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1. INTRODUCTION 

With the socio-economic development, automobiles have 

assumed a pivotal role in the daily lives of individuals, 

resulting in a rapid surge in per capita car ownership. 

According to a survey conducted by the World Health 

Organization (WHO), traffic accidents claim a life every 23 

seconds globally, leading to an annual toll of 1.3 million 

fatalities, predominantly caused by vehicle collisions. The 

rapid advancement of cutting-edge technologies, such as 

artificial intelligence, has catapulted autonomous driving into 

the forefront of research. With its immense potential, 

autonomous driving technology finds extensive applications in 

urban transportation and intelligent logistics, empowering it to 

support human drivers, optimize travel routes, and thereby 

revolutionize traffic safety and efficiency. 

Trajectory prediction stands as a critical linchpin in the 

paradigm of autonomous driving technology, spanning a 

spectrum of technical facets such as perception, prediction, 

and decision-making [1], [2], [3]. In the seamless operation of 

mobile intelligent agents like autonomous vehicles and service 

robots, trajectory prediction assumes a pivotal role. The 

essence of trajectory prediction lies in the inference of the 

prospective motion trajectory of an intelligent agent based on 

its historical motion states. Conventional methodologies 

predominantly exploit kinematic features, employing 

mathematical modeling methodologies [4] such as Kalman 

filtering [5] and Gaussian processes [6] to prognosticate the 

future trajectories of entities, including pedestrians. While 

these methodologies adhere to traditional approaches and 

demonstrate commendable temporal efficiency, they remain 

vulnerable to data fluctuations. In recent years, vanguard 

researchers have delved into the utilization of Multilayer 

Perceptrons (MLP) [7], [8], [9] for trajectory information 

modeling. However, MLP is encumbered by the terminal 

coordinates in trajectory sequences, resulting in a diminished 

reliance on long-distance information. The advent of and Long 

Short-Term Memory (LSTM) [10] has ushered in 

advancements in capturing long-distance information. For 

instance, Alahi et al. [11] employed LSTM for the temporal 

modeling of trajectory information, intensifying the network's 

reliance on initial coordinates. Nonetheless, LSTM face 

limitations due to the dimensionality of their units, 

aggregating solely partial long-distance information and 
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falling short of establishing inter-positional correlations. The 

introduction of Transformer [12] proffers a remedy for 

associating long-distance information, as self-attention 

mechanisms can foster relationships between each node, 

thereby amplifying the network's prowess in extracting 

information for every coordinate. However, Transformers bear 

a substantial computational burden. For example, 

AgentFormer [13] implemented a complete Transformer 

architecture, yielding commendable predictive outcomes but 

resourceondeploymentforunsuitableitrendering -

singularlyMoreover, AgentFormerdevices.constrained

incorporates path input and lacks the capability to establish 

correlations between map environments. 

To address the aforementioned issues, we employ Transformer 

positionalmultiplebetweenrelationshipsestablishto

coordinates, streamlining the internal structure of Transformer 

layers to reduce computational overhead. Additionally, to 

forge connections between map and trajectory information, we 

leverage depth-wise separable convolutions [8] to transform 

image data into feature maps, which are then input into the 

network. The novelty of our work lies in the design of a multi-

layered Transformer layer structure capable of concurrently 

accommodating trajectory and image information. Our 

primary contributions are outlined as follows: 

• We propose a novel trajectory prediction network called 

HTTNet (Hybrid Transformer Trajectory Network), 

capable of assimilating information from multiple 

intelligent agents and map data, thereby modeling 

trajectory scenes. 

• We introduce a TF-Map Encoder that comprehends map 

information and transforms it into Transformer feature 

maps, enhancing HTTNet's map comprehension 

capabilities. 

• We enhance a single deep Transformer layer into 

multiple shallow layers, establishing a Multi-

Transformer, enabling simultaneous processing of 

trajectory and image information. 

In addition, we conducted ablation experiments, comparative 

experiments, and visual experiments on the nuScenes and 

Interaction datasets, achieving outstanding performance. The 

organization of the following chapters is as follows: Section 2 

reviews related work, Section 3 sequentially introduces 

HTTNet, Encoder, Multi-Transformer, and Decoder. 

Experimental results and discussions are presented in Section 

4 and 5. 

2. RELATED WORK 

A. Trajectory prediction based on time sequence.   

Time series modeling is a fundamental technique that 

leverages the input sequence's order as a feature, proving vital 

for various data modalities, such as videos and audios. The 

trajectory prediction domain has witnessed remarkable 

advancements facilitated by techniques like RNN, LSTM, and 

GRU. In this context, trajectory data is considered sequential, 

leading to the widespread adoption of Recurrent Neural 

Network (RNN) for modeling intelligent agent trajectories. 

Nevertheless, RNN faces challenges like the exploding 

gradient problem. To overcome these obstacles, Hochreiter et 

al. [14] proposed the Long Short-Term Memory (LSTM) 

model, which effectively mitigates the exploding gradient 

issue. Among the recent trajectory prediction endeavors, Alahi 

et al. [11] introduced the Social-LSTM model, which employs 

LSTM to model trajectory time series data and utilizes pooling 

mechanisms to capture interactions among intelligent agents. 

However, the simplicity of Social-LSTM's interaction model 

has led to comparatively lower prediction accuracy. This has 

spurred growing enthusiasm in the trajectory prediction 

community for exploring time series modeling approaches. 

