
 1

Key words: trajectory prediction; transformer; convolutional neural network; multimodal data

1. INTRODUCTION

With the socio-economic development, automobiles have

assumed a pivotal role in the daily lives of individuals,

resulting in a rapid surge in per capita car ownership.

According to a survey conducted by the World Health

Organization (WHO), traffic accidents claim a life every 23

seconds globally, leading to an annual toll of 1.3 million

fatalities, predominantly caused by vehicle collisions. The

rapid advancement of cutting-edge technologies, such as

artificial intelligence, has catapulted autonomous driving into

the forefront of research. With its immense potential,

autonomous driving technology finds extensive applications in

urban transportation and intelligent logistics, empowering it to

support human drivers, optimize travel routes, and thereby

revolutionize traffic safety and efficiency.

Trajectory prediction stands as a critical linchpin in the

paradigm of autonomous driving technology, spanning a

spectrum of technical facets such as perception, prediction,

and decision-making [1], [2], [3]. In the seamless operation of

mobile intelligent agents like autonomous vehicles and service

robots, trajectory prediction assumes a pivotal role. The

essence of trajectory prediction lies in the inference of the

prospective motion trajectory of an intelligent agent based on

its historical motion states. Conventional methodologies

predominantly exploit kinematic features, employing

mathematical modeling methodologies [4] such as Kalman

filtering [5] and Gaussian processes [6] to prognosticate the

future trajectories of entities, including pedestrians. While

these methodologies adhere to traditional approaches and

demonstrate commendable temporal efficiency, they remain

vulnerable to data fluctuations. In recent years, vanguard

researchers have delved into the utilization of Multilayer

Perceptrons (MLP) [7], [8], [9] for trajectory information

modeling. However, MLP is encumbered by the terminal

coordinates in trajectory sequences, resulting in a diminished

reliance on long-distance information. The advent of and Long

Short-Term Memory (LSTM) [10] has ushered in

advancements in capturing long-distance information. For

instance, Alahi et al. [11] employed LSTM for the temporal

modeling of trajectory information, intensifying the network's

reliance on initial coordinates. Nonetheless, LSTM face

limitations due to the dimensionality of their units,

aggregating solely partial long-distance information and

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES
DOI: 10.24425/bpasts.2024.150811

HTTNet: Hybrid Transformer-based approaches
 for Trajectory prediction

Xianlei GE1,3, Xiaobo SHEN1,4 *, Xuanxin ZHOU1, and Xiaoyan LI2,3

1 School of Electronic Engineering, Huainan Normal University, China
 2 School of Computer, Huainan Normal University, China

3 College of Computing and Information Technologies, National University, Philippines
4 College of Industrial Education, Technological University of the Philippines, Philippines

Abstract. Forecasting future trajectories of intelligent agents presents a formidable challenge, necessitating the analysis of

intricate scenarios and uncertainties arising from agent interactions. Consequently, it is judicious to contemplate the

establishment of inter-agent relationships and the assimilation of contextual semantic information. In this manuscript, we

introduce HTTNet, a comprehensive framework that spans three dimensions of information modeling: (1) the temporal

dimension, where HTTNet employs a Time Encoder to articulate time sequences, comprehending the influences of past and

future trajectories; (2) the social dimension, where the Trajectory Encoder facilitates the input of trajectories from multiple

agents, thereby streamlining the modeling of interaction information among intelligent agents; (3) the contextual dimension,

where the TF-Map Encoder integrates semantic scene input, amplifying HTTNet's cognitive grasp of scene information.

Furthermore, HTTNet integrates a hybrid modeling paradigm featuring CNN and Transformer, transmuting map scenes into

feature information for the Transformer. Qualitative and quantitative analyses on the nuScenes and interaction datasets

highlight the exceptional performance of HTTNet, achieving 1.03 minADE10 and a 0.31 Miss Rate on nuScenes, underscoring

its effectiveness in multi-agent trajectory prediction in complex scenarios.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

THIS IS AN EARLY ACCESS ARTICLE.
This article has been accepted for publication in a future issue of this journal,

but has not been fully edited. Content may change prior to final publication.

 2

falling short of establishing inter-positional correlations. The

introduction of Transformer [12] proffers a remedy for

associating long-distance information, as self-attention

mechanisms can foster relationships between each node,

thereby amplifying the network's prowess in extracting

information for every coordinate. However, Transformers bear

a substantial computational burden. For example,

AgentFormer [13] implemented a complete Transformer

architecture, yielding commendable predictive outcomes but

resourceondeploymentforunsuitableitrendering -

singularlyMoreover, AgentFormerdevices.constrained

incorporates path input and lacks the capability to establish

correlations between map environments.

To address the aforementioned issues, we employ Transformer

positionalmultiplebetweenrelationshipsestablishto

coordinates, streamlining the internal structure of Transformer

layers to reduce computational overhead. Additionally, to

forge connections between map and trajectory information, we

leverage depth-wise separable convolutions [8] to transform

image data into feature maps, which are then input into the

network. The novelty of our work lies in the design of a multi-

layered Transformer layer structure capable of concurrently

accommodating trajectory and image information. Our

primary contributions are outlined as follows:

• We propose a novel trajectory prediction network called

HTTNet (Hybrid Transformer Trajectory Network),

capable of assimilating information from multiple

intelligent agents and map data, thereby modeling

trajectory scenes.

• We introduce a TF-Map Encoder that comprehends map

information and transforms it into Transformer feature

maps, enhancing HTTNet's map comprehension

capabilities.

• We enhance a single deep Transformer layer into

multiple shallow layers, establishing a Multi-

Transformer, enabling simultaneous processing of

trajectory and image information.

In addition, we conducted ablation experiments, comparative

experiments, and visual experiments on the nuScenes and

Interaction datasets, achieving outstanding performance. The

organization of the following chapters is as follows: Section 2

reviews related work, Section 3 sequentially introduces

HTTNet, Encoder, Multi-Transformer, and Decoder.

Experimental results and discussions are presented in Section

4 and 5.

2. RELATED WORK

A. Trajectory prediction based on time sequence.

Time series modeling is a fundamental technique that

leverages the input sequence's order as a feature, proving vital

for various data modalities, such as videos and audios. The

trajectory prediction domain has witnessed remarkable

advancements facilitated by techniques like RNN, LSTM, and

GRU. In this context, trajectory data is considered sequential,

leading to the widespread adoption of Recurrent Neural

Network (RNN) for modeling intelligent agent trajectories.

Nevertheless, RNN faces challenges like the exploding

gradient problem. To overcome these obstacles, Hochreiter et

al. [14] proposed the Long Short-Term Memory (LSTM)

model, which effectively mitigates the exploding gradient

issue. Among the recent trajectory prediction endeavors, Alahi

et al. [11] introduced the Social-LSTM model, which employs

LSTM to model trajectory time series data and utilizes pooling

mechanisms to capture interactions among intelligent agents.

However, the simplicity of Social-LSTM's interaction model

has led to comparatively lower prediction accuracy. This has

spurred growing enthusiasm in the trajectory prediction

community for exploring time series modeling approaches.

Abebe et al. [15] proposes a hybrid ARIMA-LSTM model

using AIS data to accurately forecast ship trajectories in

maritime transportation, enabling effective collision avoidance

decision-making. [16] et al. made a significant stride with the

development of the Long Short-Term Memory with Lagged

Information (LAG-LSTM) model. By integrating traditional

physically-driven high-speed train models with interpretable

deep learning models, the LAG-LSTM effectively predicts

high-speed train trajectories, outperforming other deep

learning counterparts in terms of prediction accuracy. Zhang et

al. [17]proposed an intelligent framework that fuses Principal

Component Analysis (PCA) and Gated Recurrent Unit (GRU)

in a hybrid model to predict real-time trajectory deviations

during Earth Pressure Balance (EPB) tunneling. Xue et al. [18]

introduced PoPPL, an innovative algorithm that classifies

pedestrian trajectories into different route classes (RCs) and

utilizes a bidirectional LSTM classification network to predict

target regions and generate corresponding trajectories. The

trajectory prediction field continues to thrive, with researchers

exploring new state-of-the-art approaches and novel

techniques to further advance this critical domain.

The introduction of these methods has improved the

performance of neural networks in the field of trajectory

prediction, contributing to the advancement of trajectory

prediction. However, constrained by the size of LSTM and

GRU units, the network exhibits limited capability in

exploring interaction information among multiple intelligent

agents. Additionally, none of these approaches have attempted

to leverage maps or images to enrich the network with scene

information, potentially leading to the neglect of map details.

Recent works such as VectorNet [19] and LaneGCN [20]

directly encode road and boundary information from HD maps

into nodes of a graph, utilizing graph convolution to extract

features from map information. However, map encoding

cannot consider all scene information and may lose some

detailed information. Therefore, designing an effective scene

information extraction module remains an unresolved

challenge.

B. Trajectory prediction based on Transformer.

In recent years, Transformers [12] have made remarkable

strides in the domain of natural language processing, attracting

increasing attention for their potential in trajectory prediction.

In 2019, Zhu et al. [21] pioneered the introduction of Starnet, a

Transformer-based spatiotemporal graph convolution

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

 3

trajectory prediction model. Starnet effectively captures

pedestrians' spatiotemporal graphs through attention

mechanisms, yielding promising prediction outcomes. Zhang

et al. [22] introduced the mmTransformer model, leveraging

Transformers to encode and fuse vehicle and environmental

information, thereby generating multimodal trajectories using

path and classification loss functions. However, this approach

overlooks crucial interaction factors among agents. To address

temporal information loss and enhance the diversity of

generated trajectories, Yuan et al. [13] investigated the impact

of temporal and social dimensions on the future motion of

intelligent agents, proposing the AgentFormer model. Notably,

they improved the attention mechanism to focus on

connections between the same agent and others, allowing for

probabilistic modeling of pedestrians' potential intentions. Li

et al. [23] introduced a multi-scale graph-based spatial

transformer and "Memory Replay" memory graph trajectory

smoothing algorithm. Their approach enables the prediction of

multiple paths for historical trajectories, with an emphasis on

spatial information and trajectory smoothness. Additionally,

they introduced the novel evaluation metric "Percentage of

Trajectory Usage" to assess diversity in multiple future

predictions, achieving superior performance in multi-future

prediction tasks. Jia et al. [24] presented the Heterogeneous

Driving Graph Transformer (HDGT) model, which models

driving scenarios as heterogeneous graphs with distinct node

and edge types. By employing the Transformer structure, they

successfully encoded and predicted rich and diverse semantic

relationships, leading to state-of-the-art performance in

trajectory prediction tasks.

While the trajectory prediction exploration within the

Transformer framework remains somewhat limited, the

aforementioned methods are exclusively built upon the

foundational Transformer for trajectory prediction, incurring

substantial temporal expenses. Additionally, these approaches

have yet to delve into the amalgamation of CNN with

Transformer to facilitate feature extraction from images.

Acknowledging the constraints of prior trajectory prediction

methodologies, we introduce HTTNet. This model adeptly

accommodates both map scenes and interaction dynamics

among multiple intelligent agents, presenting an innovative

foray into the application of Transformer in the realm of

trajectory prediction.

3. METHODOLOGY

We have formulated the prediction of future trajectories for

𝑁(𝑁 ∈ 𝑍) intelligent agents based on their known past

trajectory distributions. Specifically, for an individual

intelligent agent, we denote its state at time 𝑡 as 𝑋𝑡 =
{𝑋1

𝑡, 𝑋2
𝑡 , 𝑋3

𝑡 , … , 𝑋𝑁
𝑡 }, where 𝑡 > 0. For an agent at a given

moment 𝑋𝑛
𝑡 , we denote its state at time 𝑡 as 𝑆𝑡 , where 𝑆𝑡 =

{position x, position y, velocity x, velocity y, heading angle,

length, width}. Similarly, the collective state of 𝑁 agents

within a time interval 𝑇(𝑇 > 0) is represented as 𝑌𝑛 =
{𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑁} , where 𝑦𝑛 indicates the states of the 𝑁

agents during the time span 𝑇. To enable the learning model

to understand past and future trajectories, we divide the

trajectory over time period 𝑇 into 𝑇1(0~𝑡’) and 𝑇2(𝑡’~𝑇) ,

where 𝑇1 represents the past trajectories of the agents, and 𝑇2

represents the future trajectories of the agents. The learning

model is furnished with the past trajectories of all intelligent

agents 𝑌𝑛
1 within time interval 𝑇1 and tasked with forecasting

the future trajectories of all intelligent agents 𝑌𝑛
2 within time

interval 𝑇2 . Additionally, the learning model can obtain a

semantic scene map images 𝑀 , where 𝑀 ∈ 𝐶 × 𝐻 × 𝑊 ,

with 𝐶 representing the number of semantic categories, 𝐻

representing the image height, and 𝑊 representing the image

width. In the following text, we sequentially introduce the

overall structure of HTTNet (Hybrid Transformer Trajectory

Network.), the Trajectory Encoder, TF-Map Encoder, Multi-

Transformer, and the decoder.

A. Hybrid Transformer Trajectory Network.

Our HTTNet (Hybrid Trajectory Transformer Network) is

built upon the Transformer [12], a network model initially

designed for natural language text processing. However,

conventional Transformers are primarily tailored for handling

sequential textual data and language understanding tasks. In

our context, we face the challenge of modeling past

trajectories, future trajectories, and the contextual information

of surrounding map scenes. To address these specific

requirements and enhance the modeling capabilities, we

introduce two pivotal enhancements to the standard

Transformer architecture:

(1) Integrated CNN and positional encoding as scene features.

(2) Reduced the number of layers and nodes within the

Transformer, opting for a multi-layer cross-attention structure

to facilitate the incorporation of surrounding scene image

features.

As depicted in Fig. 1, HTTNet takes three distinct inputs:

(1) The past trajectories of the agents 𝑌 =
{𝑦1, 𝑦2, … , 𝑦𝑛−1 , 𝑦𝑛} , where 𝑌_𝑛 contains all trajectory

information 𝑆𝑡 at time 𝑡 , with 𝑆𝑡 = {position x, position y,

velocity x, velocity y, heading angle, length, width};

(2) The Future trajectories of the agents 𝑌′ =
{𝑦1

′ , 𝑦2
′ , … , 𝑦𝑛−1

′ , 𝑦𝑛
′ }.

(3) Semantic map image 𝑀, with 𝑀 ∈ 𝐶 × 𝐻 × 𝑊.
It is worth noting that the future trajectories Y’ are only input

during the training process and not during testing, for guiding

the model's learning process. For the past trajectories 𝑌 and

future trajectories 𝑌’, we encode them for input into the Multi-

Transformer for feature extraction. The traditional

Transformer used a Position Embedding module for positional

encoding of sequential data. However, in traffic trajectory data,

each agent does not provide sequential order information, and

using traditional encoding methods may lead to loss of

temporal sequences. Therefore, we design a Trajectory

Encoder for trajectory encoding, which includes FPN

Embedding and Time Encoder, ensuring the stability of the

temporal sequences of multiple agents. The Trajectory

Encoder outputs features of both past and future trajectories.

For the map image 𝑀 , considering the time cost of the

Transformer, we designed the TF-Map Encoder to extract

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

 4

image features, which utilizes a lightweight CNN module to

output map features. For the trajectory and map features, we

use the Multi-Transformer for feature extraction. Specifically,

we first input the past trajectory features into the first Cross

Attention, which duplicates the features three times, named 𝑄,

𝐾 and 𝑉 respectively. Then, Cross Attention uses 𝑄 to

perform dot products with 𝐾 and 𝑉 respectively, outputting

fused features to query the internal associations of the

trajectory features. For the map features and future trajectory

features, we first duplicate the features twice, named 𝐾 and 𝑉

respectively. Unlike the first Cross Attention, we use the fused

features from the previous step as 𝑄, which operates with 𝐾

and 𝑉 respectively, in the hope of querying the associations

between the map and future trajectories from the past

trajectories. The third Cross Attention outputs a feature matrix

𝑀𝑝 that includes the agents' future trajectory features. More

details on the Multi-Transformer will be introduced in Section

3.D. Finally, the Decoder module adjusts the features 𝑀𝑝 and

uses a multi-layer perceptron to transform the features into the

output prediction sequence 𝑝, 𝑝 = {𝑝1, 𝑝2, … , 𝑝(𝑛 − 1), 𝑝𝑛}.

1 2 1{ , , , , }n ny y y y−

Past Trajectory

Surround Map

Future Trajectory

FPN

Embedding

Time

Encoder

FPN

Embedding

Time

Encoder

Feature

Extraction

Feature

Expansion

Trajectory Encoder TF-Map Encoder

1 2 1{ ' , ' , , ' , ' }n ny y y y−

Cross

Attention
Q K V

Cross

Attention
Q K V

Cross

Attention
Q K V

Trajectory

Decoder

Prediction Trajectory

Multi-Transformer

1

2

3

Fig.1. Overall structure of Hybrid Transformer Trajectory neural network

B. Trajectory Encoder.

To incorporate past trajectory information from time interval

T into the Multi-Transformer, the trajectory data needs to be

unfolded, allowing the Multi-Transformer to learn future

trajectory transformation strategies. Firstly, the trajectory

information from time interval T is fed into the Feature

Pyramid Network (FPN), facilitating the interaction of

information from different vehicles and time sequence.

Moreover, inspired by the position Embedding in

Transformers, we utilize a Time Encoder to treat temporal

sequences as positional encoding information, which is then

integrated into the trajectory information. The specific

trajectory data handling operations are depicted in Fig. 2.

Specifically, regarding the input of past trajectory information

for multiple intelligent agents, denoted as 𝑌 =

{𝑦1, 𝑦2, … , 𝑦𝑛−1, 𝑦𝑛}, where 𝑌 ∈ 𝑇 × 𝐴 × 𝐷, 𝑇 represents the

length of the past time interval (in frames), 𝐴 represents the

number of intelligent agents, and 𝐷 represents the data

information contained in each intelligent agent (position x,

position y, etc.), a series of operations are performed. We

sequentially pass 𝑌 through three Linear layers, each

producing outputs with different dimensions. The first Linear

layer unfolds the features, enabling a more accessible

representation. The second Linear layer enhances feature

perception and interaction within the hidden layer, fostering

richer interactions among agents. Finally, the third Linear

layer restores the original dimension 𝐷 of the features.

Notably, for the output of the third Linear layer, we employ

zero values to expand the feature dimension 𝐷 , facilitating

subsequent interactions and computations. The specific

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

 5

operations of FDN Embedding are mathematically expressed

in Eq. (1):

𝑌′ = 𝐸𝑚𝑏𝑖𝑑𝑖𝑛𝑔 (𝛿(3)(𝑌, 𝑙)) (1)

where 𝑌 represents the past trajectory information, 𝑌 ∈
𝑇 × 𝐴 × 𝐷. δ denotes the composite operation involving both

𝑙𝑖𝑛𝑒𝑎𝑟 and 𝑅𝑒𝐿𝑈 activation functions, with the second

parameter specifying the output dimension of the linear layer.

The 𝐸𝑚𝑏𝑖𝑑𝑖𝑛𝑔 indicates the use of zero values to pad and

extend the feature dimension 𝐷.

To incorporate time sequence information into HTTNet, we

adapt the Time Encoder to encode the trajectory information.

We generate a time sequence index, 𝑇𝑠𝑒𝑞, with values ranging

from 0 to 512. The length of 𝑇𝑠𝑒𝑞 is then adapt to match the

time dimension. Next, we alternate between odd and even

sequences of 𝑇𝑠𝑒𝑞 , dividing them by the time encoding

information. The resulting values are then added to 𝑌′. This

process effectively encodes the temporal aspect of the

trajectory data, enabling HTTNet to consider the temporal

relationships and dynamics while predicting future trajectories.

The specific operations for time encoding are in Eq. (2):

Linear1
Relu

Embid
-ing

Linear2
Relu

Linear3
Relu

Y Y'

Y' seqT

sin

cos

output

+

Fig.2. Trajectory Encoder structure, from top to bottom, consists of FPN and Time Encoder

{
𝑇𝐸(𝑇, 2𝑖) = 𝑠𝑖𝑛 (

𝑇

100002𝑖/𝑑
)

𝑇𝐸(𝑇, 2𝑖 + 1) = 𝑐𝑜𝑠 (
𝑇

100002𝑖/𝑑
)

(2)

where 𝑇𝐸 represents the time encoder, 𝑇𝑠𝑒𝑞 represents the time

sequence index, 𝑖 denotes the dimension index for time

encoder, and 𝑑𝑚𝑜𝑑𝑒𝑙 represents the hidden layer dimension of

the Transformer model. The result of 𝑇𝐸 is a 𝑑𝑚𝑜𝑑𝑒𝑙

dimensional vector. Ultimately, the result of 𝑇𝐸 is added to 𝑌′
for each dimension 𝐷, yielding the past trajectory features 𝑃

and the future trajectory features 𝐹.

C. TF-Map Encoder.

To input the map information into the Multi-Transformer, we

use the TF-Map Encoder to encode the semantic map

information. Past methods [19], [25] mainly utilized MLP

(Multilayer Perceptron) and CNN (Convolutional Neural

Network) for feature extraction from feature maps. However,

the features from a CNN contain dimensions of height and

width, which cannot be directly input into a Transformer.

Therefore, we use Inverted Blocks[26] to sequentially

downsample the features, reducing the dimensionality of the

features. The operations of the TF-Map Encoder are shown in

Figure 3.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

 6

HD map

ConV

3×3

Inverted

Residual

Dowm Dowm

Inverted

Residual

Normal

×2

Inverted

Residual

Down

Globel Feature

map

ConV

3×3

Normal

Batch

Normal
Relu

ConV

1×1

Down

Globel Feature

map

Unfold feature

map

Fig.3. TF-Map encoder structure, consisting of feature extraction and feature expansion

Regarding the input feature map HD map, denoted as 𝑀 ∈
𝐶 × 𝐻 × 𝑊 , where 𝐶 , 𝐻 , and 𝑊 represent the HD map’s

channel number, height, and width. We conducte an

adjustment through a 3×3 convolution operation.

Subsequently, four Inverted Blocks are sequentially applied to

perform downsampling and feature extraction on the feature

map, resulting in a comprehensive Global Feature map

containing all information in the semantic map. Following this,

a series of operations, including 3×3 convolutions,

normalization, and 𝑅𝑒𝐿𝑈 activation, are employed to prepare

the feature map for its final dimension reduction. Finally,

mean pooling is applied to squeeze the 𝐻 × 𝑊 dimensions of

the feature map, resulting in the map feature 𝑀 . The

calculation process of the TF-Map Encoder can be described

by Eq. (3) – Eq. (5).

𝑥1 = 𝐼𝑛𝑅𝑒𝑠3×3
𝑑𝑜𝑤𝑛 (𝐶𝑜𝑛𝑉3×3

𝑑𝑜𝑤𝑛(𝑥)) (3)

𝑥2 =  𝐼𝑛𝑅𝑒𝑠3×3
𝑑𝑜𝑤𝑛 (𝐼𝑛𝑅𝑒𝑠3×3

2(𝑛𝑜𝑟𝑚𝑎𝑙)(𝑥1)) (4)

𝑥3 = 𝐶𝑜𝑛𝑉1×1
𝑑𝑜𝑤𝑛 (𝑅𝑒𝑙𝑢 (𝐵𝑁 (𝐶𝑜𝑛𝑉3×3

𝑛𝑜𝑟𝑚𝑎𝑙(𝑥2)))) (5)

where ε𝑑𝑜𝑤𝑛 and ε𝑛𝑜𝑟𝑚𝑎𝑙 represents the downsampling and

feature extraction operation carried out during this convolution

step, ε𝑖 indicates the number of ε operation. and ε𝑖×𝑗 signifies

the size of the convolutional kernel. The 𝐼𝑛𝑅𝑒𝑠 represents

𝐼𝑛𝑣𝑒𝑟𝑡𝑒𝑑𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙, consisting of two convolutional layers;

details can refer to [25]. 𝐵𝑁 denotes batch normalization, and

𝑅𝑒𝑙𝑢 represents the activation function.

D. Multi-Transformer

To elucidate the correlation between the map and future

trajectories from past trajectory information, we employ a

Multi-Transformer for feature fusion and extraction. The

efficacy of Transformers in the realm of Natural Language

Processing is well-documented, chiefly attributed to their

proficient processing of unimodal features via cross-attention

mechanisms. However, the Multi-Transformer needs to

simultaneously deal with three types of features (past

trajectories, map features, and future trajectories). Therefore,

we first use cross-attention to extract features from past

trajectories, and then use the past trajectories to query the

relationship between the map and future trajectories.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

 7

K

Map feature

Past Trajectory feature

Future Trajectory feature

Cross

Attention

Q

K

V

Layer

Norm

Dropout

Layer Norm

Feed forward

Cross

Attention

Q

K

V

Layer

Norm

Layer

Norm

Cross

Attention

Q

V

Cross

Attention

Q

K

V

Layer

Norm

Layer

Norm

Dropout

Layer Norm

Feed forward

K
Cross

Attention

Q

V

Dropout

Layer Norm

Feed forward

Output

Stage 1

Stage 2

Stage 3

Fig.4. Multi-Transformer structure, comprising three feature extraction and fusion modules

Specifically, for the input features 𝑃 ∈ 𝐵 × 𝑇 × 𝐷 , 𝑀 ∈
𝐵 × 𝑇 × 𝐷 , and 𝐹 ∈ 𝐵 × 𝑇 × 𝐷 , where 𝑃 , 𝑀 , and 𝐹

represent past trajectory features, map features and future

trajectory features; 𝐵 , 𝑇 and 𝐷 represent the features' batch

size, time length and dimension. Firstly, we normalize 𝑃 using

Layer Normalization and then separately input it into the 𝑄, 𝐾,

and 𝑉 of the Cross-Attention, where 𝑄, 𝐾, and 𝑉 represent the

query, key, and value, respectively. For the result of the cross-

attention on the past trajectories, we sequentially apply

Dropout, Layer Normalization, and a Feed Forward to produce

the first-stage features. Similarly, we also apply Layer

Normalization and cross-attention to the map feature 𝑀. Then,

we normalize the result for 𝑀 using Layer Normalization and

input it as 𝐾 and 𝑉 into the cross-attention, with 𝑄 coming

from the first-stage features. The cross-attention utilizes 𝑄 to

query the associations between 𝐾 and 𝑉, yielding the second-

stage features. In a similar fashion, we perform the same

operations on the future trajectory feature 𝐹 , querying the

association between past and future trajectories to produce the

third-stage features. The calculation process of the Multi-

Transformer can be described by Eq. (6) – Eq. (16):

𝑥1 = 𝐿𝑁(𝑃) (6)

𝑥2 = 𝐶𝐴(𝑥1, 𝑥1, 𝑥1) (7)

𝑥3 = 𝐹𝑑(𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑑𝑟𝑜𝑝𝑜𝑢𝑡(𝑥2)), 𝑥1) (8)

𝑦1 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑀) (9)

𝑦2 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐶𝐴(𝑦1, 𝑦1, 𝑦1)) (10)

𝑦3 = 𝐶𝐴(𝑥3, 𝑦2, 𝑦2) (11)

𝑦4 = 𝐹𝑑(𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑑𝑟𝑜𝑝𝑜𝑢𝑡(𝑦3)), 𝑦1) (12)

𝑧1 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐹) (13)

𝑧2 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐶𝐴(𝑧1, 𝑧1, 𝑧1)) (14)

𝑧3 = 𝐶𝐴(𝑦4, 𝑧2, 𝑧2) (15)

𝑧4 = 𝐹𝑑(𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑑𝑟𝑜𝑝𝑜𝑢𝑡(𝑧3)), 𝑧1) (16)

where 𝐶𝐴 represents 𝐶𝑟𝑜𝑠𝑠 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 , consisting of three

parameters: 𝑄 , 𝐾 , and 𝑉 , which respectively correspond to

query, key, and value. The 𝐹𝑑 represents 𝐹𝑒𝑒𝑑𝐹𝑜𝑟𝑤𝑎𝑟𝑑 ,

involving a series of operations, followed by 𝑙𝑖𝑛𝑒𝑎𝑟, 𝑅𝑒𝐿𝑈,

𝑑𝑟𝑜𝑝𝑜𝑢𝑡 , 𝑙𝑖𝑛𝑒𝑎𝑟 , 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 , and

𝐿𝑎𝑦𝑒𝑟 𝑁𝑜𝑟𝑚 . The second parameter of 𝐹𝑒𝑒𝑑𝐹𝑜𝑟𝑤𝑎𝑟𝑑 is

indicative of the variable added during 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛.

The final output result is represented as 𝑧4. The details about

the functioning of 𝐶𝑟𝑜𝑠𝑠 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 can refer to [12].

E. Trajectory Decoder.

To output the final predicted trajectory, we use Trajectory

Decoder to decode the results of Multi Transformer.

Specifically, for the information 𝑧4, which is the output of the

Multi-Transformer and has dimensions 𝑧4 ∈ 𝐵 × 𝑇 × 𝐷 , we

employ an MLP to perform feature extraction and generate the

final output. The MLP consists of a hidden layer and an output

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

 8

layer. The Trajectory Decoder's specific operations can be

described by Eq. (17):

𝑂𝑢𝑡 = 𝑙𝑖𝑛𝑒𝑎𝑟(𝑟𝑒𝑙𝑢(𝑙𝑖𝑛𝑒𝑎𝑟(𝑧4), 𝑑1), 𝑑2) (17)

where 𝑧4 is obtained from the Transformer Layer, and 𝑑_1 =
𝐷/2. The 𝑑2 represents all the trajectory information predicted

for multiple intelligent agents. It is noteworthy that by

adjusting the final number of channels, the model can predict

multiple sets of trajectory information.

4. EXPERIMENT AND RESULTS

A. Dataset.

We conduct a comprehensive evaluation and ablation

experiments on HTTNet using publicly available datasets,

which comprise:

• Interaction dataset [26]: This dataset is tailored for

behavior prediction in interactive driving scenarios,

encompassing intricate urban traffic information,

such as complex intersections and roundabouts, with

extensive interactions among vehicles and

pedestrians. Notably, the dataset offers

comprehensive high-definition semantic maps, which

served as the direct input source for HTTNet. Our

evaluation follow the Interaction benchmark,

utilizing 10 frames for training and 20 frames for

prediction.

• nuScenes dataset [27]: As one of the most recent

large-scale driving datasets, it boasts 1000 diverse

driving scenes, encompassing a total of 28130 data

samples, 3019 validation samples, and 6008 test

samples. Equipped with various sensors like LIDAR,

360° cameras, and others, this dataset provides rich

and varied information. Additionally, high-definition

semantic maps were provided for training purposes.

Our experimentation follow the nuScenes challenge

benchmark, utilizing 4 frames for training and 12

frames for prediction.

B. Training details.

For all datasets, the intelligent agents' origin coordinates are

established using the last frame's position coordinates from the

past trajectory, denoted as (𝑥0, 𝑦0) . Both future and past

trajectories are subsequently transformed by subtracting

(𝑥0, 𝑦0) from their respective coordinates. Additionally, we

process other input information, such as angles, lengths,

widths, and more, by computing their mean and variance. We

normalize these values by mean and variance. During

decoding, the normalization process is reversed using the

mean, variance, and original origin coordinates. Regarding the

Transformer Layer, we configure the dimensions of Query,

Key, and Value to 128; the number of layers and heads are set

to 2 and 4; The feedforward layers' dimension is set to 256.

We train and test HTTNet on PyTorch with an Intel W5-

2465X CPU and 4 * NVIDIA GeForce RTX 4090 GPUs. The

weights are initialized with Kaiming [28] initialization

strategy. We use SGD optimizer with a momentum of 0.9,

initial learning rate of 0.005, and weight decay of 0.0004 is

employed for training. The learning rate is adjusted using the

polynomial strategy, where the current learning rate is

multiplied by (1 – 𝐶𝑢𝑟𝑠𝑡𝑒𝑝/𝑇𝑜𝑡𝑎𝑙𝑆𝑡𝑒𝑝) ∗∗ 0.9 . A linear

warm-up from 0.0005 to 0.05 is used for the first 1000 steps.

For the loss function, Mean Squared Error (MSE) is used for

computation. For the Interaction dataset, we set the batch to 16

and trained a total of 20000 steps, which took 3.7 hours.For

nuScenes, we set the batch to 32 and trained a total of 40000

steps, which took 12.3 hours.

C. Evaluation metrics.

We employed well-established trajectory prediction evaluation

metrics, namely the Minimum Average Displacement Error

(minADE), the Minimum Final Displacement Error (minFDE),

and the Miss Rate (𝑀𝑖𝑠𝑠𝑒𝑑𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠/𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ).The

specific formulas for minADE and minFDE are as follows:

• minADE: Consider 𝑁 ground truth trajectories and

their corresponding 𝐾 predicted trajectories, each

comprising 𝑇 time steps. For the i-th ground truth

trajectory, let 𝑃(𝑖, 𝑡) represent its true coordinates

(𝑥, 𝑦) at the t-th time step, and let 𝑃𝑝𝑟𝑒𝑑(𝑖, 𝑡) denote

the corresponding predicted trajectory. The

calculation formula for minADE can be described as

Eq. (18):

min ADE =
1

𝑇
min𝑖=1

𝐾 ∑|𝑃(𝑖, 𝑡) − 𝑃pred(𝑖, 𝑡)|

𝑇

𝑡=1

(18)

where min𝑖=1
𝐾 finds the minimum error value among all 𝐾

ground truth trajectories, ∑ 𝑇
𝑡=1 represents the summation over

𝑇 time steps for each trajectory. The | | signifies the Euclidean

distance.

• minFDE: 𝑁 , 𝐾 , 𝑃(𝑖, 𝑡) , (𝑥, 𝑦) and 𝑃𝑝𝑟𝑒𝑑(𝑖, 𝑡) are

defined in the same way as in minADE. The

calculation formula for minFDE can be described as

Eq. (19):

min FDE =
1

𝐾
min𝑖=1

𝐾 |𝑃(𝑖, 𝑇) − 𝑃pred (𝑖, 𝑇)| (19)

D. Ablation Study.

(1) Ablation Encoder

In this section, we present the design of ablation experiments

conducted on the Encoder component of the HTTNet model.

HTTNet represents a novel hybrid approach that combines the

Transformer and CNN architectures to address the challenging

task of multi-agent trajectory prediction. To comprehensively

assess the influence of the Encoder on trajectory prediction

performance, we conducted separate ablation analyses on the

TF-Map Encoder and future encoder using two datasets: the

Interaction dataset and nuScenes dataset. For evaluation

metrics, we employ minADE and minFDE, with trajectory

generation quantities set at K=5 and K=10, respectively. Table

1 displays the results of the Encoder ablation experiments,

with the corresponding symbols defined as follows:

Base: Includes Trajectory Encoder

Map: Includes TF-Map Encoder

Future: Includes Future Trajectory encoder

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

 9

TABLE 1

Ablation study of encoder on Interaction and nuScenes

Dataset Base Map Future minADE5 minFDE5 minADE10 minFDE10

Interaction

√ 0.43 0.78 0.21 0.62

√ √ 0.41 0.79 0.25 0.62

√ √ 0.24 0.63 0.18 0.51

√ √ √ 0.17 0.48 0.15 0.46

nuScenes

√ 2.03 4.78 1.44 4.31

√ √ 1.97 4.81 1.45 4.33

√ √ 1.57 3.82 1.21 3.11

√ √ √ 1.23 3.21 1.03 2.57

As shown in Table 1, HTTNet achieve superior performance

consistently on both the Interaction dataset and the nuScenes

dataset when all encoders were included. Comparing the

scenarios of including the TF-Map Encoder versus solely

employing the Trajectory Encoder, the impact of the TF-Map

Encoder on HTTNet's performance is found to be relatively

modest on both datasets. In fact, in the case of minFDE5 on

the Interaction dataset, the addition of the TF-Map Encoder

even led to a slight increase in the metric. On the other hand,

contrasting the inclusion of the Future Encoder with the sole

use of the Trajectory Encoder, we observe notable

performance gains on both datasets when incorporating the

Future Encoder. This observation indicates that the future

features introduce by the Future Encoder play a significant

role in guiding the model's learning process. Notably, when all

Encoders were utilized, the model demonstrate the most

significant performance improvements on both datasets. These

findings confirm the efficacy of HTTNet in effectively

leveraging past and future trajectory information from

multiple intelligent agents, as well as map image information,

to achieve enhanced trajectory prediction results.

(2) Ablation Transformer Layers and heads

The complexity of Multi-Transformer is governed by the

number of Transformer Layers and heads. Given the diverse

practical scenarios, it becomes imperative to judiciously select

the appropriate number of layers and heads to strike a balance

between model complexity and predictive accuracy. In this

section, we conduct ablation experiments on HTTNet, varying

the numbers of layers and heads, and evaluate its performance

on the Interaction dataset. It is crucial to emphasize that

throughout the experiments pertaining to Transformer Layers

and heads, all encoders are integrated into the HTTNet

architecture. The specific outcomes of these experiments are

meticulously presented in Table 2.

The results from Table 2 highlight the substantial impact of

varying Transformer Layers and heads on the performance of

the HTTNet. When HTTNet is equipped with a single Layer

and a limited number of Heads (e.g. 2), the model exhibits

relatively lower complexity. Despite yielding relatively higher

minADE and minFDE values, the model's predictions still

achieve a certain level of accuracy. As we increase the number

of Layers (≤ 2) and Heads (≤ 4), the model's complexity

gradually escalates, resulting in significant reductions in

minADE and minFDE, thus indicating an enhanced predictive

accuracy with more Layers and Heads. However, further

augmenting the number of Layers (> 2) and Heads (> 4)

eventually leads the model to reach an equilibrium.

Consequently, minADE and minFDE continue to decrease,

but the rate of decrease becomes less pronounced compared to

earlier increments. Specifically, when Layer=3 and Heads=6,

no significant improvement in the model's performance is

observed. On the contrary, minADE and minFDE show a

slight upward trend, suggesting that an excessive number of

Layers and Heads might have minimal or negligible effect on

the model's performance or, in some cases, even yield adverse

outcomes. Based on the insights gained from the ablation

experiments, we ultimately opt for Layer=2 and Head=4 as the

optimal configuration for HTTNet.

TABLE 2

Ablation study of Transformer layers and heads on Interaction

Dataset layer head minADE5 minFDE5 minADE10 minFDE10

Interaction 1 2 0.62 1.11 0.93 1.57

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

 10

1 3 0.37 0.78 0.37 0.88

2 3 0.25 0.71 0.24 0.66

2 4 0.19 0.52 0.15 0.47

3 4 0.18 0.48 0.14 0.44

3 5 0.18 0.47 0.14 0.45

3 6 0.17 0.48 0.13 0.47

5. COMPARATIVE STUDY

To further assess the trajectory prediction performance of the

HTTNet model, we conducted comparative analyses with

state-of-the-art models renowned for their performance in this

domain. The selected models included Trajectron++ [29], P2T

[30], AgentFormer [13], LaPred [31], MultiPath [32],

GOHOME [33], ThOMAS [34], PGP [35], DESIRE [36],

TNT [37] and ITRA [38]. We compared the results of these

models with HTTNet on both the nuScenes dataset and the

Interaction dataset. The comparative experiment outcomes are

presented in Table 3 and Table 4, respectively.

TABLE 3

Comparative study with other models on nuScenes

Method MADE5 MADE10 MR5 MR10

Trajectron++ 1.88 1.51 0.7 0.57

P2T 1.45 1.16 0.64 0.46

AgentFormer 1.86 1.45 - -

LaPred 1.47 1.12 0.53 0.46

MultiPath 1.44 1.14 - -

GOHOME 1.42 1.15 0.57 0.47

ThOMAS 1.33 1.04 0.55 0.42

PGP 1.27 0.94 0.52 0.34

HTTNet 1.23 1.03 0.49 0.31

TABLE 4

Comparative study with other models on Interaction

Method MADE6 MFDE10

DESIRE 0.32 0.88

MultiPath 0.3 0.99

TNT 0.24 0.67

GOHOME - 0.45

ITRA 0.17 0.49

HTTNet 0.16 0.47

The comparative study results in Table 3 demonstrate the

remarkable performance advantages of the HTTNet model on

the nuScenes dataset. When predicting samples with 5 and 10,

the HTTNet model achieved minADE values of 1.23 and 1.03,

respectively, which are significantly lower than those of other

models like Trajectron++, P2T, and LaPred. Additionally, we

evaluated the model's Miss Rate (MR), which indicates the

number of trajectories in the predictions that exceed a certain

threshold distance from the ground truth trajectories. The

HTTNet model also exhibited exceptional performance on

MR5 and MR10, with values of 0.49 and 0.31, respectively.

In the comparative study results presented in Table 4, the

HTTNet model demonstrated outstanding performance on the

Interaction dataset. For predicting samples with 5 and 10, the

minADE and minFDE values were 0.16 and 0.47, respectively.

These values are lower than those achieved by other models

on these two metrics. Considering the comprehensive

comparative study results with other popular models on both

the nuScenes and Interaction datasets, it becomes evident that

the HTTNet model holds a substantial advantage in the field

of trajectory prediction.

6. VISUALIZATION OF DIFFERENT MODULES

To validate the effectiveness of each module in HTTNet, we

conducted a visual analysis on the nuScenes dataset.

Specifically, we sequentially visualized three ablation cases—

Base, Base+Future, and Base+Future+Map—onto the

semantic map, with the generated number of trajectories

selected as 10. To observe the differences in the final

coordinates predicted for each trajectory, we utilized asterisks

(*) for description.

By reviewing Fig. 5, we can observe that Base+Future+Map

has achieved the best performance, both in terms of endpoint

coordinates and the distance from the original trajectories.

Comparing Base with Base+Future, we notice significant

trajectory dispersion in Base, while Base+Future constrains

the trajectories. This is attributed to the guiding influence of

future trajectories during training. Furthermore, in the

comparison of the three results, trajectories in

Base+Future+Map consistently remain within the semantic

roads. This is because the semantic map imposes constraints

on the predicted trajectories, whereas the other two cases

exhibit instances of trajectories deviating from semantic roads.

In conclusion, HTTNet excels in both map boundaries and

trajectory scope.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

 11

Fig.5. Visualization of different modules(sample=6)

7. CONCLUSION

In this paper, we introduce a novel trajectory prediction model

named HTTNet, which is based on Transformer and CNN.

HTTNet comprises three main modules: Trajectory Encoder,

TF-Map Encoder, Multi-Transformer, and Trajectory Decoder.

Specifically, the Trajectory Encoder extracts low-level

trajectory information and encodes it, while the TF-Map

Encoder encodes map information, enhancing HTTNet's

understanding of road boundaries. The Multi-Transformer

receives different features from the Encoders, performs

extraction and fusion, and, finally, the Trajectory Decoder

organizes feature information into trajectory data for output.

We conducted qualitative and quantitative analyses on

HTTNet, demonstrating the effectiveness of its structure.

Remarkably, we achieved outstanding performance on

challenging datasets, namely Interaction and nuScenes. Our

work paves the way for the application of Transformer in

trajectory prediction, significantly exploring the synergy of

CNN and Transformer methods. The proposed HTTNet can

be applied to various downstream tasks such as autonomous

driving and behavioral decision-making. Our future work aims

to extend predictions to multiple agents, simulating

interactions between each intelligent agent.

ACKNOWLