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Abstract: This study addresses the issue of diagnosing faults in electric vehicle motors
and presents a method utilizing Improved Wavelet Packet Decomposition (IWPD) com-
bined with particle swarm optimization (PSO). Initially, the analysis focuses on common
demagnetization faults, inter turn short circuit faults, and eccentricity faults of permanent
magnet synchronous motors. The proposed approach involves the application of IWPD for
extracting signal feature vectors, incorporating the energy spectrum scale, and extracting
the feature vectors of the signal using the energy spectrum scale. Subsequently, a binary
particle swarm optimization algorithm is employed to formulate strategies for updating
particle velocity and position. Further optimization of the binary particle swarm algorithm
using chaos theory and the simulated annealing algorithm results in the development of
a motor fault diagnosis model based on the enhanced particle swarm optimization algorithm.
The results demonstrate that the chaotic simulated annealing algorithm achieves the highest
accuracy and recall rates, at 0.96 and 0.92, respectively. The model exhibits the highest
fault accuracy rates on both the test and training sets, exceeding 98.2%, with a minimal loss
function of 0.0035. Following extraction of fault signal feature vectors, the optimal fitness
reaches 97.4%. In summary, the model constructed in this study demonstrates effective
application in detecting faults in electric vehicle motors, holding significant implications for
the advancement of the electric vehicle industry.

Key words: chaos theory, motor fault diagnosis, PSO, simulated annealing algorithm,
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1. Introduction

In response to the escalating issue of environmental pollution, the emergence of new energy
vehicles has become imperative. Electric vehicles, as prominent representatives of new energy
vehicles, are increasingly scrutinized for their performance and safety. The motor, functioning as
the driving component and power core of electric vehicles, significantly influences their overall
performance and safety. Consequently, there is an urgent need to employ appropriate methods for
timely and precise fault diagnosis [1].

The wavelet transform, a signal analysis method combining the localization concept of
the short-time Fourier transform with adaptive frequency capabilities, has overcome the limitations
of fixed window sizes and found extensive applications in fault diagnosis. However, during
the decomposition process, only low-frequency signals are subjected to further decomposition,
while high-frequency signals are not, resulting in a decrease in frequency resolution as frequencies
rise. This limitation has led to the development of wavelet packet decomposition [2, 3].

Particle SwarmOptimization (PSO), an evolutionary computing technique, begins with random
solutions and iteratively searches for the optimal solution, evaluating. solution quality via fitness.
However, situations may arise where the cluster number is not an integer. To address this, Binary
Particle Swarm Optimization (BPSO) is employed to formulate strategies for updating particle
velocity and position, reducing both storage space and computational complexity [4, 5].

Against this backdrop, this study introduces a method for extracting fault signal feature vectors
based on energy spectrum and constructs a Motor Fault Diagnosis (MFD) model using an improved
PSO algorithm. Two primary innovations are highlighted in this research. First, the BPSO algorithm
is improved by incorporating chaos theory and Simulated Annealing (SA) algorithms. Second,
the study is organized into four parts. The first part involves an analysis of the current research
status; The second part delves into the analysis of wavelet packet decomposition, proposing a fault
signal feature vector extracting method utilizing energy spectrum. Additionally, it establishes
the MFD model based on the chaos-SA-BPSO algorithm; The third part focuses on analyzing
the application effects of the proposed model.

The concluding section provides a comprehensive summary of the entire research endeavor.

2. Related works

The motor, serving as the propulsive element of electric vehicles, undergoes fault diagnosis
crucial for enhancing vehicle performance and safety. Addressing the susceptibility of traditional
motor fault diagnosis methods to varying operational conditions, Long et al. introduced a vision-
based motor fault diagnosis method. This approach aims to mitigate the impact of changing
conditions, thereby enhancing feature extraction capabilities. The results indicate that this method,
requiring minimal data training and learning, demonstrates feasibility and effectiveness [6].

