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 The article considers the mechanisms of the formation of transverse energy flows in 

polychromatic fields with different structures. It is shown that the magnitude of the Poynting 

vector transverse component and the angular momentum for symmetric polychromatic 

beams are the same as in coherent monochromatic fields. Changes in the characteristics of 

energy flows due to the transformation and destruction of beam symmetry are demonstrated. 
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1. Introduction  

This article deals with the energy flows arising in 

optical polychromatic waves. The study of the problem is 

closely connected with the relatively recent direction of 

modern optics, the development of optical tweezers, 

modern free-space communication (FSO), etc. (see, for 

example, Ref. 1–4). 

It should be noted that the functionality of optical 

tweezers is determined by distribution of the characteristics 

of the Poynting vector transverse component, namely its 

modulus magnitude and azimuth distribution of this vector. 

In this case, the magnitude of the vector modulus both for 

a field of a general type, including “random” distributions 

of the vector parameters and for beams with an “ordered” 

structure is determined by the same relations for one 

wavelength. At the same time, as shown in Ref. 5, for 

polychromatic wave and paraxial approximation, the 

components of the time-averaged Poynting vector can be 

written as: 

𝑃̅𝑙 = ∫ 𝑃̅𝑙(𝜆)𝑑𝜆
∞

0

, (1) 

where 𝑙 = 𝑥, 𝑦, 𝑧, and 𝑃̅𝑙(𝜆) are the spectral components 

corresponding to the those of the Poynting vector. 

The same statement is true for the angular momentum. 

The resulting angular momentum is defined as the sum of 

the corresponding spectral components: 

𝑀 = ∫ 𝑀(𝜆)𝑑𝜆.
∞

0

 (2) 

Following from (1), the resulting magnitude of the 

Poynting vector modulus depends on distribution of its 

parameters in the spectral components, degree of their 

similarity, location of the “reference” points of such 

distributions – Poynting singularities [6, 7] in which the 

modulus of the vector is equal to zero, and the azimuth is 

undefined. 

This research is an attempt to establish certain 

regularities in the formation of the resulting Poynting 

vector in ordered polychromatic fields and those of 

a general type. 

2. Mechanisms of the Poynting vector formation in the 

fields of general type and those of ordered beams 

In their analysis, the authors consider the next main 

issues: 

1. Each spectral component forms its distribution of the 

characteristics of the Poynting vector. 

2. The resulting transverse component of the vector is 

formed as a simple sum of “spectral” vectors. 
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According to the above statements, there is an obvious 

difference in the formation of a vector for the general type 

fields and those of the ordered waves. In this sense, two 

boundary cases of the field structure can be identified: 

• fields of general type (like speckle fields), 

• elementarily symmetrical beams. 

In this research, elementarily symmetrical polychro-

matic beams are those for which the transverse components 

of the Poynting vector corresponding to different spectral 

components are collinear in each point of the field. These 

include the beams with central symmetry in the optical 

parameters distribution such as: 

• Gaussian elliptically polarized beam (see, for example, 

Refs. 6, 8–10), 

• white vortex (see, for example, Refs. 11 and 12), 

• full Poincaré beam (see, for example, Refs. 6, 13–17). 

Such beams also include polychromatic edge disloca-

tions – such as polychromatic modes of the TE01(10) type 

and similar beams [18]. However, the topological charge of 

each spectral component of an edge dislocation is zero. 

Consequently, such a beam does not create angular 

momentum. Therefore, the authors exclude such beams 

from their consideration. 

There are similar reasons for the so-called radially or 

azimuthally polarized beams (see, for example, Refs. 6, 14, 

17–19). 

All beams having several Poynting singularities in their 

spectral components (for example, chains of vortices), even 

those characterised by central symmetry of parameters, 

belong to another class of beams that the authors call 

“ordered beams”. 

It can be stated that for a general field, the resulting 

Poynting vector component is the sum of quasi-randomly 

directed vectors with different modules at each point of the 

field [Fig. 1(a)]. Therefore, the average value of the 

resulting Poynting vector modulus is significantly lower 

than that in the coherent case if the powers of coherent and 

polychromatic beams are comparable. The situation is 

different when dealing with an ordered polychromatic 

beam. 

