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Abstract. This paper proposes a new principal component analysis (PCA) scheme to perform fault detection and identification (FDI) for systems
affected by process faults. In this scheme, a new modeling method which maximizes the model sensitivity to a certain process fault type is
proposed. This method uses normal operating or known faulty data to build the PCA model and other faulty data to fix its structure. A new
structuration method is proposed to identify the process fault. This method computes the common angles between the residual subspaces of the
different modes. It generates a reduced set of detection indices that are sensitive to certain process faults and insensitive to others. The proposed
FDI scheme is successfully applied to the Tenessee Eastman process (TEP) supposedly affected by several process faults.
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1. INTRODUCTION

The use of data based FDI methods are becoming increasingly
valuable assets to overcome the growth of complexity in high
scale industrial processes [1–3]. These methods excel at ex-
tracting valuable insights from historical data and computing
relationships between its variables. Such insights play a cru-
cial role in avoiding undesirable events by enabling timely and
accurate decision-making which ensures smooth and reliable
industrial process operations [4, 5].

PCA gained popularity as a data-driven technique in FDI
due to its simplicity, efficiency in detecting abnormal operating
conditions and aptitude in identifying malfunctioning compo-
nents [6]. It finds successful applications in various industrial
fields [1, 7] and transforms the original process variables into
new, linear combinations of the original, occupying a lower di-
mensional subspace.

Industrial operations often undergo frequent alterations at-
tributed to factors such as setpoint adjustments, fluctuations in
raw materials, variations in feed material composition, equip-
ment aging and process modifications [8, 9]. These alterations
lead to changes in process parameters, issues with actuators, and
sensor degradation. Parameter changes in operations arise from
either changing operating conditions or process faults [3, 10]
which represent the studied fault type in this paper.

PCA-based FDI methods have been extensively studied in pro-
cesses affected by actuator and sensor faults [7, 11]. However,
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the focus on the application of PCA to recognize different pro-
cess varying operating modes and identify its parameter changes
is a novelty in the existing research [6, 12]. The exploration of
PCA potential in handling such scenarios holds promise to en-
hance fault detection and diagnosis capabilities in real industrial
processes [11, 13, 14].

This paper introduces a novel PCA-based approach for detect-
ing and identifying alterations in process parameters. An out-
lined modeling technique designed to maximize the detection
of certain faulty process data is proposed. A new strategy of
structuration of the detection indices is presented. It revolves
around investigating the angles among residual space vectors
from distinct process operating modes. It involves splitting the
residual space vectors of each mode into two subsets. The sub-
set common to the studied modes aids in generating indices that
are sensitive to specific modes while remaining insensitive to
others. The whole proposed PCA-based scheme for modeling
and process fault identification is successfully applied to the
Tennessee Eastman process [15, 16].

The organization of the paper is as follows: Section 2 presents
the principle, the existing and the proposed modeling method
in PCA. Section 3 presents the principal angles theory and the
proposed structuring method. Section 4 illustrates a study of the
TEP and demonstrates the proposed modeling and structuring
method efficiency in detection and identification of different
operating modes. Conclusions are given in Section 5.

2. PRINCIPAL COMPONENT ANALYSIS

This section presents the formulation of PCA, some of its most
used modeling techniques and a proposed method of modeling
based on maximizing the detection of a known process fault.
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2.1. PCA formulation

In order to perform a PCA, all the inputs and outputs observed
in the instant k are regrouped into column data vector 𝑧𝑟 (𝑘):

𝑧𝑟 (𝑘) =
[
𝑧𝑟1 (𝑘) 𝑧

𝑟
2 (𝑘) . . . 𝑧

𝑟
𝑚 (𝑘)

] 𝑡
. (1)

After that, 𝑧𝑟 (𝑘) ∈ R𝑚 is scaled to zero mean and unity variance
in order to obtain the vector 𝑧(𝑘) =

[
𝑧1 (𝑘) . . . 𝑧𝑚 (𝑘)

] 𝑡
.

The data matrix 𝑍 resulting from the juxtaposition of 𝑧(𝑘) in
different instants is written:

𝑍 =

[
𝑧(𝑘) . . . 𝑧(𝑘 +𝑁 −1)

] 𝑡
. (2)

The subscript 𝑁 designates the number of observations used in
the construction of the matrix 𝑍 .

The correlation matrix Σ ∈ R𝑚×𝑚 identifies the relationships
among process variables. It is obtained from 𝑍 by using:

Σ =
1

𝑁 −1
· 𝑍 𝑡𝑍 . (3)

This matrix can always be decomposed as following:

Σ = 𝑃.Λ.𝑃𝑡 ; 𝑃.𝑃𝑡 = 𝑃𝑡 .𝑃 = 𝐼𝑚 . (4)

The notationΛ= 𝑑𝑖𝑎𝑔(𝜆1 . . .𝜆𝑚) designates the diagonal matrix
of eigenvalues.