Wang et al. highlighted the limitations of traditional cellular neural networks, wherein
increasing layers lead to reduced feature resolution and information loss. Moreover, the fixed
nuclear size makes traditional cellular neural networks unsuitable for MFD. To address this, they
proposed a cascaded convolutional neural network with progressive optimization, specifically
tailored for motor fault diagnosis [7].
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In response to the computational challenges hindering the application of deep learning models
in fault diagnosis, Wang et al. introduced a lightweight multisensory fusion model. This model,
designed for induction motor data fusion and diagnosis, outperforms other neural networks by
accurately predicting fault modes in a shorter time frame [8].

Considering limitation of existing diagnostic models based on convolutional neural networks,
which assume stable motor operation conditions, Xu et al. proposed a lightweight multi-scale
convolutional neural network model for motor fault identification under non-stationary conditions,
aiming to advance Motor Fault Diagnosis (MFD) technology. Experimental outcomes indicate
significant improvements under various non-stationary conditions [9].

For induction MFD, Fu P. et al. introduced a multi-mode neural network based on dynamic
routing with a multi-mode deep learning framework. They designed a multi-mode feature
extraction scheme usingmulti-source information for dimensionality reduction and invariant feature
capture. The experiment outcomes demonstrate that the proposed method’s strong performance,
effectiveness, and stability [10].

Addressing the manpower-intensive nature of traditional sensor-based fault detection methods,
Chikkam et al. proposed a methodology for estimating the faults in each component of the induction
motor by analyzing motor current characteristics. Additionally, they suggested estimating fault
severity using discrete wavelet transform coefficients based on feature extraction. Experimental
results affirm the proposed method’s accuracy and feasibility [11].

Wavelet packet decomposition utilizes analysis tree for presenting thewavelet packet, employing
multiple iterations of wavelet transformation for a details analysis of the input signal. This approach
offers a more refined analytical method for signal processing. Singla et al. addressed the intermittent
and random nature of solar photovoltaic output, posing a threat to power safety and reliability
in solar grid-connections. They introduced a hybrid model incorporating full wavelet packet
decomposition and bidirectional long short-term memory. The model accurately estimates solar
irradiance, demonstrating feasibility and effectiveness [12].

In the context of early fault detection and type recognition in rolling bearings, Lu et al. integrated
wavelet packet decomposition with graph theory to extract the correlation information among
wavelet packet coefficients. They proposed a two-stage framework for early warning detection
and fault recognition, capable of identifying both the time and position of early faults, as well as
the fault type. Experimental results indicate the framework’s effectiveness and superiority [13].

Addressing the challenge of bearing fault prediction, Habbouche et al. introduced a novel
data-driven method for bearing prediction. This method, based on wavelet packet decomposition
f bidirectional long short-term memory (BLSTM), is employed for preprocessing and tracking
the degradation processes, ultimately estimating the remaining service life of the bearings. The
results indicate the effectiveness of the proposed approach in detecting the degradation processes
of bearings and accurately predicting their remaining service life [14].

Liu et al. addressed the recognition challenges associated with coal-rock interfaces by proposing
a recognition system based on wavelet packet decomposition and fuzzy neural networks. Employing
various sensors to gather response signals from the shearer, the system achieved the extraction of
multi-signal features and data fusion for coal-rock interface recognition. The results demonstrate
that the proposed system exhibits high recognition accuracy and holds practical feasibility [15].

Sairamya et al. addressed the limited application of wavelet transform in classifying types of
epileptic seizures from normal electroencephalogram (EEG) signals. They employed both discrete
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wavelet transforms and wavelet packet decomposition to automatically diagnose epileptic seizures
and categorize their types. The results indicated that discrete wavelet transform achieved a higher
classification accuracy [16].

In view of the time-consuming and error-prone problem of visual detection and interpretation
of seizure types, Tang et al. proposed an innovative classification method that integrates wavelet
packet decomposition and local de-trend wave analysis into a computer-aided diagnostic systems.
This method aims to automatically and accurately classify various seizure types. The results
indicate that the proposed approach achieves a high overall classification accuracy, demonstrating
certain advantages [17].

