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Abstract
In recent years, due to the proliferation of inertial measurement units (IMUs) in mobile devices such as
smartphones, attitude estimation using inertial and magnetic sensors has been the subject of considerable
research. Traditional methods involve probabilistic and iterative state estimation; however, these approaches
do not generalize well over continuously changing motion dynamics and environmental conditions. Therefore,
this paper proposes a deep learning-based approach for attitude estimation. This approach segments data
from sensors into different windows and estimates attitude by separately extracting local features and global
features from sensor data using a residual network (ResNet18) and a long short-term memory network
(LSTM). To improve the accuracy of attitude estimation, a multi-scale attention mechanism is designed
within ResNet18 to capture finer temporal information in the sensor data. The experimental results indicate
that the accuracy of attitude estimation using this method surpasses that of other methods proposed in recent
years.
Keywords: MEMS, attitude estimation, deep learning, attention mechanism.

1. Introduction

As micro-electro-mechanical systems (MEMS) continue to advance, inertial sensors have
also gained the benefits of being smaller in size, more cost-effective, and having lower power
consumption. This makes inertial sensors ubiquitous in modern life and work, such as inertial
navigation [1], autonomous driving [2], virtual reality [3], UAV attitude tracking [4] and human
activity recognition [5].

An inertial and magnetic measurement unit (IMMU) is usually composed of a three-axis
accelerometer, a gyroscope, and a magnetometer. Observations of the direction vector can be
obtained from the accelerometer and magnetometer, while the gyroscope provides the angular
velocity. Attitude information is obtained by integrating the angular velocity measured by the
gyroscope, but the gyroscope measurement contains some bias and noise [6, 7], which will cause
some errors in the measured values relative to the actual values, and these errors accumulate
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over time, resulting in errors in the final attitude of the object. Since the direct use of gyroscope
measurements produces poor estimates, traditional estimation techniques use acceleration and
magnetometer measurements to update the error calculations and compensate for drift. Thus, the
general problem of attitude estimation is to combine these sensors to provide the best solution in
the form of an optimal estimator.

The complexity of attitude estimation arises mainly from its nonlinearity, and therefore the
solution of attitude estimation must take into account the nonlinear dynamics of the system.
Early applications relied on the extended Kalman filter (EKF) to linearize the current best state
estimate of a dynamic system, however, this process can yield poor performance, especially in
highly dynamic situations, due to divergence and constant reinitialization. Although Kalman
filter-based estimators have been iteratively improved over the years, they still rely on system
modelling assumptions, and deviations from defined assumptions may lead to divergence or failure
of the system [8]. Some researchers have utilized the wavelet denoising (WD) technique [9] to
decompose the original inertial measurement unit (IMU) signal and improve the accuracy of
attitude estimation by removing the noise from the original signal. the WD method is effective in
removing the high-frequency part, however, it has a limited ability to remove low-frequency errors.
In 2015 Huang used auto regressive and moving average (ARMA) [10] to model gyroscope random
noise to reduce the error, but the ARMA modelling method requires a large number of samples
and converges slowly. Also, as the output of IMU is temporally correlated, it is of great importance
to study output models with nonlinear and temporal information dependence. In recent years, deep
learning (DL) has gained momentum and performed well in various applications such as image
processing, natural language processing (NLP) [13] and sequential signal processing. Therefore,
it has also been introduced into the field of inertial navigation systems. In 2018 Chen [25] et
al. proposed to use supervised learning to segment inertial data into independent windows to
solve the drift problem of inertial positioning techniques. Wang [26] et al. proposed an inertial
odometer solution in 2021 to accomplish 2D position estimation by feeding cell phone IMU data
into a neural network. This all proves that deep networks are capable of modelling the complex
nonlinear relationship between the raw IMU sequence data and position as well as attitude.

For predictive processing of non-smooth signals in time series, recurrent neural networks
(RNNs) seem to perform well. RNN is a network with a memory function that retains previous
temporal information and uses it in the current output computation. Specifically, the nodes between
the hidden layers are connected, and the inputs to the hidden layers include not only the outputs
of the input layers, but also the outputs of the hidden layers from a previous time period [11].
Theoretically, RNN is able to deal with time series problems of arbitrary length and is good
at learning patterns among samples with certain sequence significance [12]. In recent years,
RNN techniques have also been used to solve the problems of signal noise reduction and error
compensation in MEMS sensors. Li [15] et al. proposed a new method for real-time estimation and
compensation of random drifts in MEMS gyroscopes by combining unscented Kalman filter (UKF)
with RNN. The results of experimental studies show that the method is effective and superior.
Although RNN is cost-effective in time-series signal processing, it is prone to the problems of
gradient explosion and gradient vanishing due to less information memorized [16]. Therefore, long
short-term memory (LSTM) and gated recurrent unit (GRU) are two improved RNN algorithms
developed to solve these problems [17], [18]. Jiang [19] et al. used LSTM to denoise the output
signals of a MEMS gyroscope, and the results show that this method can effectively improve
the accuracy of the device. However, the model test only uses two minutes of static data from
the gyroscope, which lacks certain robustness. The GRU method not only solves the gradient
vanishing and gradient explosion problems of RNN, but also uses fewer parameters than the
LSTM method. As a result, the training time of GRU is greatly reduced and it is suitable for
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dealing with time series problems. Jiang [20] et al. proposed a mixture of GRU and LSTM is used
for noise suppression of MEMS gyroscope. However, only static data are used for training and
prediction in the paper, which is not sufficiently quantified and analysed from the perspective of
dynamic experiments. Esfahani [21] et al. proposed a OriNet deep learning framework to reduce
the effect of the bias and measurement noise present in the raw IMU data on attitude estimation,
and to realize the estimation of the 3D attitude of the UAV based on a single IMU. Huang [27] et
al. proposed a deep learning framework based on time-series convolution. The original feature
information is preserved by adding residual blocks to the time-series convolution, while the error
feature is obtained from the past gyroscope data, and the error-compensated gyroscope data is
used for attitude estimation. Narkhede [28] et al. combined incremental learning with an LSTM
network to estimate the attitude of objects in 3D space. This is done by feeding inertial sensor
data into the LSTM network and then incrementally updating it to incorporate changes in motion
dynamics that occur during operation. The approach of Brossard [29] et al. is built on a neural
network based on dilated convolution, which utilizes ground truth data for noise reduction of the
gyroscope and real-time estimation of the robot’s attitude.

In addition, most methods in the literature use only acceleration and gyroscope sensor data and
do not include geomagnetic data that can be obtained from a nine-axis IMMU. In order to achieve
high accuracy attitude estimation from IMUs, geomagnetic data needs to be utilized to assist in
3D attitude estimation. Similarly, attention mechanisms are a hot research topic for improving the
performance of neural network models, which can tell us where and what to pay attention to [14].
The importance of attention was first proposed in natural language processing [22] and then widely
used and improved in various applications such as multivariate time series prediction [23] and
image segmentation [24].

Therefore, in this paper, a multiscale grouped spatio-temporal attention neural network
(MGTA) is designed to realize 3D attitude estimation from IMMU raw data. Inertial systems are
characterized by high noise and time-varying additive bias. The aim of this neural network is to
simultaneously discover complex interrelationships between different time indicators and different
modal input signals. Our main contributions can be summarized as follows:

1. We use a hybrid modelling framework of ResNet18 and LSTM for attitude estimation in
order to identify local features at different scales and hierarchies in the time series using
convolution kernels of different sizes in ResNet18, while LSTM is used to capture long-term
dependencies in the sequence data.

2. We introduce a novel temporal attention mechanism that enables the network to adaptively
focus on the most significant signal modalities and crucial temporal information across
different fields of views.

The paper is organized as follows. Section 2 introduces the error models for the IMU and
magnetic sensors, and analyses how gyroscopes can be used for attitude estimation, and how
accelerometers and magnetic sensors can be used for attitude observations to assist in attitude
estimation. Section 3 describes theMGTA-based approach for IMMUattitude estimation. Sections 4
and 5 present the experimental platform as well as experimental results and analysis. Section 6
describes the conclusions of this paper.

2. Problem formulation

This section introduces the error model of IMU and magnetic sensors, shows how to use
gyroscopes for attitude estimation, introduces how to use accelerometers and magnetometers for
attitude observations, and analyses the impact of noise on 3D attitude.
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2.1. Inertial and magnetic measurement error modelling

The general measurement model applicable to inertial sensors is illustrated in Figure 1. Both
environmental factors and random errors affect the measurements of inertial sensors. In (1),
(UXT ,UYT ,UZT ) is the true three-axis angular velocity or acceleration, (UXM,UYM,UZM ) repre-
sents the three-axis angular velocity or acceleration measured by the inertial sensor corresponding
to the true value, and the measured value contains noisy (ηx, ηy, ηz), Bias (bx, by, bz), scale factor
(Sx, Sy, Sz) and misalignment (Exy, Eyz, Ezx) errors, as presented in [6].

UXM

UYM

UZM

 =


Sx Exy Exz

Eyx Sy Eyz

Ezx Ezy Sz




UXT

UYT

UZT

 +

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 +

ηx
ηy
ηz

 , (1)

δωt = Bgax + Baeayaz . (2)

The four errors above are the main errors of inertial sensors. The angular velocity error is also
affected by acceleration. Equation (2) represents the error caused by three-axis acceleration
(ax, ay, az) on the X-axis of the gyroscope. Bg is g-dependent bias coefficient, Bae is anisoelastic
coefficient.

Magnetic force measurements by the magnetic sensor also contain many different categories
of noise [34], as shown in (3), where mT and mM are the true values and measured values of the
three-axis magnetic force respectively; I3×3 is an identity matrix of size 3 × 3; C is an error matrix
combining scale factor, nonorthogonality and soft iron effects; bm is the combined bias vector; ηm
is the noise vector.

mM = (I3×3 + C)mT + bm + ηm (3)

Fig. 1. Measurement models for inertial sensors.

2.2. Gyroscope-based attitude propagation

The IMU measures the angular velocity of the object and is used to estimate the attitude of the
object. The angular increment is calculated from the angular velocity measured by the gyroscope,
and then the attitude estimate is obtained through (4) and (5).

qt = qt−1 + qt−1 ⊗ (0 +
1
2
ωtdt), (4)
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qt−1 ⊗ ωt =


0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0

 t


qw
qx
qy
qz

 t−1

, (5)

where ⊗ represents quaternion multiplication; qt = [qw, qx, qy, qz]t ∈ R4 is the quaternion at time
t representing the direction that maps the object coordinate system onto the navigation coordinate
system; ωt = [0, ωx, ωy, ωz]t is a quaternion with a real part of zero, where ωt represents the
average angular velocity of the gyroscope within time interval dt at time t.

2.3. Accelerometer and magnetometer-based attitude observation

The attitude estimation obtained from the gyroscope will diverge over time, so attitude
observations using accelerometers andmagnetic sensors are necessary tomake real-time corrections
to the attitude estimation above. The three-axis accelerometer is used to measure three-axis
acceleration aM = [ax, ay, az] of the object, the three-axis magnetometer is usually used to
measure the three-axis magnetic force mM = [mx,my,mz] of the Earth’s magnetic field, and the
heading angle can be estimated through the magnetometer [33]. Therefore, attitude observation is
achieved by combining aM and mM .

qa
t =



cos
(
a tan 2

(
ay, az

)
/2

)
∗ cos

(
a tan 2

(
−ax,

√
a2
y + a2

z

)
/2

)
sin

(
a tan 2

(
ay, az

)
/2

)
∗ cos

(
a tan 2

(
−ax,

√
a2
y + a2

z

)
/2

)
cos

(
a tan 2

(
ay, az

)
/2

)
∗ sin

(
cos

(
a tan 2

(
−ax,

√
a2
y + a2

z

)
/2

))
− sin

(
a tan 2

(
ay, az

)
/2

)
∗ sin

(
cos

(
a tan 2

(
−ax,

√
a2
y + a2

z

)
/2

))


, (6)

Mt = qa
t ⊗ mMt . (7)

At time t, the object three-axis magnetic force mMt is turned into the magnetic force
Mt = [Mx, MyM,z ]t in the horizontal object coordinate system by (7), where qa

t is a quaternion
calculated from three-axis acceleration (ax, ay, az)t at time t by (6). Mt will then be utilized to
calculate the horizontally rotated quaternion qm

t as shown in (8), and finally the attitude observation
qo
t will be computed by multiplying qa

t and qm
t by (9). qo

t will be used to correct the attitude
estimation to improve the accuracy of the attitude estimation.

qm
t =


cos

(
a tan 2

(
My, Mx

) )
0
0

sin
(
a tan 2

(
My, Mx

) )
 , (8)

qo
t = qa

t ⊗ qm
t . (9)

2.4. Motivation for introduction of MGTA

From (1), it can be seen that ωt contains a large amount of nonlinear noise. Similarly, as
revealed by (2), acceleration will also impact the accuracy of ωt . The presence of these noise
and formula nonlinearities leads to a decrease in the accuracy of attitude estimation. The error
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presented in qt−1 is propagated in qt through (4). When we substitute (3) into (6)-(9), the impact of
various noises contained in acceleration and magnetic force on attitude estimation is also nonlinear.
Therefore, the existing filtering methods based on mathematical models are not optimal, so we
propose to use a deep neural network MGTA for attitude estimation.

3. Methodology

In this article, we propose an MGTA model to extract the features locally and globally from
the cascaded ResNet18 and LSTM layers. MGTA is inspired by the need to consider both the
correlation between different modes measured by IMMUs in neighbouring timestamps and the
global time dependence in the attitude estimation task, whereas existing ResNet18 or LSTM-based
frameworks can only focus on one of these two factors. Another advantage of the MGTA model is
that the model simultaneously takes into account the importance of relations between different
timestamps and multimodal measurement domains by embedding a new attentional mechanism to
refine the features extracted by the hybrid neural network.

In this section, we will detail the designed MGTA model in our attitude estimation system. We
also will give a brief introduction to the whole system, including the pre-processing of the raw
IMMU measurements and training details of the proposed model.

3.1. Data pre-processing

In the IMMU, a given sensor measurement is an IMMU signal over continuous time, which
are denoted as U = {u1, u2, · · · · · ·, un}, where ut = [a, ω,m]t ∈ R9 represents the measured
three-axis acceleration a, three-axis magnetic force m and three-axis angular velocity ω in the
object coordinate system at the time index t. In our attitude estimation task, the entire signal
is partitioned into separate windows for generating the attitude. Specifically, each split window
contains ∆ = 2H samples, where H is the sampling rate. The entire signal processing pipeline can
be summarized by the following equation:

{ut+1−∆, ut+2−∆, · · · · · · , ut } → qt, (10)

where qt is the quaternion estimated from the time index t + 1 − ∆ to the time index t. We assume
that the qt has no relation with the IMMU measurement samples before time instants t + 1 − ∆.
The raw IMMU measurements are first divided by a sliding window and then imported into the
MGTA network as shown in Fig. 2.

The inputs and outputs of the neural network model are the normalized IMMU measurements
[ã, ω̃, m̃] and the quaternion q̂t representing the attitude, respectively.

3.2. Neural network for attitude estimation

The IMMUmeasurements are normalized and then transmitted to the MGTA model for further
processing. The MGTA model details are shown in Fig. 3. The purpose of using hybrid neural
networks in the proposed model is twofold. First, we wish to capture the local time-invariant
features and global long-time dependence in normalized IMMU measurements [ã, ω̃, m̃]. Another
reason is that in practice it is difficult for LSTM frameworks to capture correlations in long time
series data due to gradient and training instability [23]. ResNet18 is mainly composed of an initial
layer and four residual layers (each residual layer contains two BasicBlocks). The initial layer
contains a 1-D convolution, a batch normalization (BN) layer and a max-pooling (MaxPool) layer.
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Fig. 2. Attitude estimation structure presented in this paper. This is a sliding window, sliding ten time indexes each time.

Thus, the ResNet18 layer preceding the LSTM layer not only captures local invariant features, but
also refines the timestamps to make the long time series inputting to the LSTM layer more concise.

Fig. 3. Schematic representations of the proposed MGTA model. The entire MGTA model slides over the normalized
IMMU measurements along the time axis and generates attitude estimates separately for each input window.

Specifically, the ResNet18 module takes a window of [ã, ω̃, m̃] as the input and first processes
the signals by a cascaded 1-D convolutional and the BN layer, where the stride and padding of the
convolution operation are 2 and 3, respectively. The following is an ReLU activation function and
a MaxPool layer with the kernel size of 3. Thus, the refined time window now becomes 0.25∆,
i.e., 0.5H. The feature map F generated by the max-pooling layer is of size 64 × 0.5H and can be
summarized as

F = MaxPool (ReLU(BN( f 7
64([ã, ω̃, m̃])))), (11)

where f 7
64 stands for the 1-D convolution with kernel size of 7, the output channel of 64, and no

adding biases.

201

https://doi.org/10.24425/mms.2023.148542


H. Rong et al.: ATTITUDE ESTIMATION BASED ON MULTI-SCALE GROUPED SPATIO-TEMPORAL ATTENTION . . .

Next, we will use feature map F as input, and first pass it to the first BasicBlock of the first
residual layer to get the intermediate feature map Fa. Then, pass Fa to the second BasicBlock to
obtain the output of the first residual layer, Fb . Subsequently, using Fb as input, we will continue
to repeat this process until we have traversed all the residual layers. In each BasicBlock, the initial
features that come in are first passed through a convolutional network to receive a residual Fr .
This residual is then combined with the initial features that are input to this BasicBlock to get the
final feature Fa. In each BasicBlock, the filter slides over the feature maps and treats these feature
maps constructed from each modal signal equally.

However, the extent to which these spatial features affect the final result should be different.
Therefore, we fused the multi-scale convolutional attention blocks to distil the spatial features,
which consist of the cascaded channel-type transform Gc ∈ RC×W , as shown in Fig. 4. The
channel transform Gc is an attentional weight that recognizes the correlation between channels
in the residual Fr obtained by the convolutional network. It emphasizes important channels and
suppresses unnecessary channels to produce a channel-refined feature map A. The element-wise
transformation Ge tries to identify the relations among all element features. The convolutional
attention operation can be summarized as:

A = Gc(Fr ) × Fr, (12)
Fa = A + FId, (13)

where × is element-wise multiplication. Finally, the generated channel-refined feature map A is
combined with the original feature FId inputted to the BasicBlock to obtain the final feature map
Fa as shown in (13). After that, Fa will be used as input for the next BasicBlock until the entire
ResNet18 is traversed and the result L is output.

Specifically, the channel attention module focuses more on the relationships between channels.
Each channel can be considered as a separate feature detector. These features have different effects
on attitude estimation. To efficiently compute channel attention, we use two ways to describe each
channel. One way to characterize each channel is to use its average value. By pooling the average
over the entire feature map, the network can obtain contextual and global information Fg

r . This
helps to improve the perceptual capabilities of the model. Another approach is to use convolution
to obtain local feature information Fl

r for each channel. Local features are computed to extract
local structures and patterns from the input data to better understand the detailed information in
the data. By combining these two types of information, the model can synthesize multiple levels
of information to improve the understanding and characterization of the input data.

In addition, the fusion of global and local information can improve the robustness of the model.
Global information helps the model to have better resistance to overall changes in the data, while
local information can help the model to fight against noise in the local area. Group convolution is
then employed to enable communication among channel features within each group while reducing
the number of channels to decrease the model’s parameters. Immediately after that, in order to
realize inter-group feature communication, a convolutional layer with a convolutional kernel size
of 1 × 1 is used and the number of channels is restored to the size before reduction. The entire
channel attention module can be summarized as follows:

Fg
r = Conv (GpConv ((AvgPool(Fr )))), (14)

Fl
r = Conv (GpConv (Fr )), (15)

Gc(Fr ) = σ(F
g
r ⊕ Fl

r ), (16)

where σ denotes the sigmoid function and ⊕ denotes the broadcasting addition.
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Fig. 4. (a) A BasicBlock and (b) Multiscale channel attention module in the Convolutional Attention Module, where c is
the number of channels, w is the feature map size, and r is a scaling parameter of size 4.

Since in a convolutional block, the filter slides over the IMMU measurements along the time
axis, global features may not be captured. Thus, an LSTM block is followed to extract the global
features from the refined feature map L. We propose to utilize a 2-layer LSTM to output the
final feature map of the IMMU attitude estimation system, and there are 256 hidden nodes in
each LSTM layer. In addition to the normal input gate and output gate, the LSTM module also
contains a forgetting gate for training long-term temporal dependencies between memorized input
sequences. The 2-layer LSTM takes P = LT as input. The final step of the MGTA model is to
estimate the attitude using the hidden state of the last time step in the hidden layer output with the
LSTM network, which is achieved by a separate multilayer perceptron (MLP) as shown in (17)

h = LSTM (P), q = MLP (h−1), (17)

where h−1 is the hidden state of the last time step in h.
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4. Experiments

The data used for the experiments were from theOxford Inertial Ranging Dataset (OxIOD) [30]
and the Robust Neural Inertial Navigation (RoNIN) dataset [31], respectively.

OxIOD provides inertial and magnetic data recorded by a phone at a sampling rate of 100
Hz as it moved around the environment under different conditions. It also contains accurate and
synchronized ground truth 3D attitudes. This dataset contains 158 sequences with a total distance
of over 42 kilometres, which is much larger than previous inertial datasets. Another remarkable
feature of this dataset is its diversity, which can reflect the complex movements of cell phone-based
IMMUs in a variety of daily uses. Measurements were collected using four different attachments
(handheld, pocket, handbag and trolley), four movement modes (slow walking, normal walking
and running), etc. We chose all different device placement positions and different motion modes to
evaluate our work. For different motion modes, we chose “slow walking” and “running”, as the
dataset did not provide data for the other two motion modes.

In RoNIN dataset, both ground truth and inertial data are measured independently, i.e.,
a stationary 3D tracking cell phone (Asus Zenfone AR Tango phone) measures the body’s motion
state, while another cell phone, freely carried by the subject, is used to measure inertial and
magnetic data.

The MGTA model was trained using the ADAM optimizer with an initial learning rate of
0.005 and a total of 200 epochs. During training, samples are randomly shuffled during each epoch.
If the verification quaternion error does not decrease within 10 epochs, the learning rate will be
decreased by a factor of 0.2. During training, we set the batch size to 128. Dropout regularization
with a retention probability of 0.5 was applied to the recurrent connections in the LSTM layer.
The networks in this paper were implemented using PyTorch, and an NVIDIA RTX 2080TI GPU
was used to run our experiments.

5. Results and discussion

This section describes the evaluation metrics and some state-of-the-art frameworks for attitude
estimation. We then compare the results of the MGTA model with the other competing methods
and qualitatively and quantitatively analyse the attitude estimation performance of the model
proposed in this paper on the OxIOD dataset and the RoNIN dataset, respectively.

5.1. Evaluation metric

In order to quantitatively evaluate the performance of the proposed method for test sequences
of length N , the following indicator metrics are defined.

1. Root Mean Quaternion Error (RMQE):

RMQE =

√√√
1
N

N∑
i

‖(qi − q̂i)‖2. (18)

RMQE expresses the error between the estimated quaternion and the ground truth for each
component in terms of the root mean square error (RMSE), where q denotes quaternions
and N denotes the number of samples.

204



Metrol. Meas. Syst.,Vol. 31 (2024), No. 1, pp. 195–211
DOI: 10.24425/mms.2023.148542

2. Unit Quaternion Distance Metric (UQD):

UQD =
1
N

N∑
i=1

1 − ‖〈qi, q̂i〉‖. (19)

To characterize the difference between the estimated quaternion and the true quaternion, we
measure the distance between two quaternions by calculating the inner product UQD of these two
quaternions according to [32], as shown in (19).

5.2. Competing methods

We trained our proposed structure using publicly available OxIOD data and RoNIN data and
compared our attitude estimation results with three other methods:

1. Dilated Convolution Network (DCN): A learning method for IMU noise reduction using
ground truth data is proposed to improve the accuracy of 3D attitude estimation [29]. The
authors use extended convolution to model the IMU error and use a suitable orientational
incremental loss function to achieve noise reduction.

2. Incremental Learning of LSTM (IL–LSTM): The authors propose a 3D object attitude
estimation method based on incremental learning of Long Short-Term Memory (LSTM)
networks [28]. In this paper, data from inertial sensors and magnetic sensors is fed to an
LSTM network and then incrementally updated to incorporate dynamic motion changes that
occur during operation. Specifically, in the prediction phase, after every fixed time interval,
the weights of the training model are updated again to learn new features from the inputs
and further predict the attitude.

3. Temporal Convolutional Network with Residual (TCN): In this paper, the authors propose
a deep learning-based method for MEMS IMU error compensation and use the compensated
data for attitude estimation [27]. The method utilizes a temporal convolutional network to
construct an output model of the MEMS gyroscope. By analyzing the IMU error model,
different types of errors are compensated separately, while residual blocks are introduced in
the network structure to obtain stronger feature performance.

5.3. Evaluations

In order to verify the validity of the proposed method, we calculated the RMSE of the
quaternion estimated with each method with the true quaternion on the four components, and then
compared the RMSE of each method, as shown in Table 1.

According to Table 1, for the test sequence Trolley, the attitude estimation error obtained by our
proposed method is larger than that of DCN, but is smaller than that of TCN and IL_LSTM. For
the test sequence Pocket, the attitude estimation error obtained by our proposed method is larger
than that of IL_LSTM, but is smaller than that of DCN and TCN. The attitude estimation errors of
the proposed method in this paper are smaller than the other methods on the four test sequences,
i.e., Walk, Run, Handheld, and Handbag. The minimum RMSE of our proposed method on each
component is reduced by 7.24%, 13.23%, 7.93% and 12.73%, respectively, compared with the
other methods.

The quaternion estimates and errors of the different methods on the test sequence are shown in
Fig. 5 and Fig. 6, respectively. In Fig. 6 for the error of each component of the quaternion, we can
see that in the q(x) and q(y) components of the quaternion the fluctuation of the error range of our
method is more obvious, and the advantage is not particularly significant, but on the q(w) and
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Table 1. RMQE values for each component on each test sequence for different methods.

OxIOD test sequence
DCN TCN

qx qy qz qw qx qy qz qw

Walk 0.0285 0.0286 0.1385 0.0861 0.0224 0.0236 0.1326 0.0788

Run 0.0321 0.0285 0.1098 0.0838 0.0318 0.0273 0.1264 0.0756

Trolley 0.0047 0.0049 0.1048 0.0662 0.0063 0.0057 0.1145 0.0769

Handheld 0.0482 0.0370 0.1236 0.0864 0.0511 0.0368 0.1392 0.0892

Handbag 0.0472 0.0325 0.1087 0.0797 0.0445 0.0331 0.1201 0.0791

Pocket 0.0703 0.0614 0.1253 0.0972 0.0687 0.0592 0.1249 0.0945

Average 0.0385 0.0321 0.1184 0.0832 0.0374 0.0309 0.1262 0.0823

OxIOD test sequence
IL_LSTM MGTA

qx qy qz qw qx qy qz qw

Walk 0.0207 0.0213 0.1138 0.0733 0.0197 0.0206 0.0958 0.0610

Run 0.0309 0.0297 0.1465 0.0975 0.0227 0.0203 0.1046 0.0675

Trolley 0.0061 0.0054 0.1082 0.0695 0.0054 0.0053 0.1065 0.0669

Handheld 0.0516 0.0389 0.1475 0.0968 0.0497 0.0339 0.1123 0.0752

Handbag 0.0502 0.0377 0.1104 0.0762 0.0463 0.0311 0.1188 0.0774

Pocket 0.0629 0.0518 0.1194 0.0898 0.0633 0.0520 0.1203 0.0901

Average 0.0370 0.0308 0.1243 0.0838 0.0345 0.0272 0.1097 0.0730

q(z) components of the quaternion, it can be clearly seen that the quaternion error obtained by our
proposed method only fluctuates a small range of fluctuations in the whole test sequence, while
the other methods still have a large range of error fluctuations.

Fig. 5. True quaternions on the test dataset and the quaternions estimated by the three methods and the proposed method
for comparison.
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Fig. 6. Error of each component of the quaternion estimated by various methods on the test dataset.

This is likely attributed to the fact that DCN and TCN only focus on the local features of
the time series and do not take into account the effect of global information on the quaternion
estimation.

We calculate the average of the sum of the RMQE values of each component of the quaternion
to obtain a comprehensive performance index, and the results are listed in Table 2. According to
Table 2, we can see that in most cases, our proposed method is better than the other methods.

Table 2. Average of the RMQE values of each component of the quaternion.

OxIOD test sequence DCN TCN IL_LSTM MGTA

Walk 0.0704 0.0643 0.0572 0.0492

Run 0.0635 0.0652 0.0761 0.0537

Trolley 0.0451 0.0508 0.0473 0.0460

Handheld 0.0738 0.0790 0.0837 0.0677

Handbag 0.0670 0.0692 0.0686 0.0684

Pocket 0.0885 0.0868 0.0809 0.0814

Average 0.0680 0.0692 0.0689 0.0610

Our approach first utilizes ResNet18 to capture temporal features, and then increases the depth
of the network through residual linking to obtain deeper and more complex nonlinear relationships
contained in the data. At the same time, we introduce a multi-scale channel attention mechanism
to obtain global and local channel scale relationships to improve the model’s ability to perceive
useful information and reduce the influence of noise on the results. The LSTM network is then
utilized to obtain global time information. In IL_LSTM, past information is conveyed in time
through the memorability of hidden units, but it may cause the model to have difficulty in capturing
long-term dependencies when the time sequence is long. We resolve the problem of the LSTM
model’s difficulty in capturing long-term dependencies by refining the timestamps and reducing
the sequence length through convolution.
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Table 3 shows the UQD values of various methods on the RONIN test sequence. We can see
from Table 3 that the UQD values of our method are all smaller than those of all the methods on
the Seen test sequence, while on the Unseen test sequence, although the UQD values of our method
are slightly higher than those of TCN, they are still lower than those of the other methods. So, in
general the attitude estimation of our method is more reliable compared to the current methods.

Table 3. UQD value for each method.

RoNIN test sequence DCN TCN IL_LSTM MGTA

Seen 0.2696 0.3418 0.2788 0.2473

Unseen 0.4407 0.4101 0.4807 0.4261

6. Conclusions

In view of the noise and bias contained in the raw MEMS IMU signals, this paper proposes
a new network structure based on deep learning for attitude estimation. In this model we consider
correlations and global time dependencies between different patterns measured by the IMU
at adjacent timestamps. The spatial features are first extracted from the normalized IMMU
measurements using ResNet, then the spatial features are refined using the convolutional attention
module (which combines local and global features through multi-scale channel attention), and
finally the LSTM network is used to further capture and emphasize the temporal features. We
validate the method on two public datasets and compare it with existing methods. The results show
that the method can effectively reduce the error of the attitude estimation and make the attitude
estimation more reliable. In the future, it will be necessary to study the generalization capabilities
of the proposed network structure when using new IMMUs, as well as the variations in IMMU
frequency and noise models, and to further develop the framework into an inertial odometer.
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