Abebe et al. [15] proposes a hybrid ARIMA-LSTM model 

using AIS data to accurately forecast ship trajectories in 

maritime transportation, enabling effective collision avoidance 

decision-making. [16] et al.  made a significant stride with the 

development of the Long Short-Term Memory with Lagged 

Information (LAG-LSTM) model. By integrating traditional 

physically-driven high-speed train models with interpretable 

deep learning models, the LAG-LSTM effectively predicts 

high-speed train trajectories, outperforming other deep 

learning counterparts in terms of prediction accuracy. Zhang et 

al. [17]proposed an intelligent framework that fuses Principal 

Component Analysis (PCA) and Gated Recurrent Unit (GRU) 

in a hybrid model to predict real-time trajectory deviations 

during Earth Pressure Balance (EPB) tunneling. Xue et al. [18] 

introduced PoPPL, an innovative algorithm that classifies 

pedestrian trajectories into different route classes (RCs) and 

utilizes a bidirectional LSTM classification network to predict 

target regions and generate corresponding trajectories. The 

trajectory prediction field continues to thrive, with researchers 

exploring new state-of-the-art approaches and novel 

techniques to further advance this critical domain. 

The introduction of these methods has improved the 

performance of neural networks in the field of trajectory 

prediction, contributing to the advancement of trajectory 

prediction. However, constrained by the size of LSTM and 

GRU units, the network exhibits limited capability in 

exploring interaction information among multiple intelligent 

agents. Additionally, none of these approaches have attempted 

to leverage maps or images to enrich the network with scene 

information, potentially leading to the neglect of map details. 

Recent works such as VectorNet [19] and LaneGCN [20] 

directly encode road and boundary information from HD maps 

into nodes of a graph, utilizing graph convolution to extract 

features from map information. However, map encoding 

cannot consider all scene information and may lose some 

detailed information. Therefore, designing an effective scene 

information extraction module remains an unresolved 

challenge. 

B. Trajectory prediction based on Transformer.   

In recent years, Transformers [12] have made remarkable 

strides in the domain of natural language processing, attracting 

increasing attention for their potential in trajectory prediction. 

In 2019, Zhu et al. [21] pioneered the introduction of Starnet, a 

Transformer-based spatiotemporal graph convolution 
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trajectory prediction model. Starnet effectively captures 

pedestrians' spatiotemporal graphs through attention 

mechanisms, yielding promising prediction outcomes. Zhang 

et al. [22] introduced the mmTransformer model, leveraging 

Transformers to encode and fuse vehicle and environmental 

information, thereby generating multimodal trajectories using 

path and classification loss functions. However, this approach 

overlooks crucial interaction factors among agents. To address 

temporal information loss and enhance the diversity of 

generated trajectories, Yuan et al. [13] investigated the impact 

of temporal and social dimensions on the future motion of 

intelligent agents, proposing the AgentFormer model. Notably, 

they improved the attention mechanism to focus on 

connections between the same agent and others, allowing for 

probabilistic modeling of pedestrians' potential intentions. Li 

et al. [23] introduced a multi-scale graph-based spatial 

transformer and "Memory Replay" memory graph trajectory 

smoothing algorithm. Their approach enables the prediction of 

multiple paths for historical trajectories, with an emphasis on 

spatial information and trajectory smoothness. Additionally, 

they introduced the novel evaluation metric "Percentage of 

Trajectory Usage" to assess diversity in multiple future 

predictions, achieving superior performance in multi-future 

prediction tasks. Jia et al. [24] presented the Heterogeneous 

Driving Graph Transformer (HDGT) model, which models 

driving scenarios as heterogeneous graphs with distinct node 

and edge types. By employing the Transformer structure, they 

successfully encoded and predicted rich and diverse semantic 

relationships, leading to state-of-the-art performance in 

trajectory prediction tasks. 

While the trajectory prediction exploration within the 

Transformer framework remains somewhat limited, the 

aforementioned methods are exclusively built upon the 

foundational Transformer for trajectory prediction, incurring 

substantial temporal expenses. Additionally, these approaches 

have yet to delve into the amalgamation of CNN with 

Transformer to facilitate feature extraction from images. 

Acknowledging the constraints of prior trajectory prediction 

methodologies, we introduce HTTNet. This model adeptly 

accommodates both map scenes and interaction dynamics 

among multiple intelligent agents, presenting an innovative 

foray into the application of Transformer in the realm of 

trajectory prediction. 

3. METHODOLOGY 

We have formulated the prediction of future trajectories for 

𝑁(𝑁 ∈ 𝑍)  intelligent agents based on their known past 

trajectory distributions. Specifically, for an individual 

intelligent agent, we denote its state at time 𝑡  as 𝑋𝑡 =
{𝑋1

𝑡, 𝑋2
𝑡 , 𝑋3

𝑡 , … , 𝑋𝑁
𝑡 }, where 𝑡 >  0. For an agent at a given 

moment 𝑋𝑛
𝑡 , we denote its state at time 𝑡  as 𝑆𝑡 , where 𝑆𝑡  = 

{position x, position y, velocity x, velocity y, heading angle, 

length, width}. Similarly, the collective state of 𝑁  agents 

within a time interval 𝑇(𝑇 > 0)  is represented as 𝑌𝑛 =
{𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑁} , where 𝑦𝑛  indicates the states of the 𝑁 