The matrix Σ is symmetric and semidefinite positive so its
eigenvalues 𝜆𝑞 are positive reals and can always be arranged
according to decreasing magnitude 𝜆1 ≥ 𝜆2 ≥ . . . ≥ 𝜆𝑚 ≥ 0.

The notation 𝑃 ∈ R𝑚×𝑚 represents the matrix containing the
eigenvector 𝑝𝑞 ∈ R𝑚.

Modeling a process via static PCA consists in seeking an op-
timal linear transformation (with respect to a variance criterion)
of the original data matrix 𝑍 into a new one called𝑇 and defined
as follows:

𝑇 = 𝑍 ×𝑃 ; 𝑇 =

[
𝑡1 · · · 𝑡𝑚

]
∈ R𝑁×𝑚. (5)

The vectors 𝑡𝑞 ∈ R𝑁 , 𝑞 ∈ {1, . . . ,𝑚}, called principal compo-
nents are uncorrelated and arranged in the decreasing variance
order [17]. This guarantees that all the process variations are
contained in the few first principal components, thus permitting
the reduction of variables number for process description.

It was demonstrated [17] that the column vectors 𝑝𝑞 of 𝑃

represent the eigenvectors associated to the eigenvalues 𝜆𝑞 ob-
tained from the diagonalization of Σ. The matrices Λ, 𝑃 and 𝑇

can always be partitioned as follows:

Λ =

[
Λ̂ 0
0 Λ̃

]
, 𝑃 =

[
�̂� �̃�

]
, 𝑇 =

[
𝑇 𝑇

]
. (6)

The matrices Λ̂ ∈ Rℓ×ℓ , �̂� ∈ R𝑚×ℓ and 𝑇 ∈ R𝑁×ℓ are as-
sociated to the modeled part of process variance. Whereas
Λ̃ ∈ R𝑚−ℓ×𝑚−ℓ , �̃� ∈ R𝑚×𝑚−ℓ and 𝑇 ∈ R𝑁×𝑚−ℓ are linked to
the non modeled part.

The data matrix can be decomposed in the following form:

𝑍 = �̂� +𝐸 with �̂� = 𝑍�̂� ; 𝐸 = 𝑍�̃�. (7)

The matrices �̂� = �̂��̂�𝑡 and�̃� = 𝐼𝑚−�̂� form the static PCA model
of the process [17]. The matrices �̂� and 𝐸 represent, respec-
tively, the modeled and the non modeled variations of 𝑍 from
ℓ components ( ℓ < 𝑚). The first ℓ eigenvectors forming the
matrix �̂� constitute the representation space whereas the last
(𝑚 − ℓ) eigenvectors forming the matrix �̃� constitute the resid-
ual space [18].

2.2. PCA modeling

The identification of the PCA model thus consists of estimating
its parameters by an eigenvalue/eigenvector decomposition of
the matrix Σ and determining its structural parameter which is
the number of principal components ℓ to retain [4].

2.2.1. Heuristic methods

These methods are often ambiguous and do not present an opti-
mum with regard to the retained number ℓ [19].

CPV One chooses a percentage of the variance to retain in the
model and keeps the first ℓ components for which the cumulative
percentage of variance 𝐶𝑃𝑉 (ℓ) is exceeded.

𝐶𝑃𝑉 (ℓ) = 100
©«

ℓ∑
𝑗=1

𝜆 𝑗

𝑚∑
𝑞=1

𝜆𝑞

ª®®®®¬
% (8)

Eigenvalues mean This method chooses the components
whose the eigenvalue is superior to the arithmetical mean of
all values (which is equal to 1).

Catell test The Catell test also known as elbow method looks
for the “elbow” in the scree plot and selects all components
whose eigenvalues are just before the curve flattens out.

2.2.2. Reconstruction error based method

Some works proposed to fix ℓ via the minimization of the vari-
ance of the reconstruction error of the variables called VRE [18].
The non reconstructed variance of the 𝑗 𝑡ℎ component of 𝑧 is
noted 𝜌 𝑗 :

𝜌 𝑗 =
𝜉𝑡
𝑗
Σ̃𝜉 𝑗(

𝜉𝑡
𝑗
𝜉 𝑗

)2 , (9)

where Σ̃ = �̃�Σ�̃� and 𝜉 𝑗 = �̃�𝜉 𝑗 . The vector 𝜉 𝑗 designates the 𝑗 𝑡ℎ

column of the identity matrix 𝐼𝑚 ∈ R𝑚×𝑚.
It is noted that 𝜌 𝑗 depends on �̃� which in its turn depends on ℓ

used to fix the PCA model structure [8]. The number ℓ resulting
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from the VRE criterion will be the one that minimizes the sum
Φ of the error variance of all the components of 𝑧:

Φ = min
ℓ

𝑚∑︁
𝑗=1

𝜌 𝑗 .(ℓ) (10)

The VRE criterion is convex, it has always a minimum but
underestimates the exact ℓ to retain in real applications [19].

