1. Introduction

The durability of anti-aircraft guns in which gas flows at high pressure (of the order of hundreds of MPa) and high temperature (of the order of thousands of Kelvin) is influenced by mechanical erosion and changes in the thermophysical properties of steel. This damage manifests as a network of cracks as well as degradation of the Cr protective coating [1–5]. Thermal loads occurring during the operation of the barrel influence the microstructure, e.g. related to the ferrite-austenite phase transition of the barrel steel leading to a change in its mechanical properties [6–9]. The abovementioned phase transition during the heating and cooling of steel is associated with a sharp change in volume that in turn is caused by a transition from the BCC (body-
The authors of this paper suggest that the phase transition effect should only be included in the thermal conductivity characteristics [10,21].

The work aimed to investigate the thermophysical properties of the 32CrMoV12-28 (1.2365) hot work tool steel with the medium carbon content, in which, apart from the phase transition at the Curie point, there is a ferrite-austenite phase transition and the associated material shrinkage occurrence. To identify this transition, the DSC (differential scanning calorimetry) stepwise scanning method according to EN ISO 11357-4 was used, which allowed it to qualify as a first-order phase transition. According to the Ehrenfest nomenclature, the phase transition of the first kind is accompanied by the heat of the phase transition [6]. In addition to the specific heat, other thermophysical properties of this steel were also tested, i.e. thermal diffusivity and thermal expansion in the temperature range from RT (room temperature) to 1000°C. The thermophysical properties of the hot working 32CrMoV12-28 tool steel will be used as input data for the numerical simulation of heat transfer in a 35 mm cannon barrel, analogous to those of steels with medium carbon content, i.e. 30HN2MFA, 38HMJ (1.8509) and X37CrMoV5-1 (1.2343) [22–27]. As part of the paper, the authors also compared 32CrMoV12-5 steel with previously tested barrel steels with medium carbon content, looking for the relationship between the shrinkage temperature and the chromium content in these steels. This paper is a summary of research on the thermophysical properties of barrel steels with medium carbon content conducted by the authors from 2020 to the present [8,10,18,28].

2. Materials and methods

2.1. Materials

The 32CrMoV12-28 hot-work tool steel bar (Akrostal, Rogozno, Poland) supplied for testing was cylindrical with a length of 500 mm and a diameter of 71 mm. The tests were performed without additional heat treatment. The nominal composition (wt. %) of the test steel (32CrMoV12-28) is given in Table 1.
32CrMoV12-28 is a high-alloy steel primarily used for making hot work tools, such as cutting and punching tools, dies and knives [29]. Generally, 32CrMoV12-28 is a high-performance tool steel engineered for applications where good toughness, wear resistance and high hardness are required, especially at lower temperatures. It can be heat-treated to achieve the desired mechanical properties for various tools and cutting applications [7, 29]. As shown by the research described in this paper, compared to 38HMJ and 30HN2MFA steel, 32CrMoV12-28 steel is characterized by a higher ferrite-austenite transformation temperature, which is approximately 835.8°C. Only for X37CrMoV5-1 steel, shrinkage occurs at a higher temperature, i.e. 860.9°C.

2.2. Sample preparation

For the thermal diffusivity tests, cylindrical specimens with a thickness of 1.63 mm and a diameter of 12.70 mm were cut from a rod with a diameter of 71 mm. To increase the absorption of the energy of the heat pulse generated by the xenon lamp or laser, the samples were coated with a thin layer of graphite 2–3 µm thick (Graphit 33 Kontakt Chemie). The density of the materials was determined on a Sartorius MSA125P-1CE-DA analytical balance (accuracy [d]: 0.01 mg) using the double weighing method (in air and water). The result of measuring the density of the hot work steel at room temperature was 7.80 g/cm³.

Cylindrical samples with a diameter of d = 6 mm and a mass of m = 191.3 mg for the test material and m = 114 mg for the reference material were used for DSC investigations. During the measurement, both samples were placed in a platinum crucible with a platinum lid (Pt crucible volume: 85 µl).