agents during the time span 𝑇.  To enable the learning model 

to understand past and future trajectories, we divide the 

trajectory over time period 𝑇  into 𝑇1(0~𝑡’)  and 𝑇2(𝑡’~𝑇) , 

where 𝑇1 represents the past trajectories of the agents, and 𝑇2 

represents the future trajectories of the agents. The learning 

model is furnished with the past trajectories of all intelligent 

agents 𝑌𝑛
1 within time interval 𝑇1 and tasked with forecasting 

the future trajectories of all intelligent agents 𝑌𝑛
2 within time 

interval 𝑇2 . Additionally, the learning model can obtain a 

semantic scene map images 𝑀 , where 𝑀 ∈  𝐶 ×  𝐻 ×  𝑊 , 

with 𝐶  representing the number of semantic categories, 𝐻 

representing the image height, and 𝑊 representing the image 

width. In the following text, we sequentially introduce the 

overall structure of HTTNet (Hybrid Transformer Trajectory 

Network.), the Trajectory Encoder, TF-Map Encoder, Multi-

Transformer, and the decoder. 

 

A. Hybrid Transformer Trajectory Network.   

Our HTTNet (Hybrid Trajectory Transformer Network) is 

built upon the Transformer [12], a network model initially 

designed for natural language text processing. However, 

conventional Transformers are primarily tailored for handling 

sequential textual data and language understanding tasks. In 

our context, we face the challenge of modeling past 

trajectories, future trajectories, and the contextual information 

of surrounding map scenes. To address these specific 

requirements and enhance the modeling capabilities, we 

introduce two pivotal enhancements to the standard 

Transformer architecture:  

(1) Integrated CNN and positional encoding as scene features.  

(2) Reduced the number of layers and nodes within the 

Transformer, opting for a multi-layer cross-attention structure 

to facilitate the incorporation of surrounding scene image 

features. 

As depicted in Fig. 1, HTTNet takes three distinct inputs:  

(1) The past trajectories of the agents 𝑌 =
{𝑦1, 𝑦2, … , 𝑦𝑛−1 , 𝑦𝑛} , where 𝑌_𝑛 contains all trajectory 

information 𝑆𝑡  at time 𝑡 , with 𝑆𝑡 = {position x, position y, 

velocity x, velocity y, heading angle, length, width}; 

(2) The Future trajectories of the agents  𝑌′ =
{𝑦1

′ , 𝑦2
′ , … , 𝑦𝑛−1

′ , 𝑦𝑛
′ }. 

(3) Semantic map image 𝑀, with 𝑀 ∈ 𝐶 × 𝐻 × 𝑊. 
It is worth noting that the future trajectories Y’ are only input 

during the training process and not during testing, for guiding 

the model's learning process.  For the past trajectories 𝑌 and 

future trajectories 𝑌’, we encode them for input into the Multi-

Transformer for feature extraction. The traditional 

Transformer used a Position Embedding module for positional 

encoding of sequential data. However, in traffic trajectory data, 

each agent does not provide sequential order information, and 

using traditional encoding methods may lead to loss of 

temporal sequences. Therefore, we design a Trajectory 

Encoder for trajectory encoding, which includes FPN 

Embedding and Time Encoder, ensuring the stability of the 

temporal sequences of multiple agents. The Trajectory 

Encoder outputs features of both past and future trajectories. 

For the map image 𝑀 , considering the time cost of the 

Transformer, we designed the TF-Map Encoder to extract 
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image features, which utilizes a lightweight CNN module to 

output map features. For the trajectory and map features, we 

use the Multi-Transformer for feature extraction. Specifically, 

we first input the past trajectory features into the first Cross 

Attention, which duplicates the features three times, named 𝑄, 

𝐾  and 𝑉  respectively. Then, Cross Attention uses 𝑄  to 

perform dot products with 𝐾  and 𝑉  respectively, outputting 

fused features to query the internal associations of the 

trajectory features. For the map features and future trajectory 

features, we first duplicate the features twice, named 𝐾 and 𝑉 

respectively. Unlike the first Cross Attention, we use the fused 

features from the previous step as 𝑄, which operates with 𝐾 

and 𝑉 respectively, in the hope of querying the associations 

between the map and future trajectories from the past 

trajectories. The third Cross Attention outputs a feature matrix 

𝑀𝑝 that includes the agents' future trajectory features. More 

details on the Multi-Transformer will be introduced in Section 

3.D. Finally, the Decoder module adjusts the features 𝑀𝑝 and 

uses a multi-layer perceptron to transform the features into the 

output prediction sequence 𝑝, 𝑝 =  {𝑝1, 𝑝2, … , 𝑝(𝑛 − 1), 𝑝𝑛}. 

1 2 1{ , , , , }n ny y y y−
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Future Trajectory
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Embedding

Time

Encoder

FPN

Embedding

Time

Encoder

Feature 
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Fig.1. Overall structure of Hybrid Transformer Trajectory neural network 

 

B. Trajectory Encoder.   

To incorporate past trajectory information from time interval 

T into the Multi-Transformer, the trajectory data needs to be 

unfolded, allowing the Multi-Transformer to learn future 

trajectory transformation strategies. Firstly, the trajectory 

information from time interval T is fed into the Feature 

Pyramid Network (FPN), facilitating the interaction of 

information from different vehicles and time sequence. 

Moreover, inspired by the position Embedding in 

Transformers, we utilize a Time Encoder to treat temporal 

sequences as positional encoding information, which is then 

integrated into the trajectory information. The specific 

trajectory data handling operations are depicted in Fig. 2. 

