
BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 72(4), 2024, Article number: e150113
DOI: 10.24425/bpasts.2024.150113

ARTIFICIAL AND COMPUTATIONAL INTELLIGENCE

Enhancing nano grid connectivity through
the AI-based cloud computing platform and

integrating recommender systems with deep
learning architectures for link prediction

Nagaraju Sonti1 ∗ , Rukmini M. S. S.1, and Venkatappa Reddy P.2

1 Department of ECE, Vignan’s Foundation for Science, Technology & Research, Vadlamudi, Andhra Pradesh, India
2 Azista Industries Pvt Ltd, Advanced Pixel Research Intelligence Lab, Hyderabad, Telangana, India

Abstract. Cloud computing has become ubiquitous in modern society, facilitating various applications ranging from essential services to online
entertainment. To ensure that quality of service (QoS) standards are met, cloud frameworks must be capable of adapting to the changing demands
of users, reflecting the societal trend of collaboration and dependence on automated processing systems. This research introduces an innovative
approach for link prediction and user cloud recommendation, leveraging nano-grid applications and deep learning techniques within a cloud
computing framework. Heuristic graph convolutional networks predict data transmission links in cloud networks. The trust-based hybrid decision
matrix algorithm is then employed to schedule links based on user recommendations. The proposed model and several baselines are evaluated
using real-world networks and synthetic data sets. The experimental analysis includes QoS, mean average precision, root mean square error,
precision, normalized square error, and sensitivity metrics. The proposed technique achieves QoS of 73%, mean average precision of 59%, root
mean square error of 73%, precision of 76%, normalized square error of 86%, and sensitivity of 93%. The findings suggest that integrating
nano-grid and deep learning techniques can effectively enhance the QoS of cloud computing frameworks.

Keywords: cloud computing; link prediction; cloud recommendation; nano-grid application; deep learning.

1. INTRODUCTION

Recently, link prediction (LP) has attracted much interest due
to its practical applications in real-world scenarios like friend
recommendations, e-commerce, and finding potential partners.
Predicting future links that will or will not occur is an LP issue.
Although LP has been studied for more than 20 years, David
LibenNowell and Jon Kleinberg’s work considerably influenced
this field and is currently gaining more attention [1]. Common
neighbours (CN), resource allocation (RA), and Adamic-Adar
(AA) are some of the traditional heuristic methods used in link
prediction. On the other hand, supervised learning techniques
like Naive Bayes, SVM, and bagging are also employed [2].
Despite numerous sophisticated LP methods, simple heuristic
approaches or combinations often yield more accurate results
for certain network types. The effectiveness of a given heuristic
method depends on the network topology, which may differ
between social networks (SNs).

This variability limits the performance of heuristic ap-
proaches. Consequently, determining the optimal heuristic strat-
egy for a given SN often requires a trial-and-error process.

Based on the surrounding subgraph, the Weisfeiler-Lehman
neural machine (WLNM) method [3] suggested an automatic

∗e-mail: 181PG05201@vignan.ac.in

© 2024 The Author(s). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Manuscript submitted 2023-08-01, revised 2024-03-05, initially
accepted for publication 2024-03-26, published in July 2024.

way to recognize appropriate ways. WLNM is regarded as an
advanced link prediction method because of its high accuracy.

Link prediction is crucial in helping us understand individ-
ual connections and interactions on networking platforms. The
annual growth rate of users of social networks has been consis-
tent. With an estimated 3.9 billion people using the internet as
of April 2020 [4], researchers are interested in exploring new
avenues for link prediction across massive social media plat-
forms. Forecasting links in large-scale social networks has been
the subject of several efforts [5]. The Spark framework has been
effectively employed in distributed computing environments for
link prediction studies, enabling precise prediction of vast social
networks. With numerous computing resources, link prediction
analysis is now possible in less time thanks to Spark scalability
features, memory computation, and parallel job processing ca-
pabilities. Spark provides a range of application properties that
allow you to tailor the computation method [6].

2. RELATED WORK

The prediction of links has been the subject of much research
and has been approached from many angles. Various heuristic
methods have typically been proposed to determine the scores
for every node pair. These techniques rely on structural data
regarding the pair of nodes under consideration, such as their
shortest path and overlapped neighbours. Preferential attach-
ment and familiar neighbors are two metrics used to gather data

Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 4, p. e150113, 2024 1

https://orcid.org/0000-0002-2839-1977
mailto:181PG05201@vignan.ac.in

Nagaraju Sonti, Rukmini M. S. S., and Venkatappa Reddy P.

regarding one-hop neighbors and determine these scores [7]. In
addition, it has been suggested to include data about connec-
tions extending more than one hop using higher-level heuris-
tic approaches like SimRank, PageRank, and Katz, as well as
second-order heuristic strategies such as resource allocation and
Adamic-Adar. These heuristic techniques are highly efficient for
link prediction. Most heuristic techniques rely on manually de-
signed structural information, which can limit their applicabil-
ity. To overcome this drawback, embedding-based techniques
have been recommended [8]. These approaches use the con-
nections between nodes to learn node embeddings, which are
then used to calculate similarity scores. Matrix factorization is
commonly used to learn node embeddings by breaking down
the graph adjacency matrix. Other techniques like Deepwalk
and node2vec use random walks to generate Skip-Gram em-
beddings [9]. LINK [10] learns to categorize the presence of
links based on the connectivity information in each row of the
adjacency matrix. However, embedding methods can be brutal
to generalize due to their performance being influenced by the
sparsity of the input graph.