The samples for the dilatometric test had also cylindrical shapes with a diameter of 6.0 mm and length of 24.35 mm for hot-work tool steel (32CrMoV12-28). All samples were cut from the bar using a water-cooled cutting disc.

2.3. Microstructure analysis and Vickers micro-hardness measurements

The preparation of metallographic samples involved several steps. Initially, samples were cut using a precision cut-off machine and subsequently embedded in thermosetting Bakelite resin. Next, a sequence of abrasive treatments was applied, including grinding with 320-grit SiC paper and polishing using diamond pastes with particle sizes of 6, 3, and 1 µm. A final polishing step utilized 0.25 µm silica. The resulting microstructures were examined using two microscopy methods. The Keyence VHX-6000 digital (light) microscope was employed for initial analysis. Additionally, the Phenom Pro-X scanning electron microscope (Thermo Fisher Scientific) was used. SEM was equipped with an energy dispersive spectroscopy (EDS) chemical composition analyzer and operated at an acceleration voltage of 15 kV. To enhance the visibility of specific features, samples underwent etching with nital.

To validate the mechanical properties of the 32CrMoV12-28 steel, Vickers micro-hardness measurements at ambient temperature were conducted. This involved applying a load of 1000 g with a loading time of 10 s for each indentation. The measurements were performed using the Quiness Q10 A+ Micro Hardness Tester from ATM Queness GmbH, which is a part of Verder Scientific, located in Maastricht, the Netherlands. The mean value for hardness was calculated based on a minimum of ten measurements for each sample.

2.4. Thermal analysis

2.4.1. Thermal diffusivity measurement

Thermal diffusivity measurements were performed using devices from Netzsch (Selb, Germany). To compare the results, tests were carried out on two devices: LFA 427 (laser flash apparatus) and LFA 467 HyperFlash (light flash apparatus). Thermal diffusivity testing using LFA devices refers to the Parker method and involves generating a heat impulse by a laser (LFA 427) or a xenon lamp (LFA 467) on one side of a plane-parallel sample and measuring the temperature change on the other side of the sample. Thermal diffusivity is calculated using the standard Cape-Lehman model with pulse correction for which a theoretical curve is fitted to the measurement points obtained on the IR (infrared) detector (CdHgTe) [30]. The standard model includes the effects of heat loss through surface radiation in the context of the temperature change of the analysed sample. Thermal diffusivity measurements were carried out independently on two instruments: LFA 467 at RT~500°C and LFA 427 at RT~1000°C. For each temperature step, two measurements were made in an atmosphere of argon as an inert gas at a flow rate of 50 ml/min. Unlike LFA 427, LFA 467 enables specific heat and thermal conductivity of the material under test to be measured, because the design of LFA 467 allows measurements to be made for several samples simultaneously. To determine the specific heat using the comparative method, Inconel 600 was used as a reference material [31]. In the comparative method, we use the following Eq. (1) to determine the specific heat:

$$c_{p}^{e}(T) = \frac{\rho \cdot \rho_{ref} \cdot d_{ref} \cdot \sigma_{T} \cdot \frac{\rho_{n}}{\rho_{n}^{2}} \cdot \frac{\rho}{\rho_{ref}} \cdot \frac{d}{d_{ref}}\cdot \frac{\rho_{ref}^{2}}{\rho_{n}^{2}} \cdot c_{p}^{ref}(T),$$

where there are such parameters as corrected detector signal \(T_{c}\), density of sample material (\(\rho\)), sample diameter (\(d\)), pulse energy (\(Q\)), gain of the detector signal amplitude (\(V\)), diameter of IR detector measurement field (\(d\) with orifice index) and specific heat at constant pressure (\(c_{p}\)); superscripts: ref-reference material, \(s\)-sample. The \(T_{c}\) parameter is proportional to the adiabatic temperature and takes into account surface heat losses. In the context of Eq. (1) and the thermal diffusivity value of the
test sample $a(T)$ obtained from LFA 467, the thermal conductivity $k'(T)$ was determined using Eq. (2):

$$k'(T) = \frac{\rho_0}{[1 + \varepsilon(T)]} \alpha(T) c_p(T),$$

where $\varepsilon(T)$ stands for the relative elongation of the sample (thermal expansion).

