g. [18]). Fractional Fourier integral operators are
analyzed u.a. by [2]. It is important to note that a significant
part of known investigations deals only with a steady-state
temperature fields with omitting their dynamics.

This paper presents a new, discrete time model of the heat
transfer in the thin, two-dimensional metallic surface. The
model uses the Fractional Order Backward Difference (FOBD)
to describe the fractional operator. Such a model has not been
proposed yet. The model is proposed and analysis of its basic
properties: practical stability, accuracy and convergence is
given. Theoretical considerations are verified by experimental
results.

The organization of the paper is following. Firstly elemen-
tary ideas and definitions from fractional calculus are given.
Next the experimental heat system and its time-continuous
model are recalled. As the main result the discrete model
using FOBD is proposed and its basic properties: practical
stability, accuracy and convergence are discussed. Then
parameters of the model are numerically identified using
data from real experimental system and IAE cost function.
Finally the practical stability, accuracy and convergence of the
identified model are examined.
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2. PRELIMINARIES

A. Basics of fractional calculus.

Theoretical preliminaries of the fractional calculus can be
found in many books, e.g. in the section "Fractional Systems:
Theoretical Foundations" of [15].

The non integer-order, integro-differential operator is de-
fined as follows (see e.g. [5], [12],[13], [15], [32]):

Definition 1 (The elementary non integer order operator) The
non integer-order integro-differential operator is defined as
follows:

aDα
t f (t) =


dα f (t)

dtα α > 0
f (t) α = 0
t∫

a
f (τ)(dτ)α α < 0

. (1)

where a and t denote time limits for operator calculation, α ∈
R denotes the non integer order of the operation. If α ∈ Z,
then the operator (1) turns to classic integer order operator.

The fractional-order, integro-differential operator can be de-
scribed by definitions given by Grünwald and Letnikov, Rie-
mann and Liouville (RL) and Caputo (C). In this paper the C
and GL definitions are employed ( see e.g. [5], [12],[13], [32]),
[31]):

Definition 2 (The Caputo definition of the FO operator)

C
0 Dα

t f (t) =
1

Γ(M−α)

∞∫
0

f (M)(τ)

(t − τ)α+1−M dτ. (2)

where M−1 < α < M is the fractional order of operation and
Γ(..) is the Gamma function.

Definition 3 (The Grünwald-Letnikov definition of the FO op-
erator)

GL
0 Dα

t f (t) = lim
h→0

h−α

[ t
h ]

∑
l=0

(−1)l
(

α

j

)
f (t − lh) (3)

In (3)
(

α

l

)
is a binomial coefficient into real numbers:(
α

l

)
=

{
1, l = 0

α(α−1)...(α−l+1)
l! , l > 0

}
(4)

The GL definition is limit case for h → 0 of fractional order
backward difference, commonly employed to discrete FO cal-
culations:

Definition 4 (The Fractional Order Backward Difference)

(∆α x)(t) =
1

hα

L

∑
l=0

(−1)l
(

α

l

)
x(t − lh) (5)

Denote coefficients (−1)l
(

α

l

)
by dl :

dl = (−1)l
(

α

l

)
(6)

The coefficients (6) can be also calculated with the use of the
following, equivalent recursive formula (see e.g. [4], p. 12 ),
useful in numerical calculations:

d0 = 1

dl =

(
1− 1+α

l

)
dl−1, l = 1, ...,L.

(7)

It is proven in [3] that:
∞

∑
l=1

dl = 1−α. (8)

From (7) and (8) it can be seen at once that:
∞

∑
l=2

dl = 1. (9)

In (5) L denotes a memory length necessary to correct approx-
imation of a non integer order operator. Unfortunately good
accuacy of PSE approximation requires the use of high value
of L what can make difficulties in implementation.

The discrete, fractional order state equation using definition
(5) is written as follows (see for example [17]):{

(∆α
L x)(t +h) = A+x(t)+B+u(t)

y(t) =C+x(t)
(10)

where x(t) ∈ RN is the state vector, u(t) ∈ RP is the control,
y(t) ∈ RM is the output. A+, B+ and C+ are state, control and
output matrices respectively. If we shortly denote k-th time
instant: hk by k, then equation (10) turns to (see e.g. [11]):{

(∆α
L x)(k+1) = A+x(k)+B+u(k)

y(k) =C+x(k)
(11)

where:
A+ = hα A (12)

B+ = hα B (13)

C+ =C (14)

The solution of state equation (11) takes the form:

x(k+1) = P+x(k)−
L

∑
l=2

A+
l x(k− l)+hα B+u(k) (15)

where:
P+ = A++αI (16)

A+
l = dlIN×N (17)

B. The practical stability

An idea of the practical stability needs to be recalled next. It
was proposed by Kaczorek in [10] and it was considered also
in [3], [34]. It associates the stability of discrete FO system
described by state equation (11) to the asymptotic stability of
its approximated solution given by (15).