2.2.3. Proposed modeling method

All the methods aiming at the determination of ℓ seek to find
its theoretical or exact value called (ℓ𝑡ℎ) which represents the
theoretical number of linear or quasi-linear relations existing
between the different components of 𝑧(𝑘) [4]. In the case of
models built for diagnosis purposes, ℓ can be different from
ℓ𝑡ℎ provided that the resulting PCA model can detect changes
[19, 20].

The proposed modeling method uses two dataset matrices
𝑍0 ∈ R𝑎×𝑚 to obtain PCA model and 𝑍1 ∈ R𝑏×𝑚 to fix its struc-
ture. It chooses ℓ that maximizes the mean value of the ratio
𝑆𝑃𝐸

𝛿2 computed for all the data contained in 𝑍1.
It is noted that the squared prediction error called 𝑆𝑃𝐸 , de-

pends on the number of retained principal components ℓ. For
every sample 𝑘 , its expression is given as follows:

𝑆𝑃𝐸 (𝑘) =
𝑚∑︁

ℎ=𝑚−ℓ+1
𝑡2ℎ (𝑘) =

�̃�𝑇
0 𝑧1 (𝑘)

2
. (11)

The quantity 𝛿2 designates the detection threshold which can be
computed in a theoretical manner [17] or by training on a real
dataset [19].

The algorithm of the proposed modeling method is given in 1.
The used symbol “◦” represents the Hadamard product, a math-
ematical operation that generates a new matrix by multiplying
corresponding elements of two matrices element-wise.

The flow chart of the proposed method is given in Fig. 1.

Algorithm 1 Proposed modeling method
Require: Data matrices 𝑍𝑟0 , 𝑍𝑟1
Ensure: Principal components number ℓ

1: 𝑗 ⇐ 0 and 𝑆𝑃𝐸0 ⇐ 0
2: Compute 𝑚0, 𝜎0, 𝑍0, Λ0 and 𝑃0
3: Center, reduce 𝑍𝑟1 with 𝑚0, 𝜎0, obtain 𝑍1
4: Compute 𝑇1 = 𝑍1 ×𝑃0 and 𝐷1 = 𝑇1 ◦𝑇1
5: for i=1:m do
6: 𝑉1(i)= 𝑏−1× sum 𝑀1(:,i)
7: end for
8: while 𝑗 < 𝑚 do
9: 𝑆𝑃𝐸 𝑗+1= sum 𝐷1(m-j:m)

10: if 𝑆𝑃𝐸 𝑗+1
𝛿2
(𝑚− 𝑗+1) ,𝛼

>
𝑆𝑃𝐸 𝑗

𝛿2
(𝑚− 𝑗) ,𝛼

then

11: ℓ ⇐ (𝑚− 𝑗 −1)
12: else
13: ℓ ⇐ ℓ

14: end if
15: 𝑗 ⇐ ( 𝑗 +1)
16: end while

yes
j=m

Inititialization

j 1 ; SPE0 0

Acquire Z0
r and Z1

r

Compute m0, 0, Z0, Z1, 0 and P0

Compute T1, D1

V1= b
1 .ones(1,b). D1

Sj= [zeros(1,m j) ones(1,j)]T

SPEj=V1.Sj

1
2 2

, 1 ,

j j

m j m j

SPE SPE

m j

j 1j

Get , End

yes

no

no

Fig. 1. Flow chart of the proposed modeling method

The limitation of this approach stems from the requirement of
prior knowledge about the process fault, ensuring the selection
of components to retain in the PCA model. Conversely, with
insight into the faulty mode, the method becomes appealing by
identifying the most responsive model to the process fault [19].

3. IDENTIFICATION OF CHANGES IN PROCESS
OPERATIONS

Industrial processes have three types of operating modes: the
steady state mode, can be simple or multiple and represents a
correct operating mode. The transient state mode that regroups
the grade transition and the start-up mode. It is characterized by
a nonlinear behavior [5, 21]. The faulty mode, can be simple or
multiple and represents an undesirable mode [21, 22]. It can be
caused by a sensor/actuator fault or by a modification in process
parameters known as process fault [10, 23]. In this work, the
transient stage is supposed to be of very short duration, and as
such, its identification and monitoring will not be considered.
From a practical standpoint, it is crucial to distinguish between
changes in the operating mode and process faults, even though
both have a similar impact on the covariance structure [3, 12].
Therefore, a method is required to extract features from the
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covariance change pattern [14]. In this context, one proposes
utilizing the angles between subspaces to identify common and
distinct subspaces for each operating mode, whether faulty or
not. These different spaces are then employed to compute a
structured detection index that is sensitive to certain modes and
insensitive to others. The number of detection indices needed in
this work is lower than the one needed in the classical change
identification that require a separate PCA model for each type
of operating mode [9, 20, 24]. This section is divided into two
parts, the first one presents the angles between the subspaces
and the second one explains the proposed structuration method.

3.1. Angles between subspaces

Let 𝐴1 ∈ R𝑚×𝑝 and 𝐴2 ∈ R𝑚×𝑟 be two matrices whose columns
form orthonormal basis of two subspaces 𝑆1 and 𝑆2. One as-
sumes in the following that 𝑝 ≤ 𝑟. In this case, it exists 𝑝 prin-
cipal angles, called 𝜃𝑠 𝑠 ∈ {1, . . . , 𝑝}, between 𝑆1 and 𝑆2. The
angles 𝜃1, 𝜃𝑝 represent the min and max values [25].

Figure 2 illustrates the principal angles between two plans 𝑆1
et 𝑆2. The min angle 𝜃1 is nul and the max is 𝜃2. The vectors
(𝑢1, 𝑢2) and (𝑣1, 𝑣2) are the directors of the two subspaces.

u1=v1

S1

S2

O
u2

v2

Fig. 2. Angle 𝜃2 between the subspaces 𝑆1 and 𝑆2

The computation of principal angles and director vectors is
insured with a singular value decomposition (SVD) of the 𝐴𝑇

2 𝐴1
matrix [25]:

𝐴𝑇
2 𝐴1 = 𝐿𝑆𝐹𝑇 . (12)

All the columns of 𝐿 ∈ R𝑟×𝑝 and 𝐹 ∈ R𝑝×𝑝 are orthonormal.
The matrices 𝑈 et 𝑉 containing the director vectors of 𝑆1 et 𝑆2
are given:

𝑈 = 𝐴1𝐹 ; 𝑉 = 𝐴2𝐿. (13)

The matrix 𝑆 is diagonal and written as follows:

𝑆 = diag
(
𝜌1 . . . 𝜌𝑝

)
(14)

with 1 ≥ 𝜌1 ≥ . . . ≥ 𝜌𝑝 .
The value of the 𝑠𝑡ℎ angle 𝜃𝑠 can be computed:

𝜃𝑠 = (𝑢𝑠 ,𝑣𝑠) = arccos (𝜌𝑠) . (15)

The vectors 𝑢𝑠 et 𝑣𝑠 designate the 𝑠𝑡ℎ columns of the matrices
𝑈 and 𝑉 [22].

3.2. Proposed structuration method

Structured residuals, selectively sensitive to specific subsets of
faults from the complete PCA model, can be generated using
concepts derived from parity relations [13,20]. This generation

process is feasible only in cases involving simple or multiple
sensor faults. However, it is not achievable when dealing with
process faults that propagate across all variables. In such in-
stances, residual structuring is substituted with a technique rely-
ing on partial PCA models [24]. By generating a fault detection
index for each mode, it becomes possible to identify distinct
faulty modes effectively [12]. In this part, a novel method is
proposed to generate a reduced set of structured fault detection
indices for systems affected by process faults. These indices,
whose quantity is fewer than the number of system modes, en-
able the accurate identification of known faulty modes and the
recognition of a new unidentified mode.

Suppose that a process have 𝑀𝑖 known operating modes,
𝑖 ∈

{
0 . . . 𝑛−2

}
and an unknown mode called 𝑀𝑛−1. Here

one assumes that 𝑛 is even, otherwise it has to be replaced
with 𝑛+1.

Let 𝑋𝑔 ∈ R
𝑛
2 be the mode vector defined as follows:

𝑋𝑔 =

(
𝑔 𝑔 +1 . . . 𝑔 + 𝑛

2 −1
)𝑇

. (16)

The subscript 𝑔 = 0, . . . , 𝑛2 −1, is the mode vector number.
One defines the mode state 𝐼𝑛𝑋𝑔

as a boolean variable equal
to zero if the current operating mode is equal to any of the
components of 𝑋𝑔 and equal to one otherwise. From this mode
state and the different operating modes 𝑀𝑖 , one can construct a
localization table (Lt) where the rows are constituted by 𝐼𝑛𝑋𝑔

and the columns correspond to 𝑀𝑖 . Table 1 presents an example
of localization table for process with four operating modes.

Table 1
Localization table in case of four actif modes

mode 𝑀0 𝑀1 𝑀2 𝑀3

𝐼𝑛𝑋0 0 0 1 1

𝐼𝑛𝑋1 1 0 0 1

The mode state 𝐼𝑛𝑋𝑔
can be linked to a detection index de-

noted as 𝑆𝑃𝐸𝑋𝑔
. This index will remain below a specified thresh-

old 𝛿2
𝑋𝑔

when the current operating mode matches any of the
components of 𝑋𝑔; otherwise, it will surpass its threshold. For
every sample 𝑘 , the index 𝑆𝑃𝐸𝑋𝑔

can be computed as follows:

𝑆𝑃𝐸𝑋𝑔
(𝑘) =

�̃�𝑇
𝑋𝑔
𝑧(𝑘)

2
. (17)

The number of the structured indices 𝑆𝑃𝐸𝑋𝑔
, is equal to

𝑛

2
.

The row vectors of �̃�𝑋𝑔
represent the vector of residual spaces

common to all the modes whose components form the mode
vector 𝑋𝑔. Let us call 𝑋 [𝑟 ]

𝑔 ∈ R𝑟 a vector formed with the first 𝑟
components of 𝑋𝑔. It is noted that for 𝑟 = 𝑛

2 , one has 𝑋 [ 𝑛2 ]
𝑔 = 𝑋𝑔.

In order to obtain �̃�𝑋𝑔
, one has to compute the different

matrices �̃�
𝑋

[𝑟 ]
𝑔

, 𝑟 = 2, . . . , 𝑛2 . Each matrix �̃�
𝑋

[𝑟 ]
𝑔

is obtained in a
recursive manner from �̃�

𝑋
[𝑟−1]
𝑔

as follows:
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First, one computes 𝑅
𝑋

[𝑟 ]
𝑔

and performs an SVD on it to obtain
the matrices 𝑈

𝑋
[𝑟 ]
𝑔

, 𝑉
𝑋

[𝑟 ]
𝑔

and 𝑆
𝑋

[𝑟 ]
𝑔

as follows:

𝑅
𝑋

[𝑟 ]
𝑔

= �̃�𝑇
(𝑔+𝑟−1) · �̃�𝑋

[𝑟−1]
𝑔

=𝑈
𝑋

[𝑟 ]
𝑔
𝑆
𝑋

[𝑟 ]
𝑔
𝑉𝑇

𝑋
[𝑟 ]
𝑔

. (18)

The matrix �̃�𝑇
(𝑔+𝑟−1) designates the residual matrix of the (𝑔 +

𝑟 −1)𝑡ℎ operating mode.
After that, one calculates the matrix �̃�

𝑋
[𝑟 ]
𝑔

as follows:

�̃�
𝑋

[𝑟 ]
𝑔

= �̃�
𝑋

[𝑟−1]
𝑔

·𝑉
𝑋

[𝑟 ]
𝑔

. (19)

The matrix �̃�
𝑋

[𝑟 ]
𝑔

is formed with the first 𝑞 vectors of �̃�
𝑋

[𝑟 ]
𝑔

corresponding to the 𝑞 unity eigenvalues of 𝑆
𝑋

[𝑟 ]
𝑔

.
After the computation of 𝑆𝑃𝐸𝑋𝑔

(𝑘), a boolean indicator
𝐼𝑛𝑋𝑔

(𝑘) is built in the following way:

𝐼𝑛𝑋𝑔
(𝑘) =

{
0 if 𝑆𝑃𝐸𝑋𝑔

(𝑘) < 𝛿2
𝑋𝑔

,

1 if 𝑆𝑃𝐸𝑋𝑔
(𝑘) > 𝛿2

𝑋𝑔
.

(20)

The term 𝛿2
𝑋𝑔

designates the detection threshold of 𝑆𝑃𝐸𝑋𝑔
. The

localization procedure is carried out by comparing the values of
all 𝐼𝑛𝑋𝑔

(𝑘) to the columns of (Lt).

Algorithm 2 Proposed structuration method
Require: Data 𝑍𝑟0 , . . . , 𝑍𝑟

𝑛−1, 𝑧(𝑘)
Ensure: Indices 𝑆𝑃𝐸𝑋0 (𝑘), . . . , 𝑆𝑃𝐸𝑋 𝑛

2 −1 (𝑘) and 𝐼𝑛𝑋0 (𝑘), . . . ,
𝐼𝑛𝑋 𝑛

2 −1 (𝑘)
1: if 𝑛 is even then
2: 𝑛⇐ 𝑛

3: else
4: 𝑛⇐ 𝑛+1
5: end if
6: Compute 𝑚𝑔, 𝜎𝑔, 𝑍𝑔 and �̃�𝑔
7: Build 𝑋0 = (012 . . . 𝑛2 −1)
8: for i=0: 𝑛

2 −1 do
9: 𝑋𝑖+1= 𝑋𝑖 + ones(1, 𝑛2 )

10: 𝐼𝑛𝑋𝑖
=[ones(1, 𝑖) zeros(1, 𝑛2 ) ones(1, 𝑛2 − 𝑖) ]

11: end for
12: Build Lt=[(𝐼𝑛𝑋0 )𝑇 (𝐼𝑛𝑋1 )𝑇 . . . (𝐼𝑛𝑋 𝑛

2 −1 )
𝑇 ]𝑇

13: InX=[ ]
14: for g=0: 𝑛

2 −1 do
15: �̃�

𝑋
[1]
𝑔

= �̃�𝑔

16: for r=2: 𝑛
2 do

17: 𝑋
[𝑟 ]
𝑔 = 𝑋𝑔 (1,1 : 𝑟)

18: 𝑅
𝑋

[𝑟 ]
𝑔

= �̃�𝑇
(𝑔+𝑟−1) × �̃�

𝑋
[𝑟−1]
𝑔

=𝑈
𝑋

[𝑟 ]
𝑔

𝑆
𝑋

[𝑟 ]
𝑔

𝑉𝑇

𝑋
[𝑟 ]
𝑔

19: 𝑄
𝑋

[𝑟 ]
𝑔

= �̃�
𝑋

[𝑟−1]
𝑔

×𝑉
𝑋

[𝑟 ]
𝑔

20: Obtain 𝑃
𝑋

[𝑟 ]
𝑔

21: Set �̃�
𝑋

[𝑟−1]
𝑔

⇐ �̃�
𝑋

[𝑟 ]
𝑔

22: end for
23: �̃�𝑋𝑔

⇐ �̃�
𝑋

[ 𝑛2 ]
𝑔

24: Compute 𝑆𝑃𝐸𝑋𝑔
(𝑘) and 𝐼𝑛𝑋𝑔

(𝑘)
25: InX=[InX; 𝐼𝑛𝑋𝑔

(𝑘)]
26: end for
27: Compare InX to columns of Lt, identify current mode.

In order to ensure the obtention of the whole structured resid-
uals, the vectorial space resulting from each matrix �̃�𝑋𝑔

has to
be different. This can be ensured if the principal angles between
the different matrices �̃�𝑋𝑔

are not null.
Algorithm 2 illustrates the different steps used to compute the

structured residuals and their use in the identification of known
faulty operating mode and the recognition of a new unknown
mode. The notations 𝑚𝑔 and 𝜎𝑔 designate the mean and stan-
dard deviation vectors of the 𝑔𝑡ℎ mode data matrix called 𝑍𝑟

𝑔.
They will be used to build the normalized 𝑔𝑡ℎ mode data ma-
trix 𝑍𝑔. The flow chart presented in Fig. 3 shows a graphical
visualization of the proposed structuration method.
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Fig. 3. Flow chart of the proposed structuration method

4. APPLICATION TO THE TENNESSEE EASTMAN
PROCESS

The Tennessee eastman process (TEP), illustrated in Fig. 4, is a
chemical process created by the Eastman Chemical Company. It
is an emulation of an actual industrial process and has become a
cornerstone for the process control and monitoring community
for benchmarking diverse methodologies [14–16, 26, 27]. This
process comprises four primary inputs, an output, and a purge.
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The TEP yields two products (G and H) alongside two unwanted
residuals: byproduct F and inert gas B. This outcome stems
from the interaction of four reactants: A, C, D, and E. Due
to confidentiality, the exact nature of reactants, residuals, and
products remains undisclosed.

products G and H 

Tennessee Eastman Process 

V1
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V4
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D
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and inert gaz B 

Products

Purge

V8

V10

A+C+D               G 

A+C+E                H 

Flow control 

Flow control 

Flow control 

Flow control 

Flow control 

Flow control 

Fig. 4. General sketch of the TEP

4.1. Process presentation

The TEP has a total of 53 variables: 41 measured and 12 manipu-
lated. It comprises five key units: the reactor, product condenser,
vapor-liquid separator, recycle compressor, and product stripper.
As shown in Fig. 5, the main units are interconnected by differ-
ent flows shown by numbered red pentagrams. The Reactants
A, D, and E enter the exothermic two-phase reactor through
flow 6 from the upstream. The reactor output stream, a mix of
products and unreacted feed, flows into a condenser through
flow 7 and then into a vapor-liquid unit via flow 13. Condensed
elements are directed to the product stripper through flow 10,
where unreacted reactants are separated from products G and H.
Non-condensed components are recycled via flow 5 to the reac-
tor feed, facilitated by the recycle compressor through flow 8.
The final product is obtained via flow 11, while the byproduct
is collected through the purge at flow 9. Flows 12, 11b, and 13b
serve to cool the various units.

The TEP is open loop unstable, it is necessary to adopt an
adequate control structure to ensure its correct operations [27].

XA

XD

XE

XF

XG

XH

XA

XB

XC

XD

XE

XF

V10

A

N

A

L

Y

Z

E

R

10

5

6

8

V7
CWS 

13b

V6

CWR 

13

7

A

1

E

3

2

D

12 

V5 
CWR 

CWS 

4
C

V9 

V1

V2 

V3 

V4

11
Products 

Steam 

11b 

V11 
Condensed 

V8 

Purge 

9

XD

XE

XF

XG

XH

XB

XC

A

N

A

L

Y

Z

E

R

A

N

A

L

Y

Z

E

R Reactor

Condenser

Separator

Stripper

Compressor

Fig. 5. Detailed layout of the TEP

Two strategies can be used in order to control a process: the
centralized and the decentralized one. The centralized strategy
controls only the outputs and thus considerates the process as
a unique bloc. The decentralized strategy split-up the process
and controls each of its parts separately. This strategy is more
efficient than the centralized approach [28]. It will be adopted
afterwards and contains 19 PI regulation loops [29]. The evo-
lution of some measured and manipulated variables in closed
loop for a sampling time equal to 3 minutes is shown in Fig. 6.
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Fig. 6. Evolution of some TEP variables