2.4.2. Dilatometric measurements

A Netzsch pusher dilatometer (DIL402C) was used to measure the thermal expansion of 32CrMoV12-28 steel. The experiment was conducted in the range from room temperature (RT) to 1100°C. As a protective gas, nitrogen was supplied to the measurement chamber at a flow rate of 60 ml/min. The thermal expansion of the sample, expressed by the coefficient of linear thermal expansion (CLTE), is practically represented regarding the initial sample length $L(T_0)$ – denoted as CLTE* and represented by Eq. (3) [31,32]:

$$\text{CLTE}^*(T) = \left(\frac{1}{L(T)} \right) \frac{dL(T)}{dT} = \left(\frac{1}{L_0} \right) \frac{dL_0}{dT} \Delta \varepsilon,$$

The heating rate (HR) was 2 K/min. The relative elongation mentioned in Eq. (2) is related to CLTE* as follows:

$$\text{CLTE}^*(T) = \left(\frac{1}{L_0} \right) \frac{dL_0}{dT} \Delta \varepsilon.$$

2.4.3. Differential scanning calorimeter measurement

The specific heat capacity temperature characteristics were determined using a Netzsch DSC 404 F1 Pegasus differential scanning calorimeter (DSC). Two methods were used, i.e. the classic method of the continuous-scanning - in the range of RT to about 1000°C and the stepwise-scanning method according to EN ISO 11357-4 – in the range of 490°C to about 910°C [33]. In the classical DSC approach, the temperature characteristics of the heat capacity of the test material were determined using the c_p-ratio method from three DSC curves (test sample line, sapphire line, baseline) [31]. The test was carried out at a heating/cooling rate (HR/CR) of 10 K/min. In the case of the stepwise DSC method, the temperature rise was achieved through a sequence of isothermal and dynamic segments. The dynamic segments heated up at a rate of 10 K/min, and the isothermal segments lasted 10 min. The temperature increase during the dynamic section was 20°C. An initial dynamic segment was used to reach a first isothermal temperature of 490°C. The next isothermal segments were: 510°C, 550°C, 590°C, 650°C, 690°C, 710°C, 730°C, 750°C, 770°C, 790°C, 810°C, 830°C, 850°C, 870°C, 890°C. To avoid damage to the crucible/DSC sensor system, the maximum isothermal temperature segment was limited to 910°C. Similarly, to the classic DSC method, in the stepwise DSC method, 3-DSC curves (baseline, sapphire line and line of the tested sample) were used to determine the specific heat. The specific heat of the sample was calculated from the peak integrals of the DSC signals during dynamic temperature steps according to Eq. (5) [33]:

$$c_p^s = \frac{c_p^{st} \Delta m_s}{\Delta Q_{st}} \frac{\Delta Q_{sash}}{\Delta Q_{bl}}$$

where c_p^s is the specific heat capacity of the sample; c_p^{st} is the specific heat capacity of the sapphire; s, st and bl indices denote the sample, sapphire and baseline; ΔQ_s, ΔQ_{sash}, ΔQ_{bl} are the integrals of the peak-shaped DSC signals during a dynamic temperature step; m_s and m_t are the masses of the sapphire and the sample.

Both in the classic method and in the stepwise method, the tests were carried out in a protective atmosphere of argon at a flow of 20 ml/min. To obtain stable DSC signals, two evacuations of argon filling the furnace chamber were used along with 15-minute isothermal segments at the beginning of the measurement.

3. Thermal analysis

3.1. Microstructural analysis

The typical microstructure of 32CrMoV12-28 hot-work steel is dependent on the performed heat treatment, i.e. quenching and tempering temperatures and times. The final microstructure and hence properties can be tailored to meet the desired mechanical and thermal requirements for a particular application.

The examined microstructure of as-received 32CrMoV12-28 steel is composed of tempered martensite, as a matrix, and precipitations of carbides (Fig. 1). Generally, tempered martensite is obtained when quenched steel is subjected to a tempering process to reduce the brittleness and improve toughness. This process involves reheating the steel to a specific temperature range and holding it for a certain period to transform some of the martensite into tempered martensite, which is less brittle and has improved ductility compared to the as-quenched martensite.

Observed carbides are compounds of carbon with various alloying elements, i.e. chromium, vanadium, molybdenum and silicon, see Fig. 1 (EDS – element distribution map).

These carbides occur along grain boundaries as well as are dispersed throughout the tempered martensitic matrix. In both cases, they are elliptical or even spherical.
A slight reduction in hardness was observed after the DSC test. The hardness of the sample HV1 in the initial state was 194 ± 4, while it decreased to 190 ± 3 for the sample after the DSC measurement. This reduction may be due to an increase in the amount of martensite in the sample material after the DSC measurement.

3.2. Thermal properties investigations

The thermal expansion, specific heat capacity and thermal diffusivity of 32CrMoV12-28 steel were investigated from room temperature (RT) to about 1000°C. Measurements of the thermal diffusivity of the tested steel allowed for the identification of the Curie point temperature and changes in thermal diffusivity as a function of temperature. Only one measurement cycle was performed, as in the case of thermal expansion and specific heat using the classic continuous-scanning DSC method. In the case of stepwise scanning DSC method of the specific heat measurements (in the range 490–910°C), the tests were repeated twice to verify the measurement results.

Thermal diffusivity tests were carried out in stages. In the first stage, measurements were made from room temperature to 1000°C using an LFA 427 apparatus. The results of the thermal diffusivity measurements were obtained while the sample was being heated. In the second stage, thermal diffusivity measurements were also taken from room temperature to 480°C. For this purpose, the LFA 467 apparatus was used and the thermal diffusivity characteristics were determined during the heating of the samples. At the same time, for the steel sample, the thermal diffusivity of the reference material (Inconel 600) was also measured using LFA 467. This measurement was necessary to calculate the specific heat as a function of the temperature of the steel under test, using Eq. (1).

The DIL402C high-temperature dilatometer was used to measure thermal expansion. The measurements aimed to determine the thermal expansion characteristics of the test material from room temperature to 1000 °C during continuous heating at 2 K/min.

In the case of specific heat investigations, two methods were used, i.e. the classic continuous-scanning DSC method and the stepwise-scanning DSC method according to EN ISO 11357-4. In addition, a comparative method of measuring thermal diffusivity LFA 467 in the temperature range RT–500°C was used together with the apparent specific heat measurements DSC in the temperature range RT–1000°C, for specific heat calculations.

Netzsch Geräte GmbH guarantees the proper accuracy of its devices. This allows the determination of thermophysical properties of the tested material based on two to three measurements. To ensure sufficient accuracy, measurements on a reference material supplied by Netzsch with thermophysical characteristic tables must be performed before each measurement series. To verify the accuracy of the device, the thermophysical measurement results for the reference material are compared with the data from the tables. For thermal diffusivity measurements, the reference material was Inconel 600 and the deviation of the results did not exceed 5%. Sapphire was used in thermal expansion measurements. The deviation of the measurement results from Netzsch data did not exceed 4%. The same material was used in specific heat measurements. The accuracy did not exceed a 6% difference between the data provided by Netzsch and the data obtained from the reference sample measurements. Additionally, the device undergoes temperature calibration with the melting of pure elements (tin, zinc, silver, etc.) to improve measurement accuracy.

3.2.1. Thermal diffusivity investigations

The temperature characteristics of the thermal diffusivity of 32CrMoV12-28 steel obtained with both diffusometers (LFA427 and LFA467) are shown in Fig. 2. From the thermal diffusivity characteristics, it can be seen that at a temperature of about 764.8°C, there is a phase transition from the ferromagnetic to the paramagnetic state – the Curie point. As can be seen in Fig. 2, the thermal diffusivity of 32CrMoV12-28 decreases steadily with temperature up to the Curie point and reaches a minimum value of about 3 mm²/s. Beyond the Curie point temperature, the thermal diffusivity increases with temperature.

Figure 3 shows the dependence of thermal conductivity as a function of temperature, obtained by the comparative method in the RT–500°C range and using Eq. (2) in the RT–1000°C range. The differences between the two characteristics for the RT–500°C range are due to the lower accuracy of the thermal diffusivity determination (Fig. 2, black dashed line) using the LFA 467 apparatus.

Figure 4 shows the dependence of specific heat as a function of temperature, obtained by a comparative method using LFA 467 from room temperature to 500°C, and obtained by approximation of experimental data from DSC in the RT–1000°C range.
3.2.2. Thermal expansion investigations

The DIL402C high-temperature dilatometer was used to measure the thermal expansion of the test steel from room temperature (RT) to 1000°C during continuous heating at a rate of 2 K/min. One measurement cycle was carried out for the sample. The temperature-dependent thermal expansion characteristics of 32CrMoV12-28 steel are shown in Fig. 5.

3.2.3. Differential scanning calorimeter investigations

The result of the classic continuous-scanning DSC method of the apparent specific heat investigations (calculated using the c_p-ratio method) based on the 3-DSC curves (baseline, sapphire line and tested sample line) for the 32CrMoV12-28 hot-work tool steel samples is shown in Fig. 6. One measuring cycle was carried out for the sample. The figure also shows the specific heat determined by the comparison method during thermal diffusivity measurements (LFA 467) in the RT to about 500°C range (dotted black line) and from the approximation of the experimental data on DSC in the range from RT to 1000°C (green dashed line).

To sum up, the input data for numerical simulations of heat transfer in the barrel related to the thermophysical properties of steel will be used: specific heat in the form of a polynomial Eq. (6), the dependence of thermal conductivity as a function of temperature presented in the form of a red dotted line in Fig. 3, and the dependence of density as a function of temperature illustrated in the form of a blue line in Fig. 5.

A comparison of the results of the stepwise-scanning DSC method with the results of the classic continuous-scanning DSC method for the same steel is shown in Fig. 7. Two measuring

Fig. 4. Specific heat as a function of temperature for the 32CrMoV12-28 hot-work tool steel obtained from the first heating run on LFA 467 in the range from RT to about 500°C (dotted black line) and from the approximation of the experimental data on DSC in the range from RT to 1000°C (green dashed line).

Fig. 5. Density, thermal expansion and CLTE as a function of temperature for the 32CrMoV12-28 hot-work tool steel obtained from the first heating run on DIL 402 C.

Fig. 6. Temperature characteristics of apparent specific heat for the 32CrMoV12-28 hot-work tool steel obtained from the first heating run: dotted green line—results obtained from LFA 467; dashed purple line—approximation of measurement from DSC; black line—results obtained from classic continuous-scanning DSC method.

Table 2. Coefficients for calculating specific heat capacity of 32CrMoV12-28 sample on Eq. (5).

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Value</th>
<th>Coefficient</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1 [J/(g K)]</td>
<td>4.1470×10^3</td>
<td>a_0 [J/(g K)]</td>
<td>4.8932×10^2</td>
</tr>
<tr>
<td>a_2 [J/(g K)]</td>
<td>6.0408×10^-4</td>
<td>a_3 [J/(g K)]</td>
<td>4.5697×10^-2</td>
</tr>
<tr>
<td>a_0 [J/(g K)]</td>
<td>-8.1376×10^-7</td>
<td>a_4 [J/(g K)]</td>
<td>-7.3739×10^-7</td>
</tr>
</tbody>
</table>

Fig. 7. Temperature characteristics of apparent specific heat for 32CrMoV12-28 obtained from: the first heating run by the classic continuous scanning DSC method—black line; the first and second heating runs by the stepwise-scanning DSC method—blue and red points together with the characteristic of specific heat obtained from LFA 467—dashed green line.
cycles were carried out for the sample in the temperature range 490–900°C in the case of the stepwise scanning DSC method.