Definition 5 (The practical stability)
The fractional order system described by (11) is practically
stable if its finite dimensional solution (15) is asymptotically
stable.
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An additional assumption about the positivity of the system
(11) allows to apply the simple practical stability conditions
given by [3], [34].

Here the Theorems 3 and 5 from paper [3] are employed.

Theorem 1 (Necessary and sufficient practical stability con-
dition of positive system (11) for fixed memory length L)
The positive,FO system (11) with order 0 < α < 1 is practi-
cally stable iff the standard positive system:

x(k+1) = (P++
L

∑
l=2

Al)x(k). (18)

is asymptotically stable.

Theorem 2 (Necessary and sufficient practical stability con-
dition of positive system (11)) independently on memory
length)
The positive FO system (11) with order 0 < α < 1 is practi-
cally stable for each memory length L iff the standard positive
system:

x(k+1) = (A++ I)x(k). (19)

is asymptotically stable.

Both above theorems will be used to stability analysis of the
prposed model. This is presented in the next section.

Finally recall the Final Value Thoerem (FVT). It allows to
obtain a steady-state value of a time function described by the
Laplace or the "z" transform. It is given beneath.

Theorem 3 (Final Value Theorem for continuous time) Let
f (t) is a function of time t and F(s) is its Laplace transform.
Assume that F(s):

1. has no poles in the right part of the complex plane,
2. has maximally one pole on the imaginary axis: s = 0.

then:
lim
t→∞

f (t) = lim
s→0

sF(s). (20)

Theorem 4 (Final Value Theorem for discrete time) Let f+(k)
is a discrete function of time, defined in k time moments and
F+(z) is its z-transform. Assume that F+(z):

1. has no poles outside the unit circle,
2. has maximally one pole on the unit circle: z = 1.

then:
lim
k→∞

f+(k) = lim
z→1

(z−1)F+(z). (21)

3. THE CONSIDERED HEATING SYSTEM AND ITS TIME-
CONTINUOUS, FO MODEL

The heating system is shown simplified in the Figure 1. This
is the PCB plate with the flat electric heater, denoted by H.
Its coordinates are described by xh1, xh2, yh1 and yh2 respec-
tively. The temperature of the whole PCB is monitored using
an industrial thermal imaging camera, the location and size of

measurement area are configurable. The size of cameras’s sen-
sor is Xs ×Ys pixels (Xp > Y p). During further considerations
all lengths in the model will be defined relatively with respect
to Xp:

X = 1,

Y =
Xp

Yp
.

(22)

The area of measurement is marked as S and its coordinates
are denoted by xs1, xs2, ys1 and ys2 respectively. More details
about this experimental system are given in the section "Simu-
lations and Experiments". The heater and sensor functions are

Measured

Area

Heater

Y

X

xs1,ys1

xs2,ys2

xh1,yh1

xh2,yh2

(0,0)

Fig. 1. The experimental system.

expressed by the simple rectangular functions:

b(x,y) =

{
1,x,y ∈ H,

0,x,y ̸∈ H.
(23)

c(x,y) =

{
1,x,y ∈ S,
0,x,y ̸∈ S.

(24)

The time-continuous, FO model of the considered sys-
tem is presented with details in the papers [21, 29, 30]. Here
recall its crucial elements, necessary to present of main results.

The FO heat transfer equation takes the following form:

C
0 Dα

t Q(x,y, t) = aw

(
∂ β Q(x,y, t)

∂xβ
+

∂ β Q(x,y, t)
∂yβ

)
−

−RaQ(x,y, t)+b(x,y)u(t),
∂Q(0,y,t)

∂x = 0, t ≥ 0,
∂Q(X ,y,t)

∂x = 0, t ≥ 0,
∂Q(x,0,t)

∂y = 0, t ≥ 0,
∂Q(x,Y,t)

∂y = 0, t ≥ 0,

Q(x,y,0) = Q0,0 ≤ x ≤ X ,0 ≤ y ≤ Y

y(t) = k0
X∫
0

Y∫
0

Q(x,y, t)c(x,y)dxdy.

(25)
In (25) α > 0 and β > 0 denote fractional orders of derivatives
with respect to time and length, aw > 0, Ra ≥ 0 are coefficients
of heat conduction and heat exchange, k0 is a steady-state gain
of the model, b(x,y) and c(x,y) are heater and sensor shaping
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functions, described by (23) and (24).

The heat equation (25) can be expressed as an infinite di-
mensional state equation:{

C
0 Dα

t Q(t) = AQ(t)+Bu(t),
y(t) =CQ(t).

(26)

where:

AQ = aw

(
∂ β Q(x,y)

∂xβ
+

∂ β Q(x,y)
∂yβ

)
−RaQ(x,y),

D(A) = {Q ∈ H2(0,1) : Q′(0) = 0,Q′(X) = 0,Q′(Y ) = 0},
aw,Ra > 0,
CQ(t) =< c,Q(t)>,Bu(t) = bu(t).