4.2. Process modeling

Many papers provide some interesting datasets of different TEP
operating modes, one can find some in [26,27,30]. In this work,
the closed loop process, described in [29], is simulated in order
to obtain the reference operating mode datasets. The source code
of the closed loop process can be found in [30]. The datasets
of the faulty modes used here are directly downloaded also
from [30]. One assumes afterwards that the TEP possesses three
distinct known operating modes: the reference mode, the 𝐼𝑑𝑣1
and the 𝐼𝑑𝑣13 modes. The reference mode is characterized by
a production feed equal to 14076 kg/h with a massic ratio of
50/50 of reactants G and H. The modes 𝐼𝑑𝑣1 and 𝐼𝑑𝑣13 represent
faulty operating modes. The 𝐼𝑑𝑣1 is characterized by variation
in the composition of flow 4. The 𝐼𝑑𝑣13 denotes a drift in the
process of chemical reactions kinetics. One supposes the TEP
has another faulty mode 𝐼𝑑𝑣12 defined by a random variation in
the temperature of the flow 12 of the reactor cooling. Its data
will be used in the fixation of different PCA model structure by
the method in subsection 2.2.3.

4.2.1. Choice of modeling variables

The choice of the variables used to build the PCA model have a
significant impact on its sensitivity for process change detection
[2, 28]. After several heuristic tests, a vector 𝑧𝑟 (𝑘) containing
31 variables {𝑧𝑟1 (𝑘), . . . , 𝑧

𝑟
31 (𝑘)} is chosen to build the different

TEP models. This vector, see Table 2, contains 22 measured and
9 manipulated variables.

4.2.2. Fixation of the PCA model structure

One thousand input/output samples are used for each of the three
operating modes to fix the structures of the different PCA mod-
els. For each mode, one thousand values of 𝑧𝑟 (𝑘) are centered
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Table 2
Variables used in construction of measurement vector 𝑧𝑟 (𝑘)

Variables Measured Variables Manipulated

𝑧𝑟1 𝐴 feed rate (flow 1) 𝑧𝑟23 𝐷 feed rate (flow 2)
𝑧𝑟2 𝐷 feed rate (flow 2) 𝑧𝑟24 𝐸 feed rate (flow 3)
𝑧𝑟3 𝐸 feed rate (flow 3) 𝑧𝑟25 𝐴 feed rate (flow 1)
𝑧𝑟4 Total feed rate (flow 4) 𝑧𝑟26 Total feed rate (flow 4)
𝑧𝑟5 Recycle flow (flow 8) 𝑧𝑟27 Output purge valve
𝑧𝑟6 Reactor feed rate (flow 6) 𝑧𝑟28 Output separator valve
𝑧𝑟7 Reactor pressure 𝑧𝑟29 Output stripper valve
𝑧𝑟8 Reactor liquid level 𝑧𝑟30 Reactor cooling valve
𝑧𝑟9 Reactor temperature 𝑧𝑟31 Output condenser valve
𝑧𝑟10 Purge rate (flow 9)
𝑧𝑟11 Separator temperature
𝑧𝑟12 Separator liquid level
𝑧𝑟13 Separator pressure
𝑧𝑟14 Separator underflow (flow 10)
𝑧𝑟15 Stripper liquid level
𝑧𝑟16 Stripper pressure
𝑧𝑟17 Stripper underflow (flow 11)
𝑧𝑟18 Stripper temperature
𝑧𝑟19 Stripper cooling steam flow
𝑧𝑟20 Compressor work
𝑧𝑟21 Reactor cooling water outlet temperature
𝑧𝑟22 Separator cooling water outlet temperature

and reduced to obtain 𝑧(𝑘) used to build the data matrices 𝑍𝑁𝑟𝑒 𝑓
,

𝑍𝑁𝐼𝑑𝑣1 and 𝑍𝑁𝐼𝑑𝑣13 using the equation (2). The eigenvector and
eigenvalue matrices of each mode are then obtained using (4).

Figure 7 shows the scree plot of the correlation matrices of
different modes. Unlike the scree plots of modes 𝐼𝑑𝑣1 and 𝐼𝑑𝑣13,
all the eigenvalues of the reference mode are close to one and
there is not a clear “elbow” permitting the right choice of ℓ by
the catell test. Figure 8 shows the increase of the percentage
CPV according to ℓ for all three operating modes, the choosen
percentage to retain is equal to 97%.
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Fig. 7. Scree plot or modes of reference, 𝐼𝑑𝑣1 and 𝐼𝑑𝑣13
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Fig. 8. CPV for modes of reference, 𝐼𝑑𝑣1 and 𝐼𝑑𝑣13

Figure 9 represents the variation of VRE criterion according
to retained number ℓ for the three process operating modes. For
clarity reasons, only the first twelve principal components are
shown on the abscissa axis. Contrary to heuristic criteria, the
VRE is convex and it admits a single minimum.