To sum up, despite the extensive research conducted by previous scholars on MFD, a majority
of the diagnostic methods have relied heavily on neural networks, presenting challenges related to
acquiring training samples and extended training times. Consequently, the study of electric vehicle
motor fault diagnosis using the enhanced wavelet packet decomposition (WPD) and particle swarm
optimization (PSO) algorithm holds significant practical application value and promising prospects.

3. MFD using IWPD and PSO

Ensuring optimal performance and safety in electric vehicles necessitates meticulous motor
fault detection. Motors exhibit various fault types, contributing to the complexity of fault diagnosis.
To address this challenge, the study employs WPD for data preprocessing. Subsequently, it extracts
fault signal feature vector based on energy spectrum. The traditional PSO algorithm is then
improved, leading to the construction of an MFD model utilizing the CSA–BPSO algorithm.

3.1. WPD and feature vector extracting
The robust development of the electric vehicle industry stands as a pivotal measure for

effectively mitigating greenhouse gas emissions and diminishing reliance on oil-dependent
transportation [18]. Given the challenging factors of harsh driving environments and complex
driving conditions, the likelihood of failures in electric vehicles is notably high. The drive motor,
comprising the motor controller, drive motor, and reducer, serves as the power core of electric
vehicles. Motor failures are categorized based on severity into four types: slight fault, general fault,
serious fault and fatal fault [19].

Model-based fault diagnosis primarily relies on a fundamental wave mathematical model
established according to the operating principle and characteristics of the motor. This model is
then compared with the detected operating data of the motor and the calculated values derived
from the model. The fault diagnosis process is illustrated in Fig. 1.

Permanent magnet synchronous motors, relying on permanent magnets for excitation, boast
high efficiency and power density, making them extensively utilized in electric vehicles. Common
faults of permanent magnet synchronous motor include loss of magnetic fault, inter-turn short
circuit fault and eccentric fault. The loss of magnetic flux fault is unique to permanent magnet
synchronous motors and occurs when the permanent magnet undergoes prolonged operation,
experiencing demagnetization due to the combined interference of electrical and environmental
factors. This demagnetization compromises the magnetic induction performance of the permanent
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Fig. 1. Fault diagnosis

magnet [20]. Simultaneously, low-frequency components emerge around the fundamental frequency
of the current signal, resulting in characteristic frequencies as illustrated in Eq. (1).

fdmg = fs

����1 ± k
p

���� , (1)

where: fs represents the power frequency of the motor, p provides an overview of the number of
pole pairs of the magnetic poles.

The inter-turn short-circuit fault will cause the current in the motor winding to produce
imbalance, damage the electrical performance, the most obvious feature is manifested in the rotor
current will produce more current harmonic components, the existence of this phenomenon will
cause the generation of non-power frequency, as illustrated in Eq. (2).

fsc = fs

(
v

Z
P
± 1

)
, (2)

where: v is a positive integer, Z is the number of stator slots in the motor.
By analyzing the collected electrical parameters, the characteristic signal of the fault can be

learned. Eccentric fault will lead to unbalanced distribution of air gap in the motor, and then
cause the imbalance of magnetic flux in the air gap, at the same time, there will be fault harmonic
components in the three-phase line current, so it can be realized by means of the amplitude of
the current spectrum of side band components to identify and judge the eccentric fault. The specific
frequency calculation of the sideband component is illustrated in Eq. (3).

fpx = fs

[
1 ±

(
2k − 1

p

)]
. (3)

The Permanent Magnet Synchronous Motor (PMSM) primarily consists of components such
as the stator, rotor, and end cover, as illustrated in Fig. 2. The structure is relatively straightforward,
and its configuration alongside the drive system is depicted in Fig. 2.

Wavelet transform, a time-frequency signal analysis method in the field of fault diagnosis,
finds extensive application in the analysis of non-stationary signals. Wavelet transform is often
used to process, and the low-frequency part of the signal is decomposed to determine the wavelet
threshold, and then the signal is reconstructed to achieve the purpose of noise reduction. The
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(a) Structure of the drive motor
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Fig. 2. Structure and drive system of permanent magnet synchronous motor

wavelet packet transform is illustrated in Eq. (4).
µ2n(t) =

√
2

2N−1∑
k=0

hk µn(2t − k)

µ2n+1(t) =
√

2
2N−1∑
k=0

gk µn(2t − k)

, (4)

where: k and n are the translation variables, µn(t) is the original signal sequence, gk is a high-pass
filter, hk is a low-pass filter.