Repeated thermostating of the sample in the stepwise-scanning DSC method removes the peak associated with the shrinkage temperature of the tested steel, i.e. 846.5°C, because this type of phase transformation requires the supply of heat. The first peak, i.e. 768.5°C, remains practically in the same place as in the classic continuous-scanning DSC method, because it is related to the phase transition at the Curie temperature.

Both methods of measuring apparent specific heat, i.e. the classic method, the so-called continuous-scanning DSC method and the stepwise DSC method – under the EN ISO 11357-4 standard, are complementary. Thermostating the sample also allows for a better understanding of the results of measurements of thermal diffusivity of barrel steels as a function of temperature.

3.2.4. Comparison of thermophysical properties of selected barrel steels

Figure 8 presents a summary of the results of measurements of thermophysical properties, i.e. thermal diffusivity, thermal expansion and apparent specific heat as a function of temperature for selected barrel steels with medium carbon content, i.e. 30HN2MFA, 38HMJ, X37CrMoV5-1, 32CrMoV12-28. All these measurements were performed using various methods [8–10]. Measurements of thermal diffusivity using the laser flash method (LFA 427) required thermostating the sample to the measurement temperature, which made it impossible to record changes in this parameter during the phase transition associated with the shrinkage effect of the steel. However, thermostetting the sample at the measurement temperature did not affect the registration of the thermal diffusivity of phase transitions at the Curie temperature. In the case of measurements of apparent specific heat using the continuous scanning DSC method and thermal expansion using the pushrod dilatometer method, peaks related to steel shrinkage were also recorded (Fig. 8). Thermostating of the sample did not prevent the recording of changes in thermal diffusivity as a function of temperature during the second type of phase transition, i.e. the transition of steel from the ferromagnetic state to the paramagnetic state at the Curie point, because the heat of this phase transition is zero. The identification of the phase transition at the Curie point as a phase transition of the second type was also confirmed by measurements of the apparent specific heat using the stepwise DSC method, which also required thermostating of the sample at the measurement temperature (Fig. 7).

In the case of 30HN2MFA steel, both transformations, i.e. Curie and shrinkage, coincide, which is confirmed by the measurements of thermal expansion of this steel (Fig. 8). It is also worth noting that despite the different heating rates of the sample using the DSC method, i.e. 10 K/min, and thermal expansion, i.e. 2 K/min, the shrinkage temperatures obtained by both methods practically coincide. Differences in the determination of shrinkage effect temperature reach approximately 3°C.

Figure 9 shows the steel shrinkage temperature as a function of the chromium content for selected barrel steels with medium carbon content, i.e. 30HN2MFA, 38HMJ, X37CrMoV5-1, 32CrMoV12-28. It is also worth noting that the higher the Cr content in the steel, the higher the shrinkage temperature (Fig. 8 and Table 3).
Table 3. Chemical composition of tested steels [8,10].

<table>
<thead>
<tr>
<th>Steel grade</th>
<th>Chemical composition [wt. %]</th>
<th>Fe</th>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>30HN2MFA</td>
<td></td>
<td>96.42</td>
<td>0.29</td>
<td>0.26</td>
<td>0.36</td>
<td>0.65</td>
</tr>
<tr>
<td>38HMJ</td>
<td></td>
<td>95.21</td>
<td>0.44</td>
<td>0.24</td>
<td>0.34</td>
<td>1.61</td>
</tr>
<tr>
<td>32CrMoV12-28</td>
<td></td>
<td>92.88</td>
<td>0.32</td>
<td>0.25</td>
<td>0.30</td>
<td>3.00</td>
</tr>
<tr>
<td>X37CrMoV5-1</td>
<td></td>
<td>90.71</td>
<td>0.39</td>
<td>0.84</td>
<td>0.36</td>
<td>5.52</td>
</tr>
</tbody>
</table>