Table 3 presents the number ℓ obtained from the application
of all modeling methods presented in Section 2.2. The choice of
the structure of the PCA model to be retained from the heuris-
tic methods is ambiguous because of their non-convexity. The
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Table 3
Retained ℓ and percentage of conserved variance for every mode by different modeling methods

Reference mode Mode 𝐼𝑑𝑣1 Mode 𝐼𝑑𝑣13

ℓ % of variance ℓ % of variance ℓ % of variance

Eigenvalues mean method 10 62.96% 5 74% 5 86.48%

Catell test method 4 41.2% 3 66.97% 5 86.48%

CPV method 24 97.72% 17 97.62% 12 97.65%

VRE method 4 41.2% 3 66.97% 5 86.48%

Proposed method 24 97.72 % 18 98.18% 12 97.65 %
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Fig. 9. Evolution of VRE criterion regarding retained ℓ for modes
of reference, 𝐼𝑑𝑣1 and 𝐼𝑑𝑣13

number ℓ retained via the VRE criterion does not capture a good
percentage of the process variance in the case of the reference
and 𝐼𝑑𝑣1 modes. The proposed method does not only maxi-
mize the detection of the mode 𝐼𝑑𝑣12 but also capture a good
percentage of process variance in all the three known modes.

4.3. Detection and identification of process changes

One supposes that the TEP have three different operating modes
with known models: the reference mode 𝑀0, and the faulty
modes 𝐼𝑑𝑣1 and 𝐼𝑑𝑣13 called 𝑀1 et 𝑀2. One supposes that
the TEP have also an unknown operating mode: the 𝐼𝑑𝑣12 mode

𝑀3. Two mode vectors 𝑋0 =
(

0 1
)𝑇

and 𝑋1 =
(

1 2
)𝑇

are
built to carry out the identification procedure using Algorithm 2.
The residual matrices �̃�𝑋0 and �̃�𝑋1 are built in order to identify
the different operating process modes. The TEP is simulated
during 200 samples following the illustrated timeline shown in
Fig. 10. The transition period between the different modes is
equal to zero. From the residual matrices and the current vector
𝑧(𝑘), one can build 𝑆𝑃𝐸𝑋0 (𝑘) and 𝑆𝑃𝐸𝑋1 (𝑘) as well as the
mode state variables 𝐼𝑛𝑋0 (𝑘) and 𝐼𝑛𝑋1 (𝑘).
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Fig. 10. Chronology of modes of TEP

Figure 11 portrays the evolution of indices 𝑆𝑃𝐸𝑋0 (𝑘) and
𝑆𝑃𝐸𝑋1 (𝑘), along with their respective thresholds in the simula-
tion used to test the performance of the proposed scheme. The
𝑆𝑃𝐸𝑋0 (𝑘) index exceeds its threshold within intervals [0,50]
(mode 𝑀2) and [151,200] (mode 𝑀3), while staying below
the threshold during [51,150] corresponding to modes 𝑀1 and
𝑀0. On the other hand, the 𝑆𝑃𝐸𝑋1 (𝑘) index remains below its
threshold in [0,100] (modes 𝑀2, 𝑀1), but surpasses it within
[101,200] (modes 𝑀0, 𝑀3). Sporadic false alarms emerge in
these indices trends due to process non-linearity and noise.
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Fig. 11. Variation of 𝑆𝑃𝐸𝑋0 (𝑘) and 𝑆𝑃𝐸𝑋1 (𝑘)

The different modes identification is realized via the mode
state variables 𝐼𝑛𝑋0 (𝑘) and 𝐼𝑛𝑋1 (𝑘). Those boolean variables
give some wrong detections due to uncertainties and measure-
ment noise as shown in Fig. 12.
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Fig. 12. Variation of 𝐼𝑛𝑋0 (𝑘) and 𝐼𝑛𝑋1 (𝑘) before persistance

In order to fix this problem, a persistence condition is used.
In this case, a variable alteration is declared when its value
undergoes a change and remains constant for five consecutive
sampling periods. The value “five” is to be adopted by learning
according to the treated example. The evolution of the mode
state variables after the application of the persistence condition
is shown in Fig. 13. The identification of the operating mode
is correctly achieved by comparing the values of the persistant
mode state variables to the columns of Table 1.
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Fig. 13. Variation of 𝐼𝑛𝑋0 (𝑘) and 𝐼𝑛𝑋1 (𝑘) after persistance

5. CONCLUSION

This paper presents a novel PCA-based approach for process
fault detection and localization, divided into three main parts.
The first part introduces PCA fundamentals and various methods
for determining its model structure, including a new technique
enhancing sensitivity to specific faults. Although it requires
prior knowledge of faulty data, it excels at creating sensitive
models without the use of large faulty dataset. The second
part presents a unique method for structuring indices tailored
to systems with process faults, reducing the required number of
indices by half compared to traditional approaches. Operating
mode identification is based on the use of a boolean variable
derived from the computed indices and a localization table. The
third part delves into the TE process, a literature review to se-
lect control structures and variables is performed. The proposed
modeling and structuration methods are successfully applied to
the TE process. This paper has exclusively concentrated on pro-
cess changes without considering transient states. The inclusion
of these states in process operations is worth further investiga-
tions.
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