Recently, there have been attempts to use graph neural net-
works (GNNs) for link prediction, as they are effective at learn-
ing graph representations. GAE and VGAE [11] use GCNs to
learn node representations in an auto-encoder architecture to
recreate the input graph. Link prediction has seen various GNN
architectures, many of which are based on the GAE. However,
SEAL [12] takes a different approach by reformulating the link
prediction task to include subgraph classification. Rather than
directly predicting links, SEAL performs the task of graph clas-
sification. To do this, it samples enclosing graphs around every
target link to compose a dataset. [13] proposed several mea-
sures based on the structural data of nodes for link prediction.
Common neighbours (CNs) are one of the most commonly used
measures. CN measures the similarity between two nodes by
the number of shared neighbours, as proposed by [14]. Using
CN, normalization techniques like Sorensen’s index and Jaccard
coefficient, as mentioned in [15], can increase link prediction
accuracy.

To calculate the probability of a link between two nodes, a
weight is given to each shared neighbour in preferential con-
nection, and resource allocation is evaluated [16]. Recently, the
paper [17] proposed a novel similarity measure depending on
the tree-augmented naive (TAN) Bayes likelihood-based model.
Better link predictions are produced by the TAN model because
it considers the relationship among shared CN [18]. The global
structural information of nodes, including paths and errands,
has also been the subject of numerous studies [19]. Each pair of
connected nodes has had its similarity evaluated using local path
techniques based on the two- and three-hop neighbours of each
other [20]. The similarity score was calculated using all paths
of various lengths between nodes in [21]. At the same time, the
SimRank technique was proposed, which assumes that if two
nodes are connected to the same nodes, they are comparable.
Notation and its explanation are shown in Table 1.

Table 1
Notation and its explanation

Notation Explanation

𝐹 (𝑥) objective function

𝜌𝑡 weight

𝑟𝑡𝑖 pseudo-residual representing

R1() and R2() pseudo-random number generator (PRNG) functions

𝑉𝑏𝑐 behavioural constraint

C set of classes

S to calculate entropy

A information gain

H(S) the set S’s entropy

𝑉𝑏𝑟 rate of behavior change

p(c) ratio of the number of items in class c

𝑤1 weight coefficients

𝐹
·𝑥𝑖
𝑡−1 negative gradient of the loss function

H group of all potential regression trees

V𝑏𝑒 behavioural experience denoted

3. SYSTEM MODEL

This section proposes link prediction for data transmission in
cloud networks using deep learning techniques based on cloud
recommendation. Heuristic graph convolutional networks were
used to predict data transmission links, and the trust-based hy-
brid decision matrix algorithm was utilized to schedule links
based on user recommendations. Figure 1 illustrates the system
framework for designing and predicting cloud links.

3.1. Cloud network data transmission link prediction
using heuristic graph convolutional networks

The goal is to assign a set of data packets, including both pri-
mary and sensitive data, to different cloud servers, minimizing
execution time while ensuring encryption of sensitive data and
some preliminary data. The input data packets are separated
into distinct sub-packages, with details on the length of each
packet and the time spent in each working mode. Cloud service
providers offer encryption and non-encryption modes of opera-
tion. The output is a plan for assigning data packets to different
clouds, considering execution time and security.

To achieve this, a similarity score is computed using only the
structural characteristics of neighbours that coincide with the
specified nodes. The structural elements of each node are used
as the foundation for this operation. However, conventional
GCN cannot compute this score due to a normalized adjacency
matrix and hidden representation dimension being more minor
than the number of nodes. The small size makes it difficult
to distinguish the characteristics of each neighbourhood after
aggregation, preventing GCN from detecting overlapping areas.

2 Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 4, p. e150113, 2024

Enhancing nano grid connectivity through the AI-based cloud computing platform and integrating recommender systems. . .

Fig. 1. Framework for cloud link prediction and scheduling

Additionally, the normalized adjacency matrix prevents GCN
from counting multiple neighbourhoods. To address this, the
neighbourhood overlap-aware aggregation scheme is proposed
to determine the neighbourhood overlap-aware score.

The proposed system framework uses heuristic graph con-
volutional networks to predict data transmission links in cloud
networks. The trust-based hybrid decision matrix algorithm then
schedules links based on user recommendations. Figure 2 illus-
trates the system framework for designing and predicting cloud
links.

An adjacency matrix teaches GCNs beneficial structural
traits, and they estimate similarity scores based on overlapping
neighbourhoods. (a) First, GCNs use the structural feature gen-
erator 𝐹 to create a structural feature vector 𝑋struct ∈ 𝑅𝑁×1 from
an adjacency matrix 𝐴 ∈ 𝑅𝑁×𝑁 . When only features of over-
lapped neighbours between nodes are to be considered, GCNs
(a) build a diagonal matrix 𝑋struct ∈ 𝑅𝑁×𝑁 and (b) multiply the
sum of powers of adjacency matrices to aggregate the features
of multi-hop neighbourhoods. To compute similarity scores and
adaptively mix them with the learnable parameter (𝑑).

The purpose of machine learning methods is to obtain an
approximation, 𝐹 (𝑥), of objective function 𝐹 (𝑥), which maps
instances 𝑥 to their output values 𝑦, given a training dataset
𝐷 = {𝑥𝑖 , 𝑦𝑖}𝑁1 . The learning process can generally be viewed
as an optimization problem where the goal is to minimize the

anticipated value of a particular loss function, 𝐸 [𝐿 (𝑦, 𝐹 (𝑥))].
This predicted loss can be roughly estimated using the data:
𝑁∑︁
𝑖=1

𝐿 (𝑦𝑖 , 𝐹 (𝑥𝑖)).

The approach is constructed using the additive expansion in
equation (1) in the specific case of gradient boosting

𝐹𝑡 (𝑥) = 𝐹𝑡−1 (𝑥) + 𝜌𝑡ℎ𝑡 (𝑥), (1)

where 𝜌𝑡 is the 𝑡-th function weight and ℎ𝑡 (𝑥). The approxi-
mation is built in stages, with each step creating a new model
ht without altering any existing models in 𝐹𝑡−1 (𝑥𝑖). Initially,
equation (2) initializes the additive model with a constant ap-
proximation

𝐹0 (𝑥) = argmin
𝛼

𝑁∑︁
𝑖=1

𝐿 (𝑦𝑖 , 𝛼) (2)

and to reduce equation (3), the following models are created

(𝜌𝑡 , ℎ𝑡 (𝑥)) = argmin
𝜌,ℎ

𝑁∑︁
𝑖=1

𝐿 (𝑦𝑖 , 𝐹𝑡−1 (𝑥𝑖) + 𝜌ℎ𝑡 (𝑥𝑖)) . (3)

Nevertheless, the problem is divided into two parts rather
than jointly solving the optimum for ℎ𝑡 . Each method is first

Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 4, p. e150113, 2024 3

Nagaraju Sonti, Rukmini M. S. S., and Venkatappa Reddy P.

Fig. 2. The link prediction framework of the GCN

trained to discover the gradient vector of the loss-data-based
function. To do this, each model, ℎ𝑡 is trained on a fresh dataset,
𝐷 = {𝑥𝑖 , 𝑟𝑡𝑖}𝑁𝑖=1, where 𝑟𝑡𝑖 is the pseudo-residual representing
the loss function’s negative gradient at 𝐹 ·𝑥𝑖

𝑡−1 by equation (4)

𝑟𝑡𝑖 = −𝜕𝐿 (𝑦𝑖 , 𝐹 (𝑥𝑖))
𝜕𝐹 (𝑥𝑖)

����
𝐹 (𝑥)=𝐹𝑡−1 (𝑥)

. (4)

For the given data points, which are parallel to the gradient of
𝐿 at 𝐹𝑡−1 (𝑥), the function, ℎ𝑡 , is anticipated to produce values
that are close to the pseudo-residuals (𝑥). But remember that ℎ’s
training is typically influenced by square-error loss, which may
differ from the provided objective loss function. However, after
solving an optimization issue using line search on the provided
loss function, the value of 𝑡 is determined. Lasso combines
equation (11) regularisation and linear classification (5)

min𝑤
∑︁

(𝑥𝑖 ,𝑦𝑖)
𝑙 (𝑥𝑖 , 𝑦𝑖 ,𝑤) +𝜆 |𝑤 |1 (5)

the element-wise operator equation (6) definition of the
capped (11) norm

𝑞𝑐 (𝑤𝑖) = min (|𝑤𝑖 | , 𝜖) . (6)

By modifying the associated regularisation parameters, 𝜇𝜆 ≥
0 by equations (7) and (8), one can regulate trade-off among
feature extraction and regularisation when capped (11) norm is
paired with a regular (11) or (12) norm

min𝑤
∑︁

(𝑥𝑖 ,𝑦𝑖)
𝑙 (𝑥𝑖 , 𝑦𝑖 ,𝑤) +𝜆 |𝑤 |1 + 𝜇𝑞 𝜖 (𝑤); (7)

Here 𝑞𝑐 (𝑤) denotes
[
𝑞𝑐 (𝑤1), . . . , 𝑞𝑐 (𝑤𝑑)

]
. (8)

Boosting assumes that limited-depth regression trees are uti-
lized to pre-process data. 𝐻 denotes the group of all potential
regression trees. Assume |𝐻 | to be finite by taking into account
the restricted precision and identifying trees that get the same
values across the whole training set as belonging to the same
tree (albeit possibly large). We suggest learning a linear classifier
in this transformed space, considering that inputs are mapped
into 𝑅 |𝐻 | through 𝜙(𝑥) =

[
ℎ1 (𝑥), . . . , ℎ |𝐻 | (𝑥)

]⊤. Equation (9)
changes to

min𝛽

∑︁
(𝜙 (𝑥𝑖) ,𝑦𝑖)

𝑙 (𝜙(𝑥𝑖), 𝑦𝑖 , 𝛽) +𝜆 |𝛽 |1 + 𝜇𝑞 𝜖 (𝛽). (9)

A sparse linear vector that selects trees in this case is 𝛽. De-
spite being very high dimensional, optimization in equation (10)
is tractable because 𝛽 is quite sparse. We derive a final classifier
by assuming that trees in 𝐻 are arranged such that the first 𝑇
entries are non-zero 𝛽, without sacrificing generality

𝐻 (𝑥) =
𝑇∑︁
𝑡=1

𝛽𝑡ℎ𝑡 (𝑥). (10)

The revised parameters are given by equations (11)–(18):

𝑤𝑖 𝑗 (𝑡 +1) = 𝑤𝑖 𝑗 (𝑡) −𝜂𝑤Δ𝑤𝑖 𝑗 , (11)

Δ𝑤𝑖 𝑗 =
𝜕𝐿

𝜕𝑤𝑖 𝑗

=
𝜕𝐿

𝜕𝑦

𝜕𝑦

𝜕𝑤𝑖 𝑗

, (12)