Specifically, regarding the input of past trajectory information 

for multiple intelligent agents, denoted as 𝑌 =

{𝑦1, 𝑦2, … , 𝑦𝑛−1, 𝑦𝑛}, where 𝑌 ∈ 𝑇 × 𝐴 × 𝐷, 𝑇 represents the 

length of the past time interval (in frames), 𝐴 represents the 

number of intelligent agents, and 𝐷  represents the data 

information contained in each intelligent agent (position x, 

position y, etc.), a series of operations are performed. We 

sequentially pass 𝑌  through three Linear layers, each 

producing outputs with different dimensions. The first Linear 

layer unfolds the features, enabling a more accessible 

representation. The second Linear layer enhances feature 

perception and interaction within the hidden layer, fostering 

richer interactions among agents. Finally, the third Linear 

layer restores the original dimension 𝐷  of the features. 

Notably, for the output of the third Linear layer, we employ 

zero values to expand the feature dimension 𝐷 , facilitating 

subsequent interactions and computations. The specific 
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operations of FDN Embedding are mathematically expressed 

in Eq. (1): 

𝑌′ = 𝐸𝑚𝑏𝑖𝑑𝑖𝑛𝑔 (𝛿(3)(𝑌, 𝑙)) (1) 

where 𝑌  represents the past trajectory information, 𝑌 ∈
𝑇 × 𝐴 × 𝐷. δ denotes the composite operation involving both 

𝑙𝑖𝑛𝑒𝑎𝑟  and 𝑅𝑒𝐿𝑈  activation functions, with the second 

parameter specifying the output dimension of the linear layer. 

The 𝐸𝑚𝑏𝑖𝑑𝑖𝑛𝑔 indicates the use of zero values to pad and 

extend the feature dimension 𝐷. 

To incorporate time sequence information into HTTNet, we 

adapt the Time Encoder to encode the trajectory information. 

We generate a time sequence index, 𝑇𝑠𝑒𝑞, with values ranging 

from 0 to 512. The length of 𝑇𝑠𝑒𝑞 is then adapt to match the 

time dimension. Next, we alternate between odd and even 

sequences of 𝑇𝑠𝑒𝑞 , dividing them by the time encoding 

information. The resulting values are then added to 𝑌′. This 

process effectively encodes the temporal aspect of the 

trajectory data, enabling HTTNet to consider the temporal 

relationships and dynamics while predicting future trajectories. 

The specific operations for time encoding are in Eq. (2): 

 

 

Linear1
Relu

Embid
-ing

Linear2
Relu

Linear3
Relu

Y Y'

Y' seqT

sin

cos

output

+

 

Fig.2. Trajectory Encoder structure, from top to bottom, consists of FPN and Time Encoder 

 

{
𝑇𝐸(𝑇, 2𝑖) = 𝑠𝑖𝑛 (

𝑇

100002𝑖/𝑑
)

𝑇𝐸(𝑇, 2𝑖 + 1) = 𝑐𝑜𝑠 (
𝑇

100002𝑖/𝑑
)

(2) 

where 𝑇𝐸 represents the time encoder, 𝑇𝑠𝑒𝑞 represents the time 

sequence index, 𝑖  denotes the dimension index for time 

encoder, and 𝑑𝑚𝑜𝑑𝑒𝑙 represents the hidden layer dimension of 

the Transformer model. The result of 𝑇𝐸  is a 𝑑𝑚𝑜𝑑𝑒𝑙 

dimensional vector. Ultimately, the result of 𝑇𝐸 is added to 𝑌′ 
for each dimension 𝐷, yielding the past trajectory features 𝑃 

and the future trajectory features 𝐹. 

C. TF-Map Encoder.   

To input the map information into the Multi-Transformer, we 

use the TF-Map Encoder to encode the semantic map 

information. Past methods [19], [25] mainly utilized MLP 

(Multilayer Perceptron) and CNN (Convolutional Neural 

Network) for feature extraction from feature maps. However, 

the features from a CNN contain dimensions of height and 

width, which cannot be directly input into a Transformer. 

Therefore, we use Inverted Blocks[26] to sequentially 

downsample the features, reducing the dimensionality of the 

features. The operations of the TF-Map Encoder are shown in 

Figure 3.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

 



    6 

 

HD map

ConV 

3×3

Inverted

Residual

Dowm Dowm

Inverted

Residual

Normal

×2

Inverted

Residual

Down

Globel Feature 

map

ConV 

3×3

Normal

Batch

Normal
Relu

ConV 

1×1

Down

Globel Feature 

map

Unfold feature 

map

 

Fig.3. TF-Map encoder structure, consisting of feature extraction and feature expansion 

 

Regarding the input feature map HD map, denoted as 𝑀 ∈
𝐶 × 𝐻 × 𝑊 , where 𝐶 , 𝐻 , and 𝑊  represent the HD map’s 

channel number, height, and width. We conducte an 

adjustment through a 3×3 convolution operation. 

Subsequently, four Inverted Blocks are sequentially applied to 

perform downsampling and feature extraction on the feature 

map, resulting in a comprehensive Global Feature map 

containing all information in the semantic map. Following this, 

a series of operations, including 3×3 convolutions, 

normalization, and 𝑅𝑒𝐿𝑈 activation, are employed to prepare 

the feature map for its final dimension reduction. Finally, 

mean pooling is applied to squeeze the 𝐻 × 𝑊 dimensions of 

the feature map, resulting in the map feature 𝑀 . The 

calculation process of the TF-Map Encoder can be described 

by Eq. (3) – Eq. (5). 

𝑥1 = 𝐼𝑛𝑅𝑒𝑠3×3
𝑑𝑜𝑤𝑛 (𝐶𝑜𝑛𝑉3×3

𝑑𝑜𝑤𝑛(𝑥)) (3) 

𝑥2 =  𝐼𝑛𝑅𝑒𝑠3×3
𝑑𝑜𝑤𝑛 (𝐼𝑛𝑅𝑒𝑠3×3

2(𝑛𝑜𝑟𝑚𝑎𝑙)(𝑥1)) (4) 

𝑥3 = 𝐶𝑜𝑛𝑉1×1
𝑑𝑜𝑤𝑛 (𝑅𝑒𝑙𝑢 (𝐵𝑁 (𝐶𝑜𝑛𝑉3×3

𝑛𝑜𝑟𝑚𝑎𝑙(𝑥2)))) (5) 

where ε𝑑𝑜𝑤𝑛  and ε𝑛𝑜𝑟𝑚𝑎𝑙  represents the downsampling and 

feature extraction operation carried out during this convolution 

step, ε𝑖 indicates the number of ε operation. and ε𝑖×𝑗 signifies 

the size of the convolutional kernel. The 𝐼𝑛𝑅𝑒𝑠  represents 

𝐼𝑛𝑣𝑒𝑟𝑡𝑒𝑑𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙, consisting of two convolutional layers; 

details can refer to [25]. 𝐵𝑁 denotes batch normalization, and 

𝑅𝑒𝑙𝑢 represents the activation function. 

D. Multi-Transformer 

To elucidate the correlation between the map and future 

trajectories from past trajectory information, we employ a 

Multi-Transformer for feature fusion and extraction. The 

efficacy of Transformers in the realm of Natural Language 

Processing is well-documented, chiefly attributed to their 

proficient processing of unimodal features via cross-attention 

mechanisms. However, the Multi-Transformer needs to 

simultaneously deal with three types of features (past 

trajectories, map features, and future trajectories). Therefore, 

we first use cross-attention to extract features from past 

trajectories, and then use the past trajectories to query the 

relationship between the map and future trajectories.
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Fig.4. Multi-Transformer structure, comprising three feature extraction and fusion modules 

 

Specifically, for the input features 𝑃 ∈ 𝐵 × 𝑇 × 𝐷 , 𝑀 ∈
𝐵 × 𝑇 × 𝐷 , and 𝐹 ∈ 𝐵 × 𝑇 × 𝐷 , where 𝑃 , 𝑀 , and 𝐹 

represent past trajectory features, map features and future 

trajectory features; 𝐵 , 𝑇  and 𝐷  represent the features' batch 

size, time length and dimension. Firstly, we normalize 𝑃 using 

Layer Normalization and then separately input it into the 𝑄, 𝐾, 

and 𝑉 of the Cross-Attention, where 𝑄, 𝐾, and 𝑉 represent the 

query, key, and value, respectively. For the result of the cross-

attention on the past trajectories, we sequentially apply 

Dropout, Layer Normalization, and a Feed Forward to produce 

the first-stage features. Similarly, we also apply Layer 

Normalization and cross-attention to the map feature 𝑀. Then, 

we normalize the result for 𝑀 using Layer Normalization and 

input it as 𝐾  and 𝑉  into the cross-attention, with 𝑄  coming 

from the first-stage features. The cross-attention utilizes 𝑄 to 

query the associations between 𝐾 and 𝑉, yielding the second-

stage features. In a similar fashion, we perform the same 

operations on the future trajectory feature 𝐹 , querying the 

association between past and future trajectories to produce the 

third-stage features. The calculation process of the Multi-

Transformer can be described by Eq. (6) – Eq. (16): 

𝑥1 = 𝐿𝑁(𝑃) (6) 

𝑥2 = 𝐶𝐴(𝑥1, 𝑥1, 𝑥1) (7) 

𝑥3 = 𝐹𝑑(𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑑𝑟𝑜𝑝𝑜𝑢𝑡(𝑥2)), 𝑥1) (8) 

𝑦1 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑀) (9) 

𝑦2 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐶𝐴(𝑦1, 𝑦1, 𝑦1)) (10) 

𝑦3 = 𝐶𝐴(𝑥3, 𝑦2, 𝑦2) (11) 

𝑦4 = 𝐹𝑑(𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑑𝑟𝑜𝑝𝑜𝑢𝑡(𝑦3)), 𝑦1) (12) 

𝑧1 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐹) (13) 

𝑧2 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐶𝐴(𝑧1, 𝑧1, 𝑧1)) (14) 

𝑧3 = 𝐶𝐴(𝑦4, 𝑧2, 𝑧2) (15) 

𝑧4 = 𝐹𝑑(𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑑𝑟𝑜𝑝𝑜𝑢𝑡(𝑧3)), 𝑧1) (16) 

where 𝐶𝐴  represents 𝐶𝑟𝑜𝑠𝑠 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 , consisting of three 

parameters: 𝑄 , 𝐾 , and 𝑉 , which respectively correspond to 

query, key, and value. The 𝐹𝑑  represents 𝐹𝑒𝑒𝑑𝐹𝑜𝑟𝑤𝑎𝑟𝑑 , 

involving a series of operations, followed by 𝑙𝑖𝑛𝑒𝑎𝑟, 𝑅𝑒𝐿𝑈, 

𝑑𝑟𝑜𝑝𝑜𝑢𝑡 , 𝑙𝑖𝑛𝑒𝑎𝑟 , 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 , and 

𝐿𝑎𝑦𝑒𝑟 𝑁𝑜𝑟𝑚 . The second parameter of 𝐹𝑒𝑒𝑑𝐹𝑜𝑟𝑤𝑎𝑟𝑑  is 

indicative of the variable added during 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛. 

The final output result is represented as 𝑧4. The details about 

the functioning of 𝐶𝑟𝑜𝑠𝑠 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 can refer to [12]. 

E. Trajectory Decoder.   

To output the final predicted trajectory, we use Trajectory 

Decoder to decode the results of Multi Transformer. 

Specifically, for the information 𝑧4, which is the output of the 

Multi-Transformer and has dimensions 𝑧4 ∈ 𝐵 × 𝑇 × 𝐷 , we 

employ an MLP to perform feature extraction and generate the 

final output. The MLP consists of a hidden layer and an output 
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layer. The Trajectory Decoder's specific operations can be 

described by Eq. (17): 

𝑂𝑢𝑡 = 𝑙𝑖𝑛𝑒𝑎𝑟(𝑟𝑒𝑙𝑢(𝑙𝑖𝑛𝑒𝑎𝑟(𝑧4), 𝑑1), 𝑑2) (17) 

where 𝑧4 is obtained from the Transformer Layer, and 𝑑_1 =
𝐷/2. The 𝑑2 represents all the trajectory information predicted 

for multiple intelligent agents.  It is noteworthy that by 

adjusting the final number of channels, the model can predict 

multiple sets of trajectory information. 

4. EXPERIMENT AND RESULTS 

A. Dataset.   

We conduct a comprehensive evaluation and ablation 

experiments on HTTNet using publicly available datasets, 

which comprise: 

• Interaction dataset [26]: This dataset is tailored for 

behavior prediction in interactive driving scenarios, 

encompassing intricate urban traffic information, 

such as complex intersections and roundabouts, with 

extensive interactions among vehicles and 

pedestrians. Notably, the dataset offers 

comprehensive high-definition semantic maps, which 

served as the direct input source for HTTNet. Our 

evaluation follow the Interaction benchmark, 

utilizing 10 frames for training and 20 frames for 

prediction. 

• nuScenes dataset [27]: As one of the most recent 

large-scale driving datasets, it boasts 1000 diverse 

driving scenes, encompassing a total of 28130 data 

samples, 3019 validation samples, and 6008 test 

samples. Equipped with various sensors like LIDAR, 

360° cameras, and others, this dataset provides rich 

and varied information. Additionally, high-definition 

semantic maps were provided for training purposes. 

Our experimentation follow the nuScenes challenge 

benchmark, utilizing 4 frames for training and 12 

frames for prediction. 

B. Training details.  

For all datasets, the intelligent agents' origin coordinates are 

established using the last frame's position coordinates from the 

past trajectory, denoted as (𝑥0, 𝑦0) . Both future and past 

trajectories are subsequently transformed by subtracting 

(𝑥0, 𝑦0)  from their respective coordinates. Additionally, we 

process other input information, such as angles, lengths, 

widths, and more, by computing their mean and variance. We 

normalize these values by mean and variance. During 

decoding, the normalization process is reversed using the 

mean, variance, and original origin coordinates. Regarding the 

Transformer Layer, we configure the dimensions of Query, 

Key, and Value to 128; the number of layers and heads are set 

to 2 and 4; The feedforward layers' dimension is set to 256.  

We train and test HTTNet on PyTorch with an Intel W5-

2465X CPU and 4 * NVIDIA GeForce RTX 4090 GPUs. The 

weights are initialized with Kaiming [28] initialization 

strategy. We use SGD optimizer with a momentum of 0.9, 

initial learning rate of 0.005, and weight decay of 0.0004 is 

employed for training. The learning rate is adjusted using the 

polynomial strategy, where the current learning rate is 

multiplied by (1 –  𝐶𝑢𝑟𝑠𝑡𝑒𝑝/𝑇𝑜𝑡𝑎𝑙𝑆𝑡𝑒𝑝 ) ∗∗ 0.9 . A linear 

warm-up from 0.0005 to 0.05 is used for the first 1000 steps. 

For the loss function, Mean Squared Error (MSE) is used for 

computation. For the Interaction dataset, we set the batch to 16 

and trained a total of 20000 steps, which took 3.7 hours.For 

nuScenes, we set the batch to 32 and trained a total of 40000 

steps, which took 12.3 hours. 

C. Evaluation metrics.  

We employed well-established trajectory prediction evaluation 

metrics, namely the Minimum Average Displacement Error 

(minADE), the Minimum Final Displacement Error (minFDE), 

and the Miss Rate (𝑀𝑖𝑠𝑠𝑒𝑑𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠/𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ).The 

specific formulas for minADE and minFDE are as follows: 

• minADE: Consider 𝑁  ground truth trajectories and 

their corresponding 𝐾  predicted trajectories, each 

comprising 𝑇  time steps. For the i-th ground truth 

trajectory, let 𝑃(𝑖, 𝑡)  represent its true coordinates 

(𝑥, 𝑦) at the t-th time step, and let 𝑃𝑝𝑟𝑒𝑑(𝑖, 𝑡) denote 

the corresponding predicted trajectory. The 

calculation formula for minADE can be described as 

Eq. (18):  

min ADE =
1

𝑇
min𝑖=1

𝐾 ∑|𝑃(𝑖, 𝑡) − 𝑃pred(𝑖, 𝑡)| 

𝑇

𝑡=1

(18) 

where  min𝑖=1
𝐾  finds the minimum error value among all 𝐾 

ground truth trajectories, ∑  𝑇
𝑡=1 represents the summation over 

𝑇 time steps for each trajectory. The | | signifies the Euclidean 

distance. 