(27)

The state vector Q(t) takes the following form:

Q(t) = [q0,0,q0,1,q0,2...,q1,1,q1,2, ...]
T . (28)

The state operator A is as follows:

A = diag{λ0,0,λ0,1,λ0,2, ...,λ1,1,λ1,2, ...,λ2,1,λ2,2...,λm,n, ...}.
(29)

The shape of the heated plant (thin metallic surface) suggests
to assumpt the homogenous Neumann boundary conditions.
Consequently the eigenfunctions and the eigenvalues take the
following form:

wm,n(x,y) =



1, m,n = 0,
2Y
πn cos nπy

Y , m = 0,n = 1,2, ...
2X
πm cos mπx

X , n = 0,m = 1,2, ...
2
π

1(
mβ

Xβ
+ nβ

Y β

) 1
β

cos mπx
X cos nπy

Y , m,n = 1,2, ...

(30)

λm,n =−aw

[
mβ

Xβ
+

nβ

Y β

]
π

β −Ra, m,n = 0,1,2, .. (31)

The main difference to the one dimensional heat transfer
equation is that the eigenvalues (31) can be multiple. The
analysis of existence of multiple eigenvalues is discussed in
the paper [29].

The control operator takes the following form [29]:

B = [b0,0,b0,1, ...,b1,0,b1,1, ...]
T . (32)

where:

bm,n =< H,wm,n >=

X∫
0

Y∫
0

b(x,y)wm,n(x,y)dxdy. (33)

Taking into account (30) we obtain:

bm,n =



(xh2 − xh1)(yh2 − yh1) m,n = 0,
1

hyn
(xh2 − xh1)anhy,

m = 0,n = 1,2,3, ...,
1

hxm
(yh2 − yh1)amhx,

n = 0,m = 1,2,3, ...,
km,n

hxmhyn
amhxanhy

m,n = 1,2,3, ...

(34)

where:

hxm =
mπ

X
,

hyn =
nπ

Y
.

(35)

km,n =
2
π

1
β

√
mβ

Xβ
+ nβ

Y β

. (36)

amhx = (sin(hxmxh2)− sin(hxmxh1)) ,

anhy = (sin(hynyh2)− sin(hynyh1)) .
(37)

The output operator is as beneath [29]:

C = [c0,0,c0,1, ....,c1,0,c1,1, ...]. (38)

where:

cm,n =< S,wm,n >=

X∫
0

Y∫
0

c(x,y)wm,n(x,y)dxdy. (39)

In (39) each element cm,n is expressed analogically, as (34):

cm,n =



(xs2 − xs1)(ys2 − ys1) m,n = 0,
1

hyn
(xs2 − xs1)ansy

m = 0,n = 1,2,3, ...,
1

hxm
(ys2 − ys1)amsx

n = 0,m = 1,2,3, ...,
km,n

hxmhyn
amsxansy

m,n = 1,2,3, ...

(40)

In (40) hxm,yn are expressed by (35) and:

amsx = (sin(hxmxs2)− sin(hxmxs1)) ,

ansy = (sin(hynys2)− sin(hynys1)) .
(41)

The dynamic system expressed by(29)-(39) is infinte-
dimensional. This implies that its explicit form cannot be
employed to modeling and requires to apply of a finite di-
mensional approximation. Such an approximation is obtained
via truncation of further modes of the decomposed model at
M ×N-th place (see [29]). In such a situation the state vec-
tor has the dimension M×N and operators A, B and C turn to
matrices of suitable size. The values of M and N assuring the
satisfactory accuracy of the model can be estimated numeri-
cally or analytically.
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A. The step and impulse responses of the model.

The step response of the model we obtain using spectrum de-
composition property. It takes the following form (see [29]):

y∞(t) =
∞

∑
m=0

∞

∑
n=0

ym,n(t). (42)

where m,n-th mode of response is as follows:

ym,n(t) =
Eα(λm,ntα)−1(t)

λm,n
bm,ncm,n. (43)

In (43) Eα(..) is the one parameter Mittag-Leffler function,
λm,n, bm,n and cm,n are expressed by (31), (33) and (39)
respectively.

During simulations the finite - dimensional sum needs to be
employed:

yMN(t) =
M

∑
m=0

N

∑
n=0

ym,n(t). (44)

The analysis of the external positivity requires to know an
impulse response of a system. It can be computed analogically
as the step response, using the decomposition of the spectrum
of the system.

The impulse response for a single mode of the system (26)-
(39) is as follows:

gm,n(t) = tα−1Eα,α (λm,ntα)bm,ncm,n. (45)

where Eα,α(..) is the two parameter Mittag-Leffler function,
the rest of parameters are the same as in (43).