Wavelet packet decomposition is the optimization method of wavelet transform, determine
the number of decomposition layers, treat the non-stationary signal multi-level frequency band
division, and the signal low frequency and high frequency part of the layer-by-layer decomposition,
can effectively reduce interference, improve the signal-to-noise ratio role. The wavelet packet
decomposition is illustrated in Eq. (5).


φi,2m
k
=

∑
n∈Z

hn−2kφ
i−1,m
n

φi,2m+1
k

=
∑
n∈Z

gn−2kφ
i−1,m
n

, (5)

where: i is the scale variable, m is the frequency variable, φi,2m
k

and φi,2m+1
k

are the wavelet
coefficients, hn−2k is the low-pass filter, gn−2k is the high-pass filter.

The application of wavelets in signal processing requires careful consideration of both signal
processing needs and computational efficiency, encompassing four primary steps. The first step is to
determine the number of layers ofWPD according to the signal demand. The second step is to select
the wavelet packet base function and optimal tree according to the entropy standard. The third step,
according to the demand and the characteristics of the signal, determine the appropriate threshold
to quantize the wavelet packet decomposition coefficient. In the fourth step, the quantization
coefficient is used to reconstruct the wavelet packet. When the electric vehicle drive motor fails,
the characteristics of the differential energy signal can be retained for energy detection. The
original signal of the wavelet transform is studied in the square integrable real number space, and
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the wavelet norm is obtained, as illustrated in Eq. (6).

‖ f ‖22 =
∫
R

| f (x)|2 dx. (6)

If the studied signal sequence has wavelet, the wavelet transform and the original signal have
the characteristics of equal energy, and there is an equality relationship as illustrated in Eq. (7).∫

R

da
∫
R

db
����W f (a, b)

a

����2 = ‖ f ‖22
(
∀ f ∈ L2(R)

)
. (7)

The introduction of electric vehicles into the market aims to reduce reliance on internal
combustion engine-driven transportation systems, yet this transition paradoxically increases
the burden on the current power grid [21, 22]. The determination of feature vectors is helpful for
fault detection, can use the actual working conditions of the drive motor to determine the feature
vector, the general use of the feature signals is the working torque of the drive motor, current,
vibration, voltage and working temperature, etc. For example, distributed generators can detect
possible faults by monitoring the vibration of the generator [23, 24].

However, direct analysis of these signals results in significant data fluctuations, rendering fault
diagnosis challenging and introducing substantial errors. Using wavelet packet decomposition
to decompose and extract the signal feature vector can shorten the training time and improve
the probability of MFD. The structure of WPD is depicted in Fig. 3.

S
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DA2AA2
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AD2 DD2

Fig. 3. The WPD structure

According to the wavelet packet energy spectrum, it becomes possible to acquire the energy
distribution and inherent characteristics of the original signal. For expressing the energy of
the signal directly, the energy spectrum scale diagram is used to analyze the signal when the motor
fails. The energy spectrum scale is utilized for extracting the feature vector of the signal, and
the method is to analyze the existing differences, as illustrated in Eq. (8).
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where: E is the total energy of the signal,T is the feature vector after energy spectrum normalization.
Using wavelet packet decomposition to process signals, time domain feature parameters are

selected as feature vectors. The commonly selected time domain feature parameters include signal
peak, effective mean and kurtosis index, etc. The index is calculated as illustrated in Eq. (9).

xm = max(|xi |)

Xrms =
1
N

√√
N∑
i=1

x2
i (t)

K4 =

1
N

N∑
i=1

x4
i (t)

X4
rms

, (9)

where: xm is the signal peak, Xrms is the effective mean, N is the data length, K4 is the kurtosis
index.

3.2. Construction of the MFD based on CSA–BPSO algorithm
The PSO algorithm, an intelligent optimization technique inspired by the predatory behavior

of bird flocks, exhibits certain similarities with the optimization process of models when analyzing
bird foraging behavior. Particularly effective in handling complex optimization problems, the PSO
algorithm conducts a global search, significantly enhancing optimization efficiency and precision.
Firstly, determine a D-dimensional space, treat each bird as a particle, and input the particle’s
position information into the fitness function. The smaller the value obtained, the better the
particle’s spatial position. By iterating, the position of particles can be updated, and once all
iteration operations are completed, the optimal solution can be output. The velocity and position
updates of particle i are illustrated in Eq. (10).{

Vi j(t+1) = ωVi j(t) + c1r1
(
pbesti j(t) − xi j(t)

)
+ c2r2

(
gbesti j(t) − xi j(t)

)
xi j(t+1) = xi j(t) + vi j(t+1)

, (10)

where: ω is the inertia factor, c1 and c2 represent the learning factor, whose values directly interfere
with the convergence of the particle. vi j(t) and vi j(t+1) are the components of the particle’s velocity
in the j dimension when it evolves to the t and t + 1 generations, pbesti j(t) is the component of
the individual’s optimal position in the j dimension when it evolves to the t generation, xi j(t) and
xi j(t+1) are the components of the individual’s optimal position in the j dimension when it evolves
to the t and t + 1 generation, gbesti j(t) is the component of the entire particle swarm’s optimal
position in the j dimension when it evolves to the t generation.

The specific process of the PSO algorithm is depicted in Fig. 4.
In traditional PSO algorithms, the factors c and r can result in non-integer cluster numbering. To

address this issue, this study employs the Binary Particle Swarm Optimization (BPSO) algorithm
to formulate strategies for updating particle velocity and position. The BPSO algorithm is an
algorithm proposed on the basis of the PSO algorithm to solve discrete problems in space. It
can handle discrete space search and discrete model solving problems. After the PSO algorithm
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Fig. 4. PSO flowchart

updates the particle velocity, the velocity is expressed as a probability value, and the probability of
taking position xid as 1 is illustrated in Eq. (11).

S(vid) =
1

1 + e−vid
, (11)

where vid is the particle velocity.
After obtaining the probability value of velocity, the determination of particle position value is

illustrated in Eq. (12).

xid =
{

1, if rand() ≤ S(vid)
0, otherwise , (12)

where rand() is a random number with a value of [0–1].
Nevertheless, the BPSO algorithm also suffers from premature convergence and is prone to

local convergence. Therefore, this study proposes the Chaos Simulated Annealing (CSA) algorithm
to improve the BPSO algorithm. Chaos, a phenomenon confined to nonlinear deterministic systems
within limited spaces, exhibits complex and irregular motion, ergodicity, inherent randomness, and
regularity. Research using the ergodicity of chaos theory to rearrange the positions of particles and
enhance the global search performance of the algorithm. Chaos is a logistic map, and the expression
is illustrated in Eq. (13).

f (x) = µx(1 − x), (13)

where µ is an adjustable parameter with a value in the range of [0, 4].
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The SA algorithm is a heuristic, random search method for finding the optimal solution. It
draws inspiration from the similarity between the annealing problem of crystalline substances
in physics and the broader combinatorial optimization problem. The application process is not
affected by the initial value size, and can solve nonlinear, discontinuous, and random objective
function problems. It can obtain the optimal solution globally. The process of the simulated
annealing algorithm is depicted in Fig. 5.
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Meet termination 
conditions?

Generating new solutions 
through perturbation functions

Calculate the difference of the 
objective function

Is the difference 
less than 0?

Accept new models with a 
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Calculate a new objective function 
and perform cooling operations

End
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iterations?

Yes

No

Yes

No

Yes

No

Fig. 5. Flow chart of simulated annealing algorithm

However, in practical applications, finding the optimal solution can be time-consuming, and
using parameters for specific problem-solving can be challenging, often leading to simulated
annealing failure. Therefore, this study utilizes the approximate random search characteristics of
chaos to optimize the speed of searching for the optimal solution, and utilizes the ergodicity of
chaos to avoid simulated annealing failure. It can traverse all states in the space without repetition
within a certain search range, improving the effectiveness of solving the search.