• minFDE: 𝑁 , 𝐾 , 𝑃(𝑖, 𝑡) , (𝑥, 𝑦)  and 𝑃𝑝𝑟𝑒𝑑(𝑖, 𝑡)  are 

defined in the same way as in minADE. The 

calculation formula for minFDE can be described as 

Eq. (19): 

min FDE =
1

𝐾
min𝑖=1

𝐾 |𝑃(𝑖, 𝑇) − 𝑃pred (𝑖, 𝑇)| (19) 

D. Ablation Study.   

(1) Ablation Encoder 

In this section, we present the design of ablation experiments 

conducted on the Encoder component of the HTTNet model. 

HTTNet represents a novel hybrid approach that combines the 

Transformer and CNN architectures to address the challenging 

task of multi-agent trajectory prediction. To comprehensively 

assess the influence of the Encoder on trajectory prediction 

performance, we conducted separate ablation analyses on the 

TF-Map Encoder and future encoder using two datasets: the 

Interaction dataset and nuScenes dataset. For evaluation 

metrics, we employ minADE and minFDE, with trajectory 

generation quantities set at K=5 and K=10, respectively. Table 

1 displays the results of the Encoder ablation experiments, 

with the corresponding symbols defined as follows: 

Base: Includes Trajectory Encoder 

Map: Includes TF-Map Encoder 

Future: Includes Future Trajectory encoder 
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TABLE 1 

Ablation study of encoder on Interaction and nuScenes 

Dataset Base Map Future minADE5 minFDE5 minADE10 minFDE10 

Interaction  

√   0.43 0.78 0.21 0.62 

√ √  0.41 0.79 0.25 0.62 

√  √ 0.24 0.63 0.18 0.51 

√ √ √ 0.17 0.48 0.15 0.46 

nuScenes 

√   2.03 4.78 1.44 4.31 

√ √  1.97 4.81 1.45 4.33 

√  √ 1.57 3.82 1.21 3.11 

√ √ √ 1.23 3.21 1.03 2.57 

 

 

As shown in Table 1, HTTNet achieve superior performance 

consistently on both the Interaction dataset and the nuScenes 

dataset when all encoders were included. Comparing the 

scenarios of including the TF-Map Encoder versus solely 

employing the Trajectory Encoder, the impact of the TF-Map 

Encoder on HTTNet's performance is found to be relatively 

modest on both datasets. In fact, in the case of minFDE5 on 

the Interaction dataset, the addition of the TF-Map Encoder 

even led to a slight increase in the metric. On the other hand, 

contrasting the inclusion of the Future Encoder with the sole 

use of the Trajectory Encoder, we observe notable 

performance gains on both datasets when incorporating the 

Future Encoder. This observation indicates that the future 

features introduce by the Future Encoder play a significant 

role in guiding the model's learning process. Notably, when all 

Encoders were utilized, the model demonstrate the most 

significant performance improvements on both datasets. These 

findings confirm the efficacy of HTTNet in effectively 

leveraging past and future trajectory information from 

multiple intelligent agents, as well as map image information, 

to achieve enhanced trajectory prediction results. 

(2) Ablation Transformer Layers and heads 

The complexity of Multi-Transformer is governed by the 

number of Transformer Layers and heads. Given the diverse 

practical scenarios, it becomes imperative to judiciously select 

the appropriate number of layers and heads to strike a balance 

between model complexity and predictive accuracy. In this 

section, we conduct ablation experiments on HTTNet, varying 

the numbers of layers and heads, and evaluate its performance 

on the Interaction dataset. It is crucial to emphasize that 

throughout the experiments pertaining to Transformer Layers 

and heads, all encoders are integrated into the HTTNet 

architecture. The specific outcomes of these experiments are 

meticulously presented in Table 2. 

The results from Table 2 highlight the substantial impact of 

varying Transformer Layers and heads on the performance of 

the HTTNet. When HTTNet is equipped with a single Layer 

and a limited number of Heads (e.g. 2), the model exhibits 

relatively lower complexity. Despite yielding relatively higher 

minADE and minFDE values, the model's predictions still 

achieve a certain level of accuracy. As we increase the number 

of Layers (≤ 2) and Heads (≤ 4), the model's complexity 

gradually escalates, resulting in significant reductions in 

minADE and minFDE, thus indicating an enhanced predictive 

accuracy with more Layers and Heads. However, further 

augmenting the number of Layers ( >  2) and Heads ( >  4) 

eventually leads the model to reach an equilibrium. 

Consequently, minADE and minFDE continue to decrease, 

but the rate of decrease becomes less pronounced compared to 

earlier increments. Specifically, when Layer=3 and Heads=6, 

no significant improvement in the model's performance is 

observed. On the contrary, minADE and minFDE show a 

slight upward trend, suggesting that an excessive number of 

Layers and Heads might have minimal or negligible effect on 

the model's performance or, in some cases, even yield adverse 

outcomes. Based on the insights gained from the ablation 

experiments, we ultimately opt for Layer=2 and Head=4 as the 

optimal configuration for HTTNet. 

TABLE 2 

Ablation study of Transformer layers and heads on Interaction 

Dataset layer head minADE5 minFDE5 minADE10 minFDE10 

Interaction  1 2 0.62 1.11 0.93 1.57 
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1 3 0.37 0.78 0.37 0.88 

2 3 0.25 0.71 0.24 0.66 

2 4 0.19 0.52 0.15 0.47 

3 4 0.18 0.48 0.14 0.44 

3 5 0.18 0.47 0.14 0.45 

3 6 0.17 0.48 0.13 0.47 

 

5. COMPARATIVE STUDY 

To further assess the trajectory prediction performance of the 

HTTNet model, we conducted comparative analyses with 

state-of-the-art models renowned for their performance in this 

domain. The selected models included Trajectron++ [29], P2T 

[30], AgentFormer [13], LaPred [31], MultiPath [32], 

GOHOME [33], ThOMAS [34], PGP [35], DESIRE [36], 

TNT [37] and ITRA [38]. We compared the results of these 

models with HTTNet on both the nuScenes dataset and the 

Interaction dataset. The comparative experiment outcomes are 

presented in Table 3 and Table 4, respectively. 

TABLE 3 

Comparative study with other models on nuScenes 

Method MADE5 MADE10 MR5 MR10 

Trajectron++ 1.88 1.51 0.7 0.57 

P2T 1.45 1.16 0.64 0.46 

AgentFormer 1.86 1.45 - - 

LaPred 1.47 1.12 0.53 0.46 

MultiPath 1.44 1.14 - - 

GOHOME 1.42 1.15 0.57 0.47 

ThOMAS 1.33 1.04 0.55 0.42 

PGP 1.27 0.94 0.52 0.34 

HTTNet 1.23 1.03 0.49 0.31 

TABLE 4 

Comparative study with other models on Interaction 

Method MADE6 MFDE10 

DESIRE 0.32 0.88 

MultiPath 0.3 0.99 

TNT 0.24 0.67 

GOHOME - 0.45 

ITRA 0.17 0.49 

HTTNet 0.16 0.47 

The comparative study results in Table 3 demonstrate the 

remarkable performance advantages of the HTTNet model on 

the nuScenes dataset. When predicting samples with 5 and 10, 

the HTTNet model achieved minADE values of 1.23 and 1.03, 

respectively, which are significantly lower than those of other 

models like Trajectron++, P2T, and LaPred. Additionally, we 

evaluated the model's Miss Rate (MR), which indicates the 

number of trajectories in the predictions that exceed a certain 

threshold distance from the ground truth trajectories. The 

HTTNet model also exhibited exceptional performance on 

MR5 and MR10, with values of 0.49 and 0.31, respectively. 

In the comparative study results presented in Table 4, the 

HTTNet model demonstrated outstanding performance on the 

Interaction dataset. For predicting samples with 5 and 10, the 

minADE and minFDE values were 0.16 and 0.47, respectively. 

These values are lower than those achieved by other models 

on these two metrics. Considering the comprehensive 

comparative study results with other popular models on both 

the nuScenes and Interaction datasets, it becomes evident that 

the HTTNet model holds a substantial advantage in the field 

of trajectory prediction. 

6. VISUALIZATION OF DIFFERENT MODULES 

To validate the effectiveness of each module in HTTNet, we 

conducted a visual analysis on the nuScenes dataset. 

Specifically, we sequentially visualized three ablation cases—

Base, Base+Future, and Base+Future+Map—onto the 

semantic map, with the generated number of trajectories 

selected as 10. To observe the differences in the final 

coordinates predicted for each trajectory, we utilized asterisks 

(*) for description. 

By reviewing Fig. 5, we can observe that Base+Future+Map 

has achieved the best performance, both in terms of endpoint 

coordinates and the distance from the original trajectories. 

Comparing Base with Base+Future, we notice significant 

trajectory dispersion in Base, while Base+Future constrains 

the trajectories. This is attributed to the guiding influence of 

future trajectories during training. Furthermore, in the 

comparison of the three results, trajectories in 

Base+Future+Map consistently remain within the semantic 

roads. This is because the semantic map imposes constraints 

on the predicted trajectories, whereas the other two cases 

exhibit instances of trajectories deviating from semantic roads. 

In conclusion, HTTNet excels in both map boundaries and 

trajectory scope. 
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Fig.5. Visualization of different modules(sample=6) 

 

7. CONCLUSION 

In this paper, we introduce a novel trajectory prediction model 

named HTTNet, which is based on Transformer and CNN. 

HTTNet comprises three main modules: Trajectory Encoder, 

TF-Map Encoder, Multi-Transformer, and Trajectory Decoder. 

Specifically, the Trajectory Encoder extracts low-level 

trajectory information and encodes it, while the TF-Map 

Encoder encodes map information, enhancing HTTNet's 

understanding of road boundaries. The Multi-Transformer 

receives different features from the Encoders, performs 

extraction and fusion, and, finally, the Trajectory Decoder 

organizes feature information into trajectory data for output. 

We conducted qualitative and quantitative analyses on 

HTTNet, demonstrating the effectiveness of its structure. 

Remarkably, we achieved outstanding performance on 

challenging datasets, namely Interaction and nuScenes. Our 

work paves the way for the application of Transformer in 

trajectory prediction, significantly exploring the synergy of 

CNN and Transformer methods. The proposed HTTNet can 

be applied to various downstream tasks such as autonomous 

driving and behavioral decision-making. Our future work aims 

to extend predictions to multiple agents, simulating 

interactions between each intelligent agent. 
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