Consequently the impulse response and its finite dimen-
sional approximation are as beneath:

g∞(t) =
∞

∑
m=0

∞

∑
n=0

gm,n(t). (46)

gMN(t) =
M

∑
m=0

N

∑
n=0

gm,n(t). (47)

where gm,n(t) are the single modes expressed by (45).

An accuracy of both approximated responses (44) and (47)
is determined by the size of model expressed by M and N.
The convergence of the model is discussed in the paper [30]
An accuracy for the one dimensional case was discussed in the
conference presentation [25].

4. MAIN RESULTS

A. The discrete FOBD model of the thermal system

The discrete model is obtained analogically as in the one-
dimensional case (see [23] and [22]). During further consider-
ations the upper index ” + ” denotes the discrete-time system.
The matrices (12) and (13) of the discrete state equation (11)
takes the following form:

A+ = diag{λ
+
0,0, ..,λ

+
m,n},

B+ = hα B,

C+ =C.

(48)

where:
λ
+
m,n = hα

λm,n. (49)

This yields the following form of the matrix (16) in the solution
of discrete state equation (15):

P+ = diag{P+
0,0, ...,P

+
M,N}. (50)

where:
P+

m,n = λ
+
m,n +α. (51)

Consequently the model (26) takes the discrete form (11):{
(∆α

L Q+)(k+1) = A+Q+(k)+B+u+(k),
y+(k) =C+Q+(k).

(52)

The solution of the discrete system (52) takes the form as (15):

Q+(k+1) = P+Q+(k)−
L

∑
l=2

A+
l Q+(k− l)+B+u+(k). (53)

where P+, B+ and A+
l are expressed by (50), (17) and (13)

respectively.

To the analysis of the stability the free solution, starting from
initial condition is more convenient. It is as follows:

Q+(k+1) = P+Q+(k)−
L

∑
l=2

A+
l Q+(k− l). (54)

Next the elementary properties of the model: decomposition
of the system, positivity, stability and convergence need to be
discussed. The fundamental difference to the one-dimensional
system discussed previously is that two orders M and N de-
scribing both spatial coordinates need to be considered.

B. The decomposition of the system
The state vector Q+(k) of the discrete model (15) can be ex-
pressed as:

Q+(k) =

 q+0,0(k)
...

q+M,N(k)

 . (55)

The matrices P+ and A+
l describing the solution of the

discrete system (53) are diagonal matrices. Consequently this
solution can be decomposed into MN independent modes,
associated to m,n-th state variable Q+

m,n(k) and described by
the m,n-th eigenvalue. The multiple of eignevalues, possible
for two-dimensional case does not matter.

The m,n-th mode of free solution for fixed memory length
L takes the form as follows:

q+L
m,n(k+1) = λ

+
m,nq+m,n(k)−

L

∑
l=2

dlq+m,n(k− l),

m = 0, ..,M, n = 0, ..,N.

(56)

The m,n-th mode of the forced response to control signal u+(k)
is as beneath:

y+L
m,n(k) = c+m,n

(
q+L +b+m,nu+(k)

)
, m = 0, ..,M, n = 0, ..,N.

(57)
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With each mode of solution (56) the following characteristic
polynomial wm,n(z−1) is associated:

wL
m,n(z

−1) = 1−λ
+
m,nz−1 +

L

∑
l=2

dlz−l . (58)

Using the forced solution (57) for the m,n-th mode the transfer
function GL

m,n(z
−1) between its input and output can be given:

GL
m,n(z

−1) =
c+m,nb+m,nz−1

1− z−1λ
+
m,n +

L
∑

l=2
dlz−l

m = 1, ..,M, n = 1, ..,N.

(59)
The standard system (18) for the m,n-th mode is as follows:

vL
m,n(k+1) = (P+

m,n +
L

∑
l=2

Al)vL
m,n(k). (60)

For each memory length the free solution takes the following
form:

q+∞
m,n(k+1) = λ

+
m,nq+m,n(k)−

∞

∑
l=2

dlq+m,n(k− l),

m = 0, ..,M, n = 0, ..,N.

(61)

The m,n-th mode of the forced response is as beneath: The
m,n-th mode of the forced response to control signal u+(k) is
as beneath:

y+∞
m,n(k) = c+m,n

(
q+∞ +b+m,nu+(k)

)
, m = 0, ..,M, n = 0, ..,N.

(62)
and analogically the characteristic polynomial, transfer

function and standard system are following:

w∞
m,n(z

−1) = 1−λ
+
m,nz−1 +

∞

∑
l=2

dlz−l (63)

G∞
m,n(z

−1) =
c+m,nb+m,nz−1

1− z−1λ
+
m,n +

∞

∑
l=2

dlz−l
m = 1, ..,M, n = 1, ..,N.

(64)
v∞

m,n(k+1) = (λ+
m,n +1)v∞

m,n(k). (65)

Using (57) or (62) with u+(k) = 1(k) allows to calculate the
step response of the discrete system (52):

y+L,∞(k) =
M

∑
m=0

N

∑
n=0

y+L,∞
m,n (k). (66)

The decomposition the model presented above will be also
applied to analyze of basic properties of model: internal pos-
itivity, practical stability, accuracy and convergence. This is
shown in the next subesections.

C. The Positivity

The brief analysis of the positivity is necessary to apply the
stability conditions formulated by Remarks 1 and 2.

At the beginning it is important to note that the stability is
determined by the behaviour of the state Q+(k) only. An input
and an output of the system, described by the operators B and
C are not required to analyse. It can be at once noted that the

state operator A of the time continuous system (29), (31) is
the Metzler matrix (definition of the Metzler matrix is given
e.g. in [3]). This implies that the time-continuous state of
the system under consideration is positive and asymptotically
stable.

Next the positivity of the system after discretization de-
scribed by (48) and (49) should be tested. To do it the simple
positivity condition given as the Equation (6) in the paper [3]
can be employed. It is as follows:

P+ ∈ R+ (67)

Operator P+ expressed by (50) is diagonal. This implies that
the condition (67) turns to the following form:

∀ m = 0, ..,M, ∀n = 0, ..N P+
m,n > 0. (68)

After application of (49) in (68) we obtain the following con-
dition, possible to numerical tests for given set of parameters:

∀ m = 0, ..,M, ∀n = 0, ..,N :

aw

((mπ

X

)β

+
(nπ

Y

)β
)
<

α

hα
−Ra.

(69)

Parameters presented e.g. in the paper [30] allow to conclude
that the condition (69) should be met in big part of real situa-
tions.

D. The Practical Stability
The time-continuous model of the heat transfer is stable due to
„natural” stability of this process. But wrong values of sample
time h or memory length L can casue the lost of the stability
of a discrete time model. The presented stability analysis
gives guidance to proper selecting of these parameters to avoid
problems with a stability of the proposed model.

The stability conditions for the one-dimensional model
using FOBD have been proposed in the paper [23] and recalled
by the paper [22]. The fundamental result about stability was
that too high order N of the one-dimensional discrete model
can cause its instability.

Here these results need to be adopted to the two-dimensional
case.

Notice that the practical stability or instability for the whole
considered system is determined by the asymptotic stability or
instability of its separated modes (56) or (61). This is described
by the following remarks.

Remark 1 (The practical stability of the discrete, decom-
posed FO system)

The discrete non integer order system (52) will be practically
stable for fixed memory length L iff each mode of its solution
(56) is asymptotically stable.
The discrete non integer order system (52) will be practically
stable for each memory length L if and only if each mode of
its solution (61) is asymptotically stable.
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Remark 2 (The instability of the discrete, decomposed FO
system)

The discrete non integer order system (52) will be instable
for fixed memory length L iff there exists at least one unstable
mode of its solution (56).
The discrete non integer order system (52) will be instable
for each memory length L iff there exists at least one instable
mode of its solution (61).

The practical stability can be explicitly tested using both
above remarks. This requires to examine the localisation of
roots of each characteristic polynomial (58) for m = 1, ..,M,
n = 1, ...,N. The degree of each polynomial is equal L+ 1. It
makes us to use numerical methods only and can be done with
the use of MATLAB. On the other hand it allows to test the
correctness of analytical condition obtained using the standard
systems (60) and (65).

The decompositon of state equation and possibility of
stability testing by investigation of MN seperated, scalar,
internally positive systems allows to formulate analytical
stability conditions. To do it the conditions (18) and (19)
will be employed. In practical application of the proposed
model important is to give the dependence of its stability on
dimensions M, N, memory length L and sample time h. Here
the approach presented in the papers [23] and [22] will be
used. The main complication is caused by two dimensions of
the model: M and N. To avoid it assume that both dimensions
are equal: M = N.

The maximum dimension NL,∞ assuring the stability of the
model is described by the following propositions:

Proposition 1 (The maximum dimension of the model NL for
fixed memory length L)
Consider the discrete model (48)-(54). Assume that it meets
the assumption about internal positivity (69).

The maximum dimension NL of the model for fixed memory
length L assuring its stability is as follows:

NL <
XY
π

(
SH

Xβ +Y β

) 1
β

, (70)

where:

DL =
L

∑
l=2

dl ,

S =
α +DL −hα Ra

hα aw
,

SH = S+
1

hα aw
.

(71)

For each memory length the maximum dimension N∞ is de-
scribed as follows:

Proposition 2 (The maximum dimension of the model N∞ for
each memory length)
Consider the discrete model (48)-(54). Assume that it meets

the assumption about internal positivity (69).

The maximum dimension N∞ of the model for each memory
length assuring its stability is as follows:

N∞ <
XY
π

(
S∞

Xβ +Y β

) 1
β

, (72)

where:

S∞ =
2−hα Ra

hα aw
. (73)

Comparing conditions (70) vs (72) it can be observed that the
second is the limit case for the first one.

E. The Accuracy

The accuracy ε of the proposed discrete model will be ana-
lyzed analogically as in the one dimensional case given in [19],
[22], [26], . It is defined as the difference between steady-state
response of the time-continuous system (25) yss and discrete
system (52) y+ss to the Heaviside function 1(t). For fixed and
each memory length (denoted by ∞) it is expressed as follows:

ε
L,∞ = |yss|− |y+L,∞

ss |. (74)

where upper indices L,∞ denote the fixed and each memory
length respectively.

The steady state response of the time-continuous system is
as follows:

yss =CA−1B. (75)

Where A, B and C there are state, input and output matrices of
the system respectively. With respect to (29), (32) and (38) it
turns to the following form:

yss =
M

∑
m=0

N

∑
n=0

bm,ncm,n

λm,n
. (76)

where λm,n, bm,n and cm,n are expressed by (31), (34) and (40)
respectively.

The steady-state responses for the discrete system can be
computed using Final Value Theorem (21). Using it to (59)
and (64) yields:

y+L
ss =

M

∑
m=0

N

∑
n=0

b+m,nc+m,n

1−λ
+
m,n +DL

. (77)

y+L
ss =

M

∑
m=0

N

∑
n=0

b+m,nc+m,n

2−λ
+
m,n

. (78)

where b+m,n, c+m,n, λ+
m,n and DL are described by (48), (49) and

(71) respectively. It can be observed that:

y+∞
ss = lim

L→∞
y+L

ss . (79)

The accuracy (74) as a function of orders M and N can be es-
timated numerically using (76) and (77) or (78). This is pre-
sented in the next section.
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F. The Convergence
The convergence will be analyzed analogically as in the one
dimensional case [22]. The Rate of Convergence (ROC) is de-
fined as the absolute value of the steady-state response of the
m, n-th mode, expressed as follows:

ROCL
m,n =

∣∣∣∣ b+m,nc+m,n

1−λ
+
m,n +DL

∣∣∣∣ . (80)

ROC∞
m,n =

∣∣∣∣b+m,nc+m,n

2−λ
+
m,n

∣∣∣∣ . (81)

In practice it is important to know minimum orders of model
M, N assuring required value of ROC. Such a condition can
be given for equal both orders: M = N. It is formulated as the
following proposition:

Proposition 3 (The minimum orders M and N assuring the
predefined value of ROC)

Consider the discrete model (48)-(54),

Assume taht both orders of the model are equal: M = N
and required ROC is equal ∆.

The minimum dimension N∆ of the model for fixed memory
length L assuring the predefined ROC = ∆ is given by the fol-
lowing inequality:

N∆ >

(
hα P

∆

) 1
6
, (82)

where:

P =
64(XY )2

π6
(
X−β +Y−β

) 2
β

. (83)

Proof 1 The condition ROC < ∆ is expressed as:∣∣∣∣ b+m,nc+m,n

1−λ
+
m,n +DL

∣∣∣∣< ∆, (84)

With respect to (13), (14), (37) and (41) for M = N > 0 the
expression b+m,nc+m,n can be estimated as follows:

b+m,nc+m,n ≤ 16hα

(
km,n

hxmhyn

)2

, (85)

In further considerations the absolute value |..| can be omitted
due to the estimation (85) and the denominator of (84) are al-
ways positive. The coefficients km,n, hx,m and hy,n are expressed
by (35) and (36). This yields:

P =

(
km,n

hxmhyn

)2

(86)

where P is expressed by (83).

Next recall the form of the eigenvalue λ+
m,n and introduce the

following symbols:

R6 = DL +1+hα Ra,

Rβ = hα awπ
β

(
X−β +Y−β

)
.

(87)

Using (86) and (87) in (84) yields:

hα P
N6(R6 +Rβ Nβ )

< ∆ ⇐⇒

⇐⇒ hα P
∆

< N6(R6 +Rβ Nβ ).

(88)

For real, identified parameters of the model the coefficients
(87) can be estimated as: R6 ≈ 1 and Rβ ≈ 0. This gives:

hα P
N6 < ∆ ⇐⇒ hα P

∆
< N6 ⇐⇒

(
hα P

∆

) 1
6
< N, (89)

The use of N = N∆ in (89) gives directly the condition (82) and
the proof is completed.

The above condition is "cautious" due to use of all proposed
simplifications. It can be applied together with the stability
condition (70) to estimate the range of orders assuring both
practical stability and required convergence of the model. This
will be shown in the next section.