The CSA algorithm builds upon the traditional SA algorithm by incorporating chaotic
optimization to determine the initial value. It is assumed that N feasible solutions are searched for
during the first iteration process, and the objective function values of N points are obtained through
the solving process. Compare all the obtained objective function values to find the maximum and
minimum value. The initial temperature value of the SA algorithm is illustrated in Eq. (14).

T0 =
(max fk −min fk)

ln Pr0

Pr0 = exp
−∆C

T0

, (14)

where: max fk and min fk are the maximum and min values, Pr0 is the probability of accepting
the new model, ∆C is the difference between the maximum and minimum values.
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The structure of the MFD model based on WPD and CSA–BPSO algorithm is depicted in
Fig. 6.

Extracting Fault Feature Vector through 
Wavelet Packet Decomposition

Input CSA-BPSO algorithm for fault 
diagnosis

Diagnosis Result Analysis

Statistics of motor data during normal 
operation and failure

Training sample data using CSA -BPSO 
algorithm

Fig. 6. Structure diagram of MFD model based on WPD and CSA–BPSO

4. Analysis of the effectiveness of MFD method based on IWPD
and PSO algorithm

In order to diagnose faults in electric vehicle motors, a method for extracting fault signal
feature vectors based on energy spectrum was proposed, and an MFD model based on the CSA–
BPSO algorithm was established. However, its effectiveness requires further validation. The
study primarily conducts analysis from two perspectives. First, it evaluates the effectiveness of
the proposed feature extraction method and the improved algorithm. Subsequently, the effectiveness
of the MFD model based on wavelet packet decomposition and the CSA–BPSO algorithm is
assessed.

4.1. Effectiveness analysis of feature extraction methods and CSA–BPSO algorithm

To obtain the wavelet packet coefficients of each node and achieve signal reconstruction,
the original signal was decomposed using WPD. The three-layer WPD of the obtained signal is
depicted in Fig. 7.
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Fig. 7. Three layer WPD of signals

For verifying the feasibility of the proposed method for extracting fault signal feature vectors
based on the energy spectrum, this study conducted a comparative analysis between the energy
spectrum scale maps of vibration signals from a normally operating motor and amotor experiencing
bearing faults. The experiment outcomes are given in Fig. 8. There are significant differences in
the energy ratio of the same frequency band under different states, so it is feasible to use the energy
spectrum scale for extracting the signal feature vectors.

To assess the performance of the proposed CSA algorithm, the research configured a population
size of 100, an initial temperature of 100◦, and a termination temperature of 10◦C. The results
were compared with SA algorithm and PSO algorithm, as shown in Fig. 9. As the number of
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Fig. 8. Energy spectrum scale maps under different states

iterations increases, the accuracy and recall of the three algorithms gradually increase. However,
among the three algorithms, the CSA algorithm has the highest accuracy and recall rates, with
0.96 and 0.92 respectively, followed by the PSO algorithm, and the SA algorithm has the worst
performance. These outcomes suggest that the chaos theory’s quasi-random search properties
contribute significantly to enhancing the performance of the SA algorithm, demonstrating a degree
of feasibility and effectiveness.
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Fig. 9. Comparison results of accuracy and recall of three algorithms

To evaluate the performance of the CSA–BPSO algorithm, the study selected the Vehicle,
Snow, and Wine datasets for testing. The maximum number of features was 60, the max categories
number was 15, the population was set to 20, and the maximum number of iterations was set
to 1 000. The results were compared with the BPSO algorithm and the SA-BPSO algorithm, as
shown in Fig. 10. Among the three algorithms, the curve of CSA–BPSO algorithm exhibits an
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increasing trend, showcasing superior global optimization ability. Both the BPSO algorithm and
the SA-BPSO algorithm are prone to falling into local optima. Especially in the Wine dataset,
the BPSO algorithm and SA-BPSO algorithm stopped searching when the number of iterations was
between 200 and 250, while the CSA–BPSO algorithm also experienced a sudden increase when
the number of iterations was around 620. These results indicate that the CSA–BPSO algorithm
demonstrates robust global optimization performance.
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Fig. 10. Comparison of classification accuracy of three algorithms