𝑚𝑖 𝑗 (𝑡 +1) = 𝑚𝑖 𝑗 (𝑡) −𝜂𝑚Δ𝑚𝑖 𝑗 , (13)

Δ𝑚𝑖 𝑗 =
𝜕𝐿

𝜕𝑚𝑖 𝑗

=
𝜕𝐿

𝜕𝑠𝑖 𝑗

𝜕𝑠𝑖 𝑗

𝜕𝑚𝑖 𝑗

, (14)

𝜎𝑖 𝑗 (𝑡 +1) = 𝜎𝑖 𝑗 (𝑡) −𝜂𝜎Δ𝜎𝑖 𝑗 , (15)

4 Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 4, p. e150113, 2024

Enhancing nano grid connectivity through the AI-based cloud computing platform and integrating recommender systems. . .

Δ𝜎𝑖 𝑗 =
𝜕𝐿

𝜕𝜎𝑖 𝑗
=
𝜕𝐿

𝜕𝑠𝑖 𝑗

𝜕𝑠𝑖 𝑗

𝜕𝜎𝑖 𝑗
, (16)

𝑘 𝑓 ,𝑣 (𝑡 +1) = 𝑘 𝑓 ,𝑣 (𝑡) −𝜂𝑘Δ𝑘 𝑓 ,𝑣 , (17)

Δ𝑘 𝑓 ,𝑣 =
𝜕𝐿

𝜕𝑘 𝑓 ,𝑣

=
𝜕𝐿

𝜕𝐶 𝑓 𝑖

𝜕𝐶 𝑓 𝑖

𝜕𝑘 𝑓 ,𝑣

. (18)

3.2. Link recommendation using trust-based hybrid
decision matrix algorithm

When evaluating the trust of a device identity, it is crucial to
consider privacy issues. If a device ID is made public, it could
be vulnerable to identity fraud, creation of false data, and other
malicious activities. Public key infrastructure (PKI) is a secure
authentication technique used in edge computing that simpli-
fies one-to-one communication in a distributed context. Since
identity trust is a critical component of overall trust evaluation,
this study proposes a critical generation approach that reduces
computational complexity and simplifies various PKI elements.
During the resource request process, Identity Trust VI assesses
the reliability of ECU identities. We assume that the elliptic
curve cryptosystem (ECC)-based anonymous verification ap-
proach preserves ECU identity trust [11], which is used to gen-
erate keys for each ECU to compute VI. The following two steps
involve creating the public and private keys after the ECC pro-
duces a discrete elliptic curve named 𝐸 :
Step 1: Generating server keys. The neighbourhood edge server
produces the critical pair (𝐾𝑝 , 𝐾𝑠) presented in equations (19)
and (20)

𝐾𝑝 = 𝐻 (𝐼𝑙 , 𝐼𝑐) , (19)
𝐾𝑠 = 𝑀

(
𝐾𝑝

)
. (20)

The hash function 𝐻 uses ID 𝐼𝑒 of ECUs and ID 𝐼𝑙 of edge
server to calculate public key 𝐾𝑝 . Encoding function 𝑀 calcu-
lates the private key 𝐾𝑠 based on 𝐾𝑝 .

Local edge servers transmit identity information 𝐷 =

{𝐾𝑝 , 𝐸, 𝑂} to ECUs after calculating 𝐾𝑝 and 𝐾𝑠 .
Step 2: Key generation of ECUs. ECUs calculate the three keys
Kvi, Kep, and Kes after receiving 𝐷 as an equation (21) and
(22):

𝐾𝑣𝑖 = 𝑅1 (𝑂 (𝑥, 𝑦)) 𝐾𝑒𝑝 = 𝑅2 (𝑂 (𝑥, 𝑦)) , (21)
𝐾𝑒𝑠 = 𝑅1

(
𝑀

(
𝐾𝑒𝑝

))
. (22)

Virtual key where R1() and R2() are pseudo-random num-
ber generator (PRNG) functions, 𝐾𝑒𝑠 and 𝐾𝑒𝑝 are the private
and public keys of ECUs, and 𝐾𝑣𝑖 is used to secure the gen-
uine ID of ECUs. The local edge server receives a message
𝐹 = {𝐼𝐷𝑒, 𝐾𝑣 , 𝐾𝑒𝑝 , 𝑎}, 𝑎 from the ECUs at that point. Edge
servers and ECUs communicate with one another during the
later authentication stage using the public key, and the private
key is utilized to complete the identity matching. Vi is set to 1
if ECUs successfully authenticate; otherwise, Vi is set to 0.

The proposed framework uses fuzzy rules to construct trust
values, with subjective and objective trust values serving as
fuzzy inputs and fuzzy outputs as trust values. (i) Fuzzy inputs
have three states: high, medium, and low, with values between

0 and 1. (ii) With values between 0 and 1, fuzzy outputs have
three states: low, medium, and high. The trust repository is up-
dated as part of the agent’s responsibility to update trust values.
Uncertainty, mistrust, and trust are the three states in the fuzzy
rules map that produce a trust value. If the gathered trust value
is low, the CSPj trust value equates to mistrust. If the CSPj trust
value is high, it maps to trust; if not, it maps to doubtful.

Behavior trust

𝑉𝑏𝑐 = 𝑤1𝜉1 +𝑤2𝜉2 + . . .+𝑤𝑐𝜉𝑐 . (23)

Here, behavioural constraint is denoted by 𝑉𝑏𝑐, behavioural ex-
perience is denoted by𝑉𝑏𝑒, and𝑉𝑏𝑟 indicates behavioural change
rate. Weight coefficients wbc+wbe+wbr = 1 can be altered to
suit specific jobs.

1) Behavior constraint: Various ECUs notice a varying num-
ber of interactions or behaviour limitations that are imposed by
particular activities according to equation (24):

𝑉𝑏𝑐 = 𝑤1𝜉1 +𝑤2𝜉2 + . . .+𝑤𝑐𝜉𝑐 . (24)

Behavior experience: Since the environment for edge computing
is constantly changing, it is vital to take change of trust into ac-
count dynamically. ECUs that will be tested are listed as ECUc.
Behaviour experience Vbh implies interactive reliability of the
recent past for interactions between several ECUs, where little
engagement can nonetheless result in strong trust-building. Let
us say that ECUs have been communicating with ECU1, ECU2,
and ECU𝑘 , which are the other 𝑘 ECUs. Given by equation (25)

𝑠 𝑗 (Δ𝑡) =
{
𝜏1
𝑗 , 𝜏

2
𝑗 , . . . , 𝜏

𝑠
𝑗 , . . . , 𝜏

𝑡
𝑗

}
. (25)

Define by equation (26)

𝐻+
𝑗 (Δ𝑡) =

𝑡∑︁
𝑖=1

1
(
𝜏𝑖𝑗 ≥ 𝛼 𝑗

)
. (26)

If the condition is true, the 1(.) function returns 1, otherwise it
returns 0. Equation (27) is utilized to define 𝑉𝑏𝑒

𝑉𝑏𝑒 =
1
𝑘

𝑘∑︁
𝑗=1

𝐻+
𝑗
(Δ𝑡)
𝑡

. (27)

Rate of behavior change: Rate of behaviour change, which is
denoted as 𝑉𝑏𝑟 and reflects the actual change in behaviour trust,
which changes with time. By way of equation (28)

𝑉𝑏𝑟 =
1
𝑘

𝑘∑︁
𝑗=1

©«
(1−𝜆)𝑉𝑏𝑒Δ(𝑡−1)

1+
√︃
𝑡 −𝐻+

𝑗
(Δ(𝑡 −1))

+
𝜆𝑉𝑏𝑒Δ(𝑡)

1+
√︃
𝐻+

𝑗
(Δ𝑡)

ª®®¬ . (28)

Trusted capability: Capability trust is the weight given to a de-
vice capacity properties, such as response time, available band-
width, accessibility, and so forth.

In this study, we propose a hybrid approach that combines a
decision tree and a neural network to enhance the performance

Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 4, p. e150113, 2024 5

Nagaraju Sonti, Rukmini M. S. S., and Venkatappa Reddy P.

of classification decisions. A neural network is integrated into
each decision tree node to achieve improved results compared
to using each technique individually. Neural networks excel at
classifying items into smaller categories, while their perfor-
mance improves with an increase in the number of categories.
Decision trees, on the other hand, can handle multiple distinct
categories by employing a collection of binary options such as
0 or 1 to construct the tree. The attribute with the best infor-
mation gain is selected to obtain the same outcome. We use
entropy, a widely used information theory metric that indicates
the (im) purity of any set of samples, to calculate information
gain. Entropy 𝐻 (𝑆) measures the degree of uncertainty in a
given dataset 𝑆.
𝐻 (𝑆) =

∑︁
𝑐∈𝐶

−𝑝(𝑐) log2 (𝑝(𝑐)), where 𝑆 is the dataset that is

used to calculate entropy at this time; 𝑝(𝑐) is the ratio of the
number of items in class 𝑐 to the total number of elements in
set 𝑆. 𝐶 is the set of classes in 𝑆, where 𝐶 = 0, 1. The set 𝑆 is
perfectly categorized if 𝐻 (𝑆) = 0.

The difference in entropy between before and after the set 𝑆
is split on a result attribute 𝐴, which is known as information
gain or 𝐼𝐺 (𝐴). After splitting set 𝑆 on outcome attribute 𝐴

by equation (29), the amount of uncertainty 𝑆 was reduced is
represented by this quantity

𝐼𝐺 (𝐴, 𝑆) = 𝐻 (𝑆) −
∑︁
𝑡∈𝑇

𝑝(𝑡)𝐻 (𝑡), (29)

where 𝐻 (𝑆) is the set 𝑆 entropy; 𝑇 is the subsets produced
when set 𝑆 was divided by the outcome attribute 𝐴 so that in
equation (30)

𝑆 =
⋃
𝑡∈𝑇

𝑡. (30)

The portion of items in set 𝑡 divided by the total items in set 𝑆
is represented as 𝑝(𝑡), while 𝐻 (𝑡) is the entropy of subset 𝑡. The
remaining properties are evaluated for their information gain,
and the property with the highest gain is selected to split set 𝑆 at
each iteration. Then, a neural network is built using the attribute
with the highest information gain. A separate neural network is
constructed for each binary classification only when the issue is
present. At each decision tree node, the neural network consists
of all possible outcome attributes that could result in a 0 or 1.

4. PERFORMANCE ANALYSIS

The effectiveness of the proposed approach is demonstrated
by comparing it with standard techniques using various real
benchmark dynamic networks. The experiments are conducted
on a server coded in Python with 16 GB RAM and a tensor flow
anaconda environment.

4.1. Parameter setup

The approach employed in this study involves an encoder method
that combines a convolutional network and a graph network.
Each dataset is segmented at predetermined intervals, resulting
in 320 network sequences. The training set comprises the first
240 networks, while the remaining 80 networks form the test set.
The model consists of a single convolutional network and four
GCN networks, with each GCN network utilizing a Chebyshev
polynomial hyperparameter 𝐾 of 3. The hidden layer dimen-
sions of LSTM for the first five datasets are 256, while the
last dataset uses 512. Similarly, the hidden layer dimension of
the GCN network for the first five datasets is 512, while the last
dataset uses 512. The model undergoes 200 iterations during the
training phase, with the inputs being eleven continuous network
sequences from the training set.

4.2. Baseline methods

In this study, we compare the effectiveness of the proposed tech-
nique with various standard methods such as DDNE, GTRBM,
ctRBM, TNE, and node2vec. Node2vec. This method uses a
second-order biassed random walk algorithm to explore a node
neighbourhood, allowing for a balance of local and network-
wide features. Node2vec is used as a starting point for predicting
dynamic links.

4.3. Proposed analysis

Table 2 presents a parametric analysis of the proposed technique
based on the number of epochs. Figure 3 illustrates the results of
a parametric analysis of QoS based on the number of epochs. The
proposed technique achieved a QoS of 88% after 100 epochs,
89% after 200 epochs, 91% after 300 epochs, 93% after 400
epochs, and 97% after 500 epochs, depending on the number of
samples used in the neural network training.

The parametric analysis for the mean average is depicted
in Fig. 4. The proposed technique achieved a mean average

Table 2
Parametric analysis for the proposed technique

No. of
samples QoS Mean average

precision
Root mean
square error Precision Normalization

square error Sensitivity

100 88 91 65 79 82 77

200 89 92 68 81 83 81

300 91 93 71 82 85 83

400 93 94 73 84 87 85

500 97 95 74 85 88 86

6 Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 4, p. e150113, 2024

Enhancing nano grid connectivity through the AI-based cloud computing platform and integrating recommender systems. . .

precision of 91% for 100 epochs, 92% for 200 epochs, 93% for
300 epochs, 94% for 400 epochs, and 95% for 500 epochs.

The parametric analysis for root mean square error based
on the number of epochs is presented in Fig. 5. The proposed
technique achieved a root mean square error of 65% for 100

Fig. 3. Parametric analysis of QoS

Fig. 4. Parametric analysis of mean average precision

Fig. 5. Parametric analysis of root mean square error

epochs, 68% for 200 epochs, 71% for 300 epochs, 73% for
400 epochs, and 74% for 500 epochs, based on the number of
samples used in the neural network training.

The results of the parametric analysis for precision based
on neural network training for different numbers of samples
are presented in Fig. 6. The proposed technique achieved an
accuracy of 79% for 100 epochs, 81% for 200 epochs, 82% for
300 epochs, 84% for 400 epochs, and 85% for 500 epochs.

Fig. 6. Parametric analysis of precision

The parametric analysis for normalized square error based on
the number of epochs is depicted in Fig. 7 above. According
to the results, the proposed technique achieved a normalized
square error of 82% for 100 epochs, 83% for 200 epochs, 85%
for 300 epochs, 87% for 400 epochs, and 88% for 500 epochs
based on the number of samples in the neural network training.

Fig. 7. Parametric analysis of normalization square error

Figure 8 displays the parametric analysis for sensitivity based
on the number of samples in the neural network training.
The proposed technique achieved a sensitivity of 77% for 100
epochs, 81% for 200 epochs, 83% for 300 epochs, 85% for 400
epochs, and 86% for 500 epochs.

Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 4, p. e150113, 2024 7

Nagaraju Sonti, Rukmini M. S. S., and Venkatappa Reddy P.

Fig. 8. Parametric analysis of sensitivity

4.4. Comparative analysis

Table 3 compares the performance of the proposed technique
with existing techniques such as node2vec, TNE, ctRBM,
GTRBM, and DDNE. The analysis is based on several met-
rics, including QoS, mean average precision, root mean square
error, precision, normalized square error, and sensitivity.

Figure 9 depicts the analysis of baseline techniques, including
node2vec, TNE, ctRBM, GTRBM, and DDNE, for QoS. The
suggested method yielded a QoS of 61%, compared to 59%
for the current GCN and 59% for VGAE using the node2vec
baseline approach. The proposed method obtained a QoS of 65%
for the TNE baseline technique, compared to 59% for the current

GCN and 63% for VGAE. For the ctRBM baseline approach,
the suggested technique achieved a QoS of 68%, compared to
61% for the current GCN and 65% for VGAE. The proposed
technique obtained a QoS of 69% for the GTRBM baseline
method, compared to 63% for the existing GCN and 66% for
VGAE. Lastly, the suggested technique obtained a QoS of 73%
for the DDNE baseline technique, compared to 65% for the
current GCN and 71% for VGAE.

Fig. 9. Comparison of QoS

The analysis for mean average precision is shown in Fig. 10.
The proposed method outperformed the current GCN with
a mean average precision of 53% for the GTRBM baseline
method, compared to 46% for the GCN. For the DDNE baseline

Table 3
Analysis based on various baseline methods

Dataset Techniques QoS Mean average
precision

Root mean
square error Precision Normalization

square error Sensitivity

GCN 55 41 59 61 71 81

Node2vec VGAE 59 43 63 63 73 83

AI_CC_LP_DLA 61 45 65 65 75 85

GCN 59 42 61 62 72 82

TNE VGAE 63 46 63 66 76 86

AI_CC_LP_DLA 65 48 66 69 78 88

GCN 61 45 62 63 75 83

ctRBM VGAE 65 49 65 65 79 88

AI_CC_LP_DLA 68 52 69 69 83 89

GCN 63 46 65 65 77 85

GTRBM VGAE 66 49 69 69 82 89

AI_CC_LP_DLA 69 53 72 72 83 92

GCN 65 48 68 69 79 88

DDNE VGAE 71 55 73 74 83 92

AI_CC_LP_DLA 73 59 75 76 86 93

8 Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 4, p. e150113, 2024

Enhancing nano grid connectivity through the AI-based cloud computing platform and integrating recommender systems. . .

Fig. 10. Comparison of mean average precision

method, the suggested method yielded a mean average preci-
sion of 59%, compared to 48% for the current GCN and 55%
for VGAE.

The analysis for baseline methods, which include node2vec,
is shown in Fig. 11. The existing GCN obtained an RMSE of
59%, whereas the suggested method achieved a value of 65%.
The proposed technique received an RMSE of 66% for the TNE
baseline technique, compared to 61% for the existing GCN and
63% for VGAE. The suggested method produced an RMSE of
69%, compared to 62% for the ctRBM baseline method and
65% for the existing GCN and VGAE.

Fig. 11. Comparison of root mean square error

A precision analysis is shown in Fig. 12. The proposed method
obtained a precision of 65% for the node2vec baseline method,
whereas the current GCN obtained 61% and VGAE obtained
63%. The proposed technique achieved 72% precision for the
GTRBM baseline technique, compared to 65% for the existing
GCN and 69% for VGAE.

The analysis for normalization square error for TNE, ctRBM,
DDNE, node2vec, and GTRBM baseline techniques is shown
in Fig. 13. The proposed technique achieved 83% normalization
square error for the GTRBM baseline method, compared to
77% for the existing GCN and 82% for VGAE. Ultimately, the

Fig. 12. Comparison of precision

Fig. 13. Comparison of normalization square error

suggested method produced an 86% normalization square error
for the DDNE baseline method.

A sensitivity analysis of the node2vec, TNE, ctRBM,
GTRBM, and DDNE baseline techniques is shown in Fig. 14.
For the DDNE baseline method, the proposed technique
achieved a sensitivity of 93%, while existing GCN attained 88%,
and VGAE attained 92%.

Fig. 14. Comparison of sensitivity

Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 4, p. e150113, 2024 9

Nagaraju Sonti, Rukmini M. S. S., and Venkatappa Reddy P.

5. RESULTS OF LINK PREDICTION

For the model training, we utilized ten consecutive snapshots
“Gt10, . . . , Gt1” to predict the subsequent snapshot “Gt”. There
are typically two methods for processing networks: 1) Predicting
the subsequent snapshot Gt utilizing only the (𝑡−1)-th snapshot
Gt1; 2) Predicting the subsequent snapshot, Gt, by combining
the previous ten snapshots (Gt10, . . . , Gt1) into a single sam-
ple. In this research, we used the first option for node2vec and
the second option for other methods. Each indicator was thor-
oughly examined. It is observed that, for both long-term and
short-term prediction capabilities, the proposed model outper-
forms all baseline methods, while node2vec performs worst in
most cases. This implies that other dynamic prediction tech-
niques perform significantly better because they are capable of
capturing dynamic characteristics, whereas network embedding
techniques, which are designed for static networks, may not be
as effective in capturing temporal changes.

6. CONCLUSIONS

In this study, we proposed a novel link prediction method for
cloud data transmission that includes secure link recommen-
dation. Our approach leverages heuristic graph convolutional
networks to predict the data transmission link and a trust-based
hybrid decision matrix algorithm to recommend the user link.
We achieved accurate link classification by integrating learned
visualizations of related nodes to generate a vector for a link,
which we then fed into a regression algorithm. We evaluated our
method using three metrics and observed that it outperformed
all baseline methods in terms of short- and long-term predic-
tion capabilities. Specifically, our proposed technique achieved
a QoS of 73%, mean average precision of 59%, root mean square
error of 73%, precision of 76%, normalized square error of 86%,
and sensitivity of 93%. These results demonstrate the potential
of deep learning architectures for improving link prediction in
cloud data transmission and highlight the value of combining
multiple techniques to achieve better performance.

ACKNOWLEDGEMENTS

We declare that this manuscript is original, has not been pub-
lished before, and is not currently being considered for publica-
tion elsewhere.

CONFLICTS OF INTEREST/COMPETING INTERESTS

The authors do not have any conflicts of interest.

REFERENCES

[1] N.N. Daud, S.H. Ab Hamid, M. Saadoon, C. Seri, Z.H.A. Hasan
and N.B. Anuar, “Self-ConFig.d Framework for scalable link
prediction in twitter: Towards autonomous spark framework,”
Knowledge-Based Syst., vol. 255, p. 109713, 2022.

[2] J. Zheng et al., “Analysis of thermal characteristics with multi-
physicsc oupling for the feed system of a precision CNC machine
tool,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 2, p. e148941,
2024, doi: 10.24425/bpasts.2024.148941.

[3] M. Bohlooly Fotovat and T. Kubiak, “Non-bifurcation behavior
of laminated composite plates under in-plane compression,” Bull.
Pol. Acad. Sci. Tech. Sci., vol. 72, no. 2, p. e148874, 2024, doi:
10.24425/bpasts.2024.148874.

[4] C. Cao, W. Dong, W. Zhang and Y. Gao, “WiEdge: Edge Com-
puting for Audio Sensing Applications With Accurate Wireless
Link Prediction,” IEEE Internet Things J., vol. 10, no. 5, pp.
3982–3994, 2023, doi: 10.1109/JIOT.2022.3173668.

[5] J. Wang et al., “Diagnosis of inter-turn short circuit fault in
IPMSMs based on the combined use of greedy tracking and
random forest,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 2,
p. e148943, 2024, doi: 10.24425/bpasts.2024.148943.

[6] P. Steinbach, F. Gernhardt, M. Tanveer, S. Schmerler, and
S. Starke, “Machine learning state-of-the-art with uncertainties,”
arXiv:2204.05173, 2022, doi: 10.48550/arXiv.2204.05173.

[7] Y. Qi, X. Zhang, Z. Hu, B. Xiang, R. Zhang, and S. Fang, “Choos-
ing the right collaboration partner for innovation: a framework
based on topic analysis and link prediction,” Scientometrics, vol.
127, no. 9, pp. 5519–5550, 2022.

[8] L. Yang, X. Jiang, Y. Ji, H. Wang, A. Abraham, and H. Liu,
“Gated graph convolutional network based on spatio-temporal
semi-variogram for link prediction in dynamic complex net-
work,” Neurocomputing, vol. 505, pp. 289–303, 2022.

[9] S. Bates, T. Hastie, and R. Tibshirani, “Cross-Validation: What
Does It Estimate and How Well Does It Do It?,” J. Am. Stat.
Assoc., pp. 1–12, doi: 10.1080/01621459.2023.2197686.

[10] M. Nie, D. Chen, and D. Wang, “Graph Embedding Method
Based on Biased Walking for Link Prediction,” Mathematics,
vol. 10, no. 20, p. 3778, 2022, doi: 10.3390/math10203778.

[11] S. Raschka, “Model evaluation, model selection, and algorithm
selection in machine learning,” arXiv:1811.12808, 2018.

[12] S. Noel and V. Swarup, “Dependency-Based Link Prediction
for Learning Microsegmentation Policy,” in Information and
Communications Security: 24th International Conference, ICICS
2022, Canterbury, UK, 2022, pp. 569–588.

[13] G. Xu, X. Zhou, J. Peng, and C. Dong, “SCL-WTNS: A new link
prediction algorithm based on strength of community link and
weighted two-level neighborhood similarity,” Int. J. Mod. Phys.
B, vol. 36, no. 20, p. 2250120, 2022.

[14] F. Müller, “Link and edge weight prediction in air transport net-
works. An RNN approach,” Physica A, vol. 613, p. 128490, 2023.

10 Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 4, p. e150113, 2024

https://doi.org/10.24425/bpasts.2024.148941
https://doi.org/10.24425/bpasts.2024.148874
https://doi.org/10.1109/JIOT.2022.3173668
https://doi.org/10.24425/bpasts.2024.148943
https://doi.org/10.48550/arXiv.2204.05173
https://doi.org/10.1080/01621459.2023.2197686
https://doi.org/10.3390/math10203778

Enhancing nano grid connectivity through the AI-based cloud computing platform and integrating recommender systems. . .

[15] A. Elsheikh, A.S. Ibrahim, and M.H. Ismail, “Sequence-to-
sequence learning for link-scheduling in D2D communica-
tion networks,” J. Netw. Comput. Appl., vol. 212, p. 103567,
2023.

[16] N.N. Daud, S.H.A. Hamid, C. Seri, M. Saadoon, and N.B. Anuar,
“Scalable link prediction in Twitter using self-configured frame-
work,” arXiv:2208.09798, 2022.

[17] Y. Xiu, K. Cao, X. Ren, B. Chen, and W.K.V. Chan, “Self-
Similar Growth and Synergistic Link Prediction in Technology-
Convergence Networks: The Case of Intelligent Transportation
Systems,” Fractal Fract., vol. 7, no. 2, p. 109, 2023.

[18] P. Sathre, A. Gondhalekar, and W.C. Feng, “Edge-Connected
Jaccard Similarity for Graph Link Prediction on FPGA,” in

2022 IEEE High Performance Extreme Computing Conference
(HPEC), 2022, pp. 1–10.

[19] W. Quan, M. Liu, N. Cheng, X. Zhang, D. Gao, and H. Zhang,
“Cybertwin-driven DRL-based adaptive transmission schedul-
ing for software defined vehicular networks,” IEEE Trans. Veh.
Technol., vol. 71, no. 5, pp. 4607–4619, 2022.

[20] K.W. Cho, M. Cominelli, F. Gringoli, J. Widmer, and K. Jamie-
son, “Cross-Link Channel Prediction for Massive IoT Networks,”
arXiv:2212.07663, 2022.

[21] C. Xing, Y. Li, C. Chen, F. Li, Z. Zeng, and X. Zou, “Determi-
nantal point process-based new radio unlicensed link scheduling
for multi-access edge computing.” World Wide Web, vol. 25, no.
5, pp. 2215–2239, 2022.

Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 4, p. e150113, 2024 11

	INTRODUCTION
	RELATED WORK
	SYSTEM MODEL
	Cloud network data transmission link prediction using heuristic graph convolutional networks
	Link recommendation using trust-based hybrid decision matrix algorithm

	PERFORMANCE ANALYSIS
	Parameter setup
	Baseline methods
	Proposed analysis
	Comparative analysis

	RESULTS OF LINK PREDICTION
	CONCLUSIONS