5. SIMULATIONS AND EXPERIMENTS

A. The Construction of the Experimental System
The experimental system is shown in the Figure 2. The size of
the measuring field expressed in pixels are equal: Xp = 380,
Yp = 290. The PCB is heated by the flat electric heater 170x20
pixels, attached in points: xh1 = 100, yh1 = 40. The maximum
power of this heater equals to 10W . The temperature of the
metallic surface is read with the use of thermal camera OP-
TRIS PI 450, connected to computer via USB and installed
dedicated software OPTRIS PI CONNECT. The range of mea-
sured temperature is 0 - 250 0C, the sampling frequency is 80
Hz. The control signal to heater is sent from computer via
NI LabView, NI MyRIO and amplifier. The maximum current
from amplifier equals to 400[mA] and with a voltage of 12V
gives the maximum power 4.8W . The PCB plate is not iso-
lated from the environment. This implies that measurements
are strongly dependent on ambient temperature. The presented
experiments were done in hot summer. During experiments
only basic filtering assured by camera software was sufficient
(see Figure 4). The goal of the experiments was to obtain the

NI myRIO

NI LabView, 

MATLAB

amplifier

camera

heater

plate

Fig. 2. The construction of the experimental system.

step response. The "zero" level denotes the heater switched
off, the "one" level is the full power of the heater. The temper-
ature fields for both states are shown in the Figure 3. This fig-
ure shows also the points of measurement of the step response,
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Table 1. Coordinates of measuring areas (in pixels)

area xs1 ys1 xs2 ys2

1 50 75 52 77

2 200 100 202 102

3 300 200 302 202

4 120 40 250 60

marked as "Area 1-4". Areas 1-3 are located in different places
of the PCB, area 4 describes the mean temperature of the whole
heater. Coordinates of all places of measurement are given in
the Table 1. All step responses are collected in the Figure 4.
During calculations all coordinates x.. and y.. are used in the
relative form according to (22).

Fig. 3. The steady-state temperature fields for non heated (top) and
heated plate (bottom). The temperature strongly depends on ambient
temperature. The colour scale in each case is different.

0 100 200 300 400 500 600 700 800

Time [s]

25

30

35

40

45

50

55

60

65

T
e

m
p

e
ra

tu
re

 [
o
C

]

Heater

Area 1

Area 2

Area 3

Fig. 4. The step responses of temperature in all tested fields.

B. The Identification of the Model

To identify of both orders of the model α , β and its param-
eters describing the heat transfer and exchange: aw and Ra
the known cost function IAE was applied. Its discrete version
takes the following form:

IAE =
1

K f

K f

∑
k=1

∣∣y+(k)− ye(k)
∣∣ . (90)

where y+(k) is the step response of the discrete model (52),
computed using (66), ye(k) is the experimental step response
and K f is the amount of samples.

The parameters of the model were identified via numerical
minimization of this function with the use of MATLAB
function fminsearch. This function was used because the
step responses presented in the Figure 4. are rather smooth.
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Table 2. Identified parameters of the model - area 1

L M,N α β aw Ra IAE

100 3 0.9986 3.1803 0.0017 0.0100 0.0561

100 5 0.9994 2.2933 0.0021 0.0106 0.0716

100 7 0.8188 0.0000 0.0061 0.0156 0.0875

200 3 1.0004 2.9121 0.0024 0.0100 0.0566

200 5 0.9976 2.7013 0.0007 0.0111 0.0838

200 7 (F) 0.9954 2.3994 0.0001 0.0090 0.0396

Table 3. Identified parameters of the model - area 2

L M,N α β aw Ra IAE

100 3 0.9936 2.7149 0.0013 0.0114 0.1123

100 5 0.7392 0.0000 0.0017 0.0155 0.1517

100 7 0.7354 0.0000 0.0007 0.0149 0.1506

200 3 0.8866 1.5793 0.0014 0.0140 0.1223

200 5 (F) 0.8656 1.3517 0.0074 0.0154 0.1023

200 7 0.8290 1.4826 -0.0000 0.0183 0.1313

Table 4. Identified parameters of the model - area 3

L M,N α β aw Ra IAE

100 3 0.9980 2.7340 0.0021 0.0059 0.2110

100 5 (F) 0.9981 0.8586 0.0020 0.0060 0.2085

100 7 0.7029 2.0866 0.0014 0.0056 0.1606

200 3 0.9993 3.0075 0.0018 0.0059 0.2106

200 5 0.9993 0.0011 0.0004 0.0058 0.2151

200 7 0.5750 2.3299 0.0006 0.0374 0.5963

Table 5. Identified parameters of the model - area 4

L M,N α β aw Ra IAE

100 3 0.0823 1.3325 0.0103 0.5895 0.3547

100 5 0.5385 1.7443 0.0019 0.0010 0.2983

100 7 0.5045 1.6037 0.0028 0.0069 0.2974

200 3 0.6873 0.0006 0.0774 0.0301 0.2321

200 5 (F) 0.7789 0.0012 0.0643 0.0216 0.1867

200 7 0.7319 1.8458 0.0023 0.0263 0.2409

Results for all tested areas are given in the tables 2-5.
Comparison of step responses of model vs experiments is
shown in the Figure 5. Step responses presented in this Figure
were computed with the use of data marked by (F) in the tables.