4.2. Analysis of the effectiveness of the MFD model based on WPD and CSA–BPSO algo-
rithm
For verifying the effectiveness of the MFD model based on wavelet packet decomposition and

CSA–BPSO algorithm, this study employed an NI data acquisition card to capture current, voltage,
and vibration signals from the drive motor. The collected data was then transmitted to the fault
diagnosis model for comprehensive evaluation and analysis in the context of motor fault diagnosis.
The parameters of the tested motor are detailed in Table 1.

The fault detection accuracy of the proposed model during both training and testing phases is
depicted in Fig. 11. The proposed model has the highest fault detection accuracy on both the test
and training sets, reaching over 98.2%, and has a small loss function of 0.0035. These findings
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Table 1. Test the parameters of the motor

Electrical parameter items Parameter

Rated torque 0.18 Nm

No-load speed 4 800 RPM

Rated speed 3 000 RPM

Number of pole pairs 2

Rated current 3.3 A

Rated voltage 24 VDC

No-load current 0.3 A

Rated power 60 W

signify that the MFD model, founded on wavelet packet decomposition and the CSA–BPSO
algorithm, is applicable for detecting motor faults in electric vehicles. The model demonstrates
a certain level of feasibility and effectiveness.
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Fig. 11. Fault detection accuracy results

For verifying the effectiveness of the fault signal feature vector extraction method based on
the energy spectrum, this study compared the MFD model based on wavelet packet decomposition
and the CSA–BPSO algorithm with the MFD model based solely on the CSA–BPSO algorithm,
as depicted in Fig. 12. The results illustrate a notable increase in fitness after the extraction of
fault signal feature vectors, with the optimum fitness reaching 97.4%. This outcome suggests that
the extraction of fault feature vectors comprehensively portrays the motor fault status, thereby
enhancing diagnostic accuracy.
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Fig. 12. Comparison results of fitness curves

5. Conclusion

In tandem with technological advancements and the escalating concerns surrounding environ-
mental pollution, electric vehicles are gaining widespread acceptance in the market. In addressing
the challenge of motor fault detection in electric vehicles, this study scrutinizes wavelet packet
decomposition, proposing a method for extracting feature vectors from fault signals based on
energy spectra. Additionally, an MFD model is established using the CSA–BPSO algorithm.

The findings reveal significant disparities in the energy ratio of the same frequency band under
varying states, affirming the feasibility of employing the energy spectrum scale for feature vector
extraction. Notably, the CSA algorithm demonstrates the highest accuracy and recall rates at 0.96
and 0.92, respectively, while the SA algorithm performs the worst. The beneficial impact of chaos
theory’s approximate random search characteristics on enhancing the SA algorithm’s performance
is evident.

In the Wine dataset, both the BPSO algorithm and the SA-BPSO algorithm cease searching
between 200 and 250 iterations, while the CSA–BPSO algorithm experiences a sudden increase
around 620th iteration. The proposed model attains the highest fault detection accuracy on both
the test and training sets, surpassing 98.2%, accompanied by a minimal loss function of 0.0035.
Following the extraction of fault signal feature vectors, a notable increase in fitness is observed,
with the optimal fitness reaching 97.4%. This underscores the comprehensive representation of
motor fault status achieved through the extraction of fault feature vectors.

In summary, the model devised in this study exhibits a degree of feasibility and effectiveness.
However, it is essential to note that the study exclusively analyzed single faults such as inter-
turn short circuits, demagnetization faults, and eccentricity faults in the motor. The absence of
consideration for scenarios involving multiple faults may impact the practical application efficacy
of the model, fail to meet the comprehensive fault diagnosis requirements of complex systems,
and make it difficult to accurately identify composite faults. Consequently, future research should
introduce more types of faults and perform fusion analysis on fault signals to develop a more
robust motor multiple fault detection model.
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