4. Conclusions

The authors analyzed the thermophysical properties of medium-carbon barrel steel 32CrMoV12-28 and compared it with other previously measured barrel steels, i.e. 30HN2MFA, 38HMJ, X37CrMoV5-1, manufactured on behalf of arms factories. In all of them, apart from the phase transition associated with the Curie point, the ferrite-austenite phase transition occurs. This phenomenon is related to material shrinkage (the transformation into austenite) and occurs in the tested steels at various temperatures. It is widely known that chromium influences the shrinkage temperature in medium carbon hot-work steels which in turn refers to the phase transformation behavior of such steels. The transformation of ferrite into austenite is determined by several alloying elements, including chromium, and can affect the shrinkage temperature, which is the temperature at which this transformation occurs during cooling or heating. Chromium is a ferrite stabilizer which means, that it tends to promote the formation of ferrite in steel. Hence, it can increase the temperature at which austenite transforms into ferrite during cooling. It implies that the addition of chromium can lead to a higher shrinkage temperature, as the transformation from austenite to ferrite will occur at a higher temperature. Furthermore, chromium also has a strong affinity for carbon, and hence it forms carbides that can act as nucleation sites for phase transformations, affecting the kinetics of the transformation. Express differently, the presence of chromium carbides can potentially raise the shrinkage temperature. It should be borne in mind, however, that the exact influence of chromium on the shrinkage temperature in medium carbon hot-work steels can vary depending on the specific composition of the steel, including the presence of other alloying elements such as nickel, manganese, molybdenum, vanadium, and chromium. Additionally, the heat treatment process, cooling rate, and other factors can also have an impact on the transformation behaviour and shrinkage temperature. Summarizing this part, chromium in medium carbon hot-work steels raises the shrinkage temperature by promoting the formation of ferrite and influencing the nucleation of phase transformations. Nevertheless, it is important to remember that the precise effect depends on the overall steel composition and processing conditions.

Another problem is the measurement of the specific heat of the tested steel. According to Ehrenfest’s classification, the effect of material shrinkage is a phase transition of the first type, i.e. a transition associated with the heat of transformation. To identify this effect, the authors used the stepwise scanning method in DSC studies. Thermostating of the measurement sample near the material shrinkage temperature, which is associated with the supply of phase transition heat, practically eliminates the peak associated with the characteristics of the apparent specific heat obtained in the classic method of continuous scanning DSC measurement. It should be noted that the thermostating of the sample does not affect the peak related to the Curie point temperature, because the heat of this transformation is equal to zero.

As a result, it can be concluded that an analogous character of temperature-dependent changes in thermophysical properties is observed in steels with medium carbon content. The thermal diffusivity and thermal conductivity of these steels decrease monotonically with increasing temperature until the Curie point is reached, for which they reach a minimum value. The values of both parameters increase above the ferromagnetic-paramagnetic phase transition temperature. However, the increase in the values of these parameters is small. Two peaks are observed in the apparent specific heat results. The first endothermic peak is related to the Curie point temperature (ferromagnetic-paramagnetic transition). The second peak is related to the ferrite-austenite phase transition. For 30HN2MFA steel, we observe the overlap of the peaks of these two transitions (Curie point temperature and ferrite-austenite transition).

The analysis of the influence of steel shrinkage temperature as a function of chromium content allowed for ranking the selected barrel steels with medium carbon content, i.e. 30HN2MFA, 38HMJ, X37CrMoV5-1, 32CrMoV12-28 in terms of their suitability for military applications. The least useful steel is currently the most commonly used, i.e. 30HN2MFA, because the shrinkage temperature of this steel is the lowest and is 749.7°C. The best steel for barrels is X37CrMoV5-1 because the shrinkage temperature of this steel is approximately 860.9°C, which allows for more heat impulses (shots). The 32CrMoV12-28 steel analyzed in this work has a shrinkage temperature of 835.8°C, which makes it as attractive as the X37CrMoV5-1 steel.

References

[8] Koniorczyk, P., Zmywaczyc, J., Dębski, A., Zielinski, M., Preis-