The analysis of tables 2-5 and diagrams 5 allows to conclude
that the quality of the model in the sense of the cost function
(90) is strongly determined by the point of measurement: it is
the best for area 1, and weak for the area 3. Simultaneously,
the good accuracy is obtained for relatively low orders of
model M, N and memory length L.

Interesting observation is the value of the order β for area
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Fig. 5. Step responses of model y+(k) vs experiments for all areas. Pa-
rameters of each model are marked by (F) in tables 2-5. Experimental
responses are marked in blue, responses of the model are marked in
red.

4, described by row (F) in the Table 5. Its value, close to
zero points that in this place (heater) the distributed-parameter
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model reduces to the lumped parameter model.

C. Practical Stability

The condition of the practical stability (70) can be exam-
ined using parameters described in the previous section.
As an example consider the parameters given in the row
(F) in the table 3. The sample time was equal: h = 1[s].
The use of conditions (70) and (72) gives the upper esti-
mation of maximum orders assuring the practical stability
of the model. They are equal: NL < 9.2516 and N∞ < 10.2969.

Next for all modes m,n = 0, ...,N,N roots of all character-
istic polynomials (58) and roots of all standard systems (60)
were numerically computed for two values of M, N: "stable":
M =N = 8 and "unstable": M =N = 15. Results are illustrated
by Figures 6 and 7. The main conclusion about the practical
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Fig. 6. Roots of characteristic polynomials and standard systems for
"stable" dimensions of model: M = N = 8.

stability of the considered model is that the increasing of orders
M, N leads to loss of stability. This is analogical to the one-
dimensional case (see [23, 22]). This results directly from (31)
and (12). For the time-continuous model increasing of orders
M, N moves eigenvalues left in the complex plane, but for the
discrete time this causes the "migration" of eigenvalues outside
of the unit circle. Next, the increasing of the memory length L
allows to a little bit increase the maximum value of orders, but
this causes a significant increase in computational complexity
with a slight improvement in accuracy (see next subsection).

D. Accuracy and Convergence

The accuracy was tested for the worst case, appearing in area
3. To tests the parameters from row (F) in the table 4 were
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Fig. 7. Roots of characteristic polynomials and standard systems for
"unstable" dimensions of model: M = N = 15.

used. The accuracy (74) as a function of orders M and N is
shown in the Figure 8. The diagram 8 allows to conclude
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Fig. 8. Accuracy (74) for area 3, L = 100 and each memory length.

that the accuracy of the proposed discrete model does not
depend on the memory length L, but it is determined by the
dimensions of model M and N. Next, for both orders greater
than 7 the improvement in accuracy is slight.

The convergence of the proposed model was tested using
relations (80) and (81). The ROC as a function of the number
of mode for fixed and each memory lenghts are shown in the
Figure 9. Calculations were done using parameters of the
model from row (F) in the table 2.
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Fig. 9. Rate of Convergence for area 1, M = N = 7, L = 200 and each
memory length and the required value ∆.

Next consider the required value of ROC equal ∆ = 5e−07.
The use of condition (82) gives the minimum value of both
orders N∆ > 5.6289. This is also illustrated by the Figure 9.

From the Figure 9 it can be also concluded that the con-
vergence of the proposed model is stronger determined by
the orders of the model M, N than by the memory length L.
For each memory length the ROC is a little bit smaller than
for fixed memory length, but for orders greater than 7 the the
difference is negligible.

Summarizing, the use of both conditions of practical sta-
bility and convergence allows to obtain the permissible range
of orders M,N of the model. These orders lie in the inter-
val [N∆;NL]. For the conisdered numerical example this is the
interval: [5.6289;9.2516] and really gives the values of M,N
from 6 to 9.

6. FINAL CONCLUSIONS

The main conclusion from the paper is that the proposed,
discrete time, fractional order model can properly describe
thermal processes in the two-dimensional thin metallic sur-
face. The good accuracy in the sense of the IAE cost function
is achieved for low orders of the model and relatively short
memory length L.

The proposed conditions of stability and convergence are
contradictory, because the better convergence requires the
increasing of orders, what leads to instability of the model.
However, both condtions applied together allow to obtain
precise estimation of orders allowing to keep both stability
and good convergence.

The spectrum of the further investigations of the presented
issue is broad. It covers u.a. analysis of the numerical
complexity of the proposed model as well as its verification
with the use of various experimental data.

An another important issue is to consider the uncertainty
of the parameters of the model, because such a situation is
typical during use of thermal imaging cameras.

Next, the identification of the model can be also done
using biologically inspired methods, e.g. Particle Swarm
Optimization (PSO) or Grey Wolf Optimization (GWO).

Finally, the internal and external positivity of this model
need also be analysed.
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[29] K. Oprzędkiewicz, W. Mitkowski, and M. Rosol. Frac-
tional order model of the two dimensional heat transfer
process. Energies, 14(19):1–17, 2021.
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