The highest order is in the elementarily symmetrical 

polychromatic beams with the central symmetry of the 

characteristics of all spectral components [Fig. 1(b)]. For 

such a beam, partial spectral Poynting vectors at each point 

are collinear. Accordingly, the modules of the vectors are 

summed up like in the coherent case and the magnitude of 

the component is maximal. 

However, this situation is not always the case for beams 

with a central symmetry of wave parameters. Different 

wavelengths have their own distributions of vector 

characteristics, and they differ at least in scale. For 

example, the authors consider the Poynting vector 

distributions for the red and blue components of the vortex 

chains (see Fig. 2). As can be seen, there is at least a 

decrease in the resulting average magnitude of the modulus 

of the Poynting vector component compared to the 

coherent case. Such cases will be referred to as the 

formation of the ordered polychromatic beams. In terms of 

the formation of transverse energy flows, such beams 

occupy an intermediate place between general type fields 

and elementarily symmetrical polychromatic beams 

because a sufficiently large magnitude of the Poynting 

vector is preserved. 

3. Poynting vector and angular momentum of  

elementarily symmetrical polychromatic beams 

Let us consider a well-known fact: if a significant 

angular momentum is formed in the vicinity of a certain 

point of the field, then the circulation of the Poynting vector 

is observed in this region (see Fig. 3 and, for example, 

Ref. 6). At the same time, analysing the behaviour of the 

vector characteristics does not allow to determine the 

consequence of which type of angular momentum (orbital 

or spin [6–8, 10]) such circulation is.  

Due to that, the choice of a specific beam type is not 

sufficient for consideration of fields with “elementary” 

 

 

Fig. 1. Distribution of the characteristics of the transverse 

component of the Poynting vector. (a) – field of general 

type (red, green, and blue components); (b) – enlarged 

fragment of the field shown in Fig. 1(a); (c) – behaviour 

of red and blue spectral components in an elementarily 

symmetrical polychromatic beam. 

 

 

Fig. 2. Distribution of the characteristics of the transverse 

component of the Poynting vector at vortex chains.   

(a) – red and blue components of the Poynting vector; 

(b) – enlarged fragments of the field shown in Fig. 2(a). 

 

 

Fig. 3. Distribution of the characteristics of the transverse 

component of the Poynting vector at coherent Gaussian 

and vortex beams. (a) – Gaussian beam (spin momentum); 

(b) – vortex beam (orbital momentum). 
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symmetry. Therefore, the authors choose a circularly 

polarized polychromatic Gaussian beam and white vortex 

as a polychromatic beam with “elementary” symmetry of 

characteristics and some angular momentum. 

Let us consider the transverse component of the 

Poynting vector and the angular momentum of such beams. 

It is well known that Ref. 20 is used to define the 

instantaneous Poynting vector: 

𝑃⃗ = 𝐸⃗ × 𝐻⃗⃗  , (3) 

where 𝐸⃗ , 𝐻⃗⃗  are respectively  the strengths of electric and 

magnetic fields . 

In the case of polychromatic waves, this relation is 

rather cumbersome; this does not allow for carrying out a 

simple and detailed analysis. Moreover, the calculation of 

angular momentum is not a simple task, too. 

The situation is essentially simplified if the paraxial 

approximation is valid.  

The complex amplitudes of spectral components of 

a Gaussian beam and an isotropic white vortex can be 

described as follows: 

1. Gaussian beam. For simplicity, the authors will 

consider a Gaussian beam in the waist region or in the 

far zone where the radius of the phase front curvature is 

sufficiently large and the beam wavefront in the 

paraxial region is almost flat.  

Orthogonal components of a Gaussian beam: 

𝑈𝐺𝜆(𝑥, y) = 𝑓(𝜆)
1

𝜎0
exp(−

𝑥2 + 𝑦2

2𝜎0
2 ) exp(𝑗Φ0𝜆) . (4) 

2. White vortex: 

𝑈𝑉𝜆(𝑥, y) = 𝑓(λ)
√𝑥2 + 𝑦2

𝜎0
exp (−

𝑥2 + 𝑦2

2𝜎0
2 )

× exp [𝑗 (𝑆 arctan
𝑦

𝑥
) + Φ0𝜆] , 

(5) 

where  

𝑓(𝜆) =
1

𝜎𝜆√2𝜋
exp [−

(𝜆 − 𝜆̅)2

2𝜎𝜆
2 ] (6) 

is the distribution of spectral components over the wave-

lengths of the spectrum, 𝜎0 – the beam width (the same for 

all spectral components), 𝜆  – the wavelength, 𝜆  – the 

central (main) wavelength, Φ0𝜆  – the initial phase shift 

specific for each component, 𝜎𝜆  determines the width of 

the spectral interval, S – the topological charge of vortex. 

As can be seen from (6), the contribution of spectral 

components is regulated by the normal law. Naturally, this 

is not entirely true since negative wavelengths do not exist. 

At the same time, it will be assumed that the spectrum drops 

rather quickly while moving away from the central 

wavelength towards small wavelengths and the influence 

of “negative” wavelengths is negligible. 

The authors will analyse a circularly polarized beam as 

an elementarily symmetrical polychromatic Gaussian 

beam. This assumption does not reduce the generality of 

the consideration, since the ellipticity of the beam affects 

only the finite value of the transverse component of the 

Poynting vector. The component of the beam with circular 

polarization is maximum. In this case, the phase difference 

between the beam 𝑥- and 𝑦- components is written as [20]: 

∆Φ = Φ𝑦 −Φ𝑥 = ℎ𝜋/2 , (7) 

where ℎ is the handedness factor equal to + 1 for the right 

polarization and −1 for the left one. 

3.1. Poynting vector of an elementarily symmetric 

polychromatic beam 

It should be mentioned that the resulting Poynting 

vector of a polychromatic wave, according to (4), is the sum 

of the corresponding spectral components. Therefore, for 

the first stage analysis, it is enough to define the transverse 

components of the spectral components as coherent, and 

then sum them up. 

The transverse spectral components of the time-

averaged Poynting vector are defined by relations [6]: 

{
 
 

 
 𝑃̅𝑥𝜆 =

𝑐𝜆

32𝜋2
{[(𝑠0 + 𝑠1)

𝜕Φ𝑥𝜆

𝜕𝑥
+ (𝑠0 − 𝑠1)

𝜕Φ𝑦𝜆

𝜕𝑥
] −

𝜕s3𝜆

𝜕𝑦
}

𝑃̅𝑦𝜆 =
𝑐𝜆

32𝜋2
{[(𝑠0 + 𝑠1)

𝜕Φ𝑥𝜆

𝜕𝑦
+ (𝑠0 − 𝑠1)

𝜕Φ𝑦𝜆

𝜕𝑦
] +

𝜕s3𝜆
𝜕𝑥

}

, 

where 𝑠𝑖 , 𝑖 = 0,  1,  2,  3  – the normalised Stokes para-

meters, Φ𝑙𝜆  – the components phases (𝑙 = 𝑥, 𝑦). 

Transverse components of the Poynting vector of a 

scalar wave are: 

{
 
 

 
 𝑃̅𝑥𝜆 =

𝑐𝜆𝐴𝜆
2

16𝜋2
𝜕Φ𝜆

𝜕𝑥

𝑃̅𝑦𝜆 =
𝑐𝜆𝐴𝜆

2

16𝜋2
𝜕Φ𝜆

𝜕𝑦

 , (9) 

where 𝐴𝜆, Φ𝜆 – the corresponding amplitude modulus and 

phase. 

3.2. Transverse components of the Poynting vector of 

a polychromatic Gaussian beam 

Considering the fact that Gaussian beams are taken 

under consideration, the phase front of which is almost flat, 

the derivatives in (8) are equal to zero. Then, 

{
 

 𝑃̅𝑥𝜆 = −
𝑐𝜆

32𝜋2
𝜕s3𝜆

𝜕𝑦

𝑃̅𝑦𝜆 =
𝑐𝜆

32𝜋2
𝜕s3𝜆

𝜕𝑥

 , (10) 

or 

{
 

 𝑃̅𝑥𝜆 = −
𝑐𝜆

32𝜋2
𝜕𝐴𝑥𝜆𝐴𝑦𝜆sinΔΦ

𝜕𝑦

𝑃̅𝑦𝜆 =
𝑐𝜆

32𝜋2
𝜕𝐴𝑥𝜆𝐴𝑦𝜆sinΔΦ

𝜕𝑥

 . (11) 

In the authors’ case: 

1. ∆Φ = ℎ𝜋/2 and sinΔΦ = ℎ. 

(8) 
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2. 𝐴𝐺𝑥𝜆 = 𝐴𝐺𝑦𝜆 =
1

𝜎0𝜎𝜆√2𝜋
exp [−

(𝜆−𝜆̅)2

2𝜎𝜆
2 ] exp (−

𝑥2+𝑦2

2𝜎0
2 ). 

Then, equation (11) is transformed to the form: 

{
 
 

 
 𝑃̅𝑥𝜆 = ℎ𝑦

𝑐𝜆

32𝜋3𝜎0
4𝜎𝜆

2 exp [ −
(𝜆 − 𝜆̅)2

𝜎𝜆
2 ] exp (−

𝑥2 + 𝑦2

𝜎0
2 )

𝑃̅𝑦𝜆 = −ℎ𝑥
𝑐𝜆

32𝜋3𝜎0
4𝜎𝜆

2 exp [−
(𝜆 − 𝜆̅)2

𝜎𝜆
2 ] exp (−

𝑥2 + 𝑦2

𝜎0
2 )

. 

Naturally, for a coherent Gaussian circularly polarized 

beam, the transverse components of the Poynting vector are 

defined by the relations: 

{
 
 

 
 𝑃̅𝑥𝜆 = ℎ [

𝑐𝜆

32𝜋2𝜎0
2 exp(−

𝑥2 + 𝑦2

𝜎0
2 )] 𝑦

𝑃̅𝑦𝜆 = −ℎ [
𝑐𝜆

32𝜋2𝜎0
2 exp (−

𝑥2 + 𝑦2

𝜎0
2 )] 𝑥

 . (13) 

For the authors’ case, following (4), the resulting 

components of the Poynting vector will be written as: 

{
 
 

 
 𝑃̅𝑥 = ℎ𝑦

𝑐

32𝜋3𝜎0
2𝜎𝜆

2 exp (−
𝑥2 + 𝑦2

𝜎0
2 )∫ 𝜆exp

∞

−∞

[−
(𝜆 − 𝜆̅)2

𝜎𝜆
2 ] 𝑑𝜆

𝑃̅𝑦 = −ℎ𝑥
𝑐

32𝜋3𝜎0
2𝜎𝜆

2 exp(−
𝑥2 + 𝑦2

𝜎0
2 )∫ 𝜆exp[−

(𝜆 − 𝜆̅)2

𝜎𝜆
2 ]

∞

−∞

𝑑𝜆

.  

It can be shown [21] that the integral is: 

𝐼 = ∫ 𝜆exp
∞

−∞

[−
(𝜆 − 𝜆̅)2

𝜎𝜆
2 ] 𝑑𝜆 = 𝜎𝜆√𝜋𝜆̅ . (15) 

Then, the final expression for the transverse compo-

nents of the Poynting vector has the form: 

{
 
 

 
 𝑃̅𝑥 =

√𝜋

𝜎𝜆
ℎ [

𝑐𝜆̅

32𝜋2𝜎0
2 exp (−

𝑥2 + 𝑦2

𝜎0
2 )] 𝑦

𝑃̅𝑦 = −
√𝜋

𝜎𝜆
ℎ [

𝑐𝜆̅

32𝜋2𝜎0
2 exp (−

𝑥2 + 𝑦2

𝜎0
2 )] 𝑥

, (16) 

which, up to a constant coefficient √𝜋/𝜎𝜆, indicating that 

the beam is formed as a polychromatic one, corresponds to 

the expression for a coherent circularly polarized beam (13). 

Accordingly, the angular momentum of the Gaussian 

polychromatic beam is the same as in the coherent case. 

3.3. Transverse components of the Poynting vector of a 

polychromatic vortex beam 

Considering (4), (5), (11) and relations for derivatives: 

𝜕Φ𝜆

𝜕𝑥
= −𝑆

1

𝑥2 + 𝑦2
𝑦 ,…  

𝜕Φ𝜆

𝜕𝑦
= 𝑆

1

𝑥2 + 𝑦2
𝑥, (17) 

it can be easily shown that the spectral components of the 

Poynting vector are described by the relation: 

{
 
 

 
 𝑃̅𝑥𝜆 = −𝑆𝑦

𝑐𝜆

32𝜋3𝜎0
2𝜎𝜆

2 exp [−
(𝜆 − 𝜆̅)2

𝜎𝜆
2 ] exp (−

𝑥2 + 𝑦2

𝜎0
2 )

𝑃̅𝑦𝜆 = 𝑆𝑥
𝑐𝜆

32𝜋3𝜎0
2𝜎𝜆

2 exp [−
(𝜆 − 𝜆̅)2

𝜎𝜆
2 ] exp (−

𝑥2 + 𝑦2

𝜎0
2 )

, 

which, to the signs and value of the topological charge 𝑆, 

coincides with (12). As a result, the resulting Poynting 

vector is described similarly to (16). 

In other words, a polychromatic Gaussian beam and a 

white vortex of the same width create angular momenta of 

the same magnitude if the signs of the handedness factor 

and the topological charge are different, i.e.: 

ℎ = −𝑆 . (19) 

3.4. Full Poincaré beam 

As in the coherent case, a Full Poincaré beam  

(a polarization-inhomogeneous wave structure with an 

isolated C-point) can be synthesized as a superposition of 

an orthogonally circularly polarized Gaussian beam and an 

isotropic vortex [6, 13–16]. In other words, based on the 

considerations presented in sections 5 and 6, it can be 

argued that in this situation, the behaviour of the transverse 

components of the Poynting vector is the same as in the 

coherent case. 

4. Influence of beam symmetry destruction on the 

magnitude of the transverse component of the 

Poynting vector of a polychromatic wave 

It has been noted that symmetry of elementarily 

symmetrical polychromatic beams may be destructed due 

to beam propagation through the medium with some 

physical perturbations. 

Focusing on the analysis given in section 3, it is 

possible to formulate the following hypothesis. If the 

authors have a polychromatic beam that satisfies their 

definition of elementary symmetric beams, then, with the 

destruction of such symmetry, the average magnitude of the 

modulus of the Poynting vector transverse should decrease. 

Such a hypothesis does not need to be proved. At the same 

time, when the symmetry is broken, one can single out the 

so-called “intermediate” stages, e.g., the transformation of 

a higher-order symmetry into a lower-level symmetry. 

The question arises: will there be a decrease in the 

modulus of the Poynting vector component as it was in the 

case of chaotization of the spectral characteristics 

distributions of the wave components? 

Rather conventionally, two main types of symmetry can 

be distinguished (see Ref. 22): 

1. central symmetry. 

2. axial symmetry. 

Central symmetry is considered a higher class of 

symmetry than the axial one. As shown in section 3,  

the behaviour of the Poynting vector in fields with 

“elementary” central symmetry of the spectral components 

hardly differs from the behaviour of this vector in coherent 

analogues. 

(12) 

(14) 

(18)
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Therefore, to assess the influence of such symmetry 

destruction on the polychromatic beam characteristics, two 

processes will be considered: 

1. transformation of beams with central symmetry of 

parameters into those with axial symmetry, 

2. “chaotic” transformation of spectral components – 

complete loss of the symmetrical properties of a poly-

chromatic beam. 

It should be noted that in the coherent case, physical 

perturbations along the optical path, as a rule, do not 

destroy the structure of optical parameters distributions, but 

rather lead to their spatial deformation while maintaining 

the main features of such distributions. An exception to this 

is the destruction of topological defects like vortices with 

a charge greater than unity, etc. There is also no decrease 

in the value of the transverse component of the Poynting 

vector. Therefore, the main factor that determines changes 

in the structure of the energy flows of a polychromatic 

wave is the mutual displacement of singular points 

(vortices of Poynting singularities, etc.) in different spectral 

components. Then, the corresponding changes in the distri-

bution of the characteristics of the transverse component of 

the Poynting vector under such chaotization or symmetry 

transformation of polychromatic wave characteristics are 

considered. 

It is necessary to state that it is rather difficult to analyse 

such changes in symmetric beams in general terms. At the 

same time, the behaviour of the Poynting vector in such 

beams is similar. For example, as it was mentioned before, 

the circulation of the transverse component observed in 

circularly polarized beams and near the centre of vortex 

beams are identical. Accordingly, to estimate the influence 

of such factors as the symmetry of the beam parameters on 

the distribution of the transverse component of the 

Poynting vector, it would be enough to demonstrate it for 

one type of beam, e.g., for a beam of the white vortex type. 

Figure 4 illustrates schemes for chaotic and regular 

destruction of beam symmetry. The yellow square identifies 

the initial position of the centres of all spectral vortices. 

Squares of other colours show the displacement of 

symmetry. The transformation of a white vortex of a beam 

with central symmetry into that with axial symmetry of 

spectral vortices centres due to the destruction of the beam 

components may occur due to the propagation of this beam 

through some optical system, e.g., through the system 

presented in Fig. 5(a). A similar shift between components 

will be observed if the beam passes through a sufficiently 

thick plane-parallel plate located at a certain angle to the 

beam axis. Another example is a diffraction of a white 

vortex at the edge of the screen [Fig. 5(b)]. It is known, that 

in such situation, the monochromatic vortex centre shifts 

[23–27]. The magnitude of the shift depends on the 

wavelength. 

The chaotic destruction of symmetry can be performed 

by passing the beam through a medium with random 

physical perturbations depending on the wavelength. 

The “degree” of transformation (destruction) of the 

symmetry is set by the magnitude of the average shift of the 

spectral components ∆𝑠̅̅ ̅. To compare the influence of both 

types of beam transformation, it is sufficient that the 

following condition is satisfied: 

∆𝑠̅̅ r̅eg = ∆𝑠̅̅ ̅rand , (20) 

where ∆𝑠̅̅ ̅reg, ∆𝑠̅̅ ̅rand  – the averaged shift of spectral 

components for regular and randomly shifted components.  

The authors made the corresponding computer simula-

tion for a polychromatic beam of the white vortex type. The 

simulation results are shown in Fig. 6. Figures 6(a) and (b) 

illustrate the distribution of the characteristics of the 

transverse component of the Poynting vector in a white 

vortex, in a situation where there is no shift in the spectral 

components. As it was shown in section 3, the modulus (its 

magnitude) and the azimuth of this vector are distributed in 

the same way as in the coherent case. Figure 6, columns  

(c–o) and (d–p) correspond to the regular transformation of 

the beam, the transition from central to axial symmetry. 

Figures 6(c–o) correspond to intensity distributions in the 

transformed beam. Figures 6(d–p) show how the 

magnitudes and azimuths of the resulting Poynting vector 

change. The value of the regular shift increases in the 

direction from the top to the bottom of Fig. 6.  
Figure 6, columns (e–m) and (f–n) illustrate changes in 

the intensity distributions (e–m) and the Poynting vector 

characteristics (f–n) under the random shift of the spectral 

components. As in the previous case, the average value of 

the random shift of the components increases from the top 

to the bottom of Fig. 6. 

The value of the average shift is given in parts of the 

width of the initial beam σ. For a vortex beam, including 

the white vortex and its spectral components, the beam 

intensity at a distance σ from the centre of the vortex is 

maximum. 

 

Fig.4. Transformation and destruction of the central symmetry of 

a polychromatic beam. Yellow squares are the initial 

positions of the features of the symmetric spectral 

components. Red, blue, and green ones are the positions of 

the features of the spectral components acquired as a result 

of the transformation of the polychromatic beam. 

 

Fig.5. Transformation of a white vortex into a polychromatic 

beam with axial symmetry.  
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The simulation results given in one line of Fig. 6 corres-

pond to the fulfilment of (20). As can be seen from Fig. 6: 

1. The beam intensity distribution undergoes significant 

changes. The zero minimum at the centre of the beam 

vanishes even for slight shifts of the centres of the 

spectral components (both for regular and random 

shifts). 

2. At the same time, the magnitude of the transverse 

component of the Poynting vector remains equal to 

zero, even with a significant shift of the spectral 

components. Thus, even at shifts of the order of 0.4σ 

(for any shift nature), circulation of the transverse 

component of the Poynting vector is observed. 

However, it is worth noting that in the case of a random 

shift, changes in the behaviour of the beam charac-

teristics occur much faster than in the transition from 

central to axial symmetry. For example, for a random 

shift of the order of 0.25σ, instead of a minimum, a 

maximum is formed at the centre of the beam. At the 

same time, with a regular shift of the components, a 

maximum is retained at the centre of the beam, which 

is observed even for significant shifts (see Fig. 6).  

The general conclusion can also be substantiated by the 

fact that at the broken symmetry, the magnitude of the 

modulus of the transverse component of the Poynting 

vector decreases faster than at the transformation of the 

beam symmetry type. Figure 7 illustrates this fact. It can be 

seen from Fig. 7 that even with a regular shift of the centres 

of the spectral components of the 0.8σ order, the compo-

nent modulus remains about 60% of the initial magnitude.  

If one considers that for a general type field and for 

complete destruction of the temporal coherence of a poly-

chromatic wave [5], the magnitude of the transverse 

component tends to small value [about 20% of coherent 

magnitude, see Fig. 8(a)], and with additional destruction 

of spatial coherence it is close to zero, then, one can draw 

a general conclusion. Only for elementarily symmetrical 

polychromatic beams, the magnitude of the transverse 

component of the Poynting vector is similar to that of 

coherent waves. For all other wave types, this value 

decreases as it is qualitatively shown in Fig. 8(b).  

 

Fig.6. The results of the transformation of the characteristics of 

a white vortex as a result of the transformation of the beam 

symmetry (from central to axial) and its destruction (random 

shift of the spectral components). Figure 6 columns (a–o) 

and (e–m) show the intensity distribution in the initial and 

transformed beams. Figure columns (b–p) and (f–n) – the 

distribution of the modulus and azimuth of the transverse 

component of the Poynting vector in the initial and 

transformed beams. Figure (a), (b) are the characteristics of 

the initial beam. Figure line (c–f) – the average shift of the 

spectral components is 0.1σ; (g–j) – 0.25σ; (k–n) – 0.35σ, 

and (o–p) – 0.75σ, respectively. 

 

 
 

 

Fig. 8. Change in the magnitude of the transverse component of 

the Poynting vector for different types of polychromatic 

fields. (a) – change in the transverse component of the 

Poynting vector depending on the coherence length of 

a general polychromatic wave (speckle field type) [5];   

(b) – qualitative assessment of the change in the magni-

tude of the transversal component of the Poynting vector 

depending on the “order” of the structure of the 

polychromatic wave. 

 

Fig.7. Change in the magnitude of the transverse component of 

the Poynting vector for different types of white vortex 

transformation. 
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Conclusions 

1. Only for elementarily polychromatic fields, the trans-

verse component of the Poynting vector and the angular 

momentum have the same magnitudes as in the coherent 

case.  

2. When the symmetry is transformed from a higher-order 

symmetry to a lower one (central to axial), or the central 

symmetry of the beam characteristics is destroyed, the 

magnitude of the transverse component of this vector 

decreases up to zero in polychromatic fields of general 

type. 

3. When the symmetry is transformed, the magnitude of 

the transverse component of the Poynting vector remains 

significant. For small shifts of the spectral components 

(about half of the beam width), it is at least 50% of the 

initial magnitude. 

4. When the symmetry of a polychromatic beam is 

destroyed chaotically, the decrease of the transverse 

component magnitude occurs much faster (at least by 

a factor of 2–2.5) until it completely disappears in the 

fields of general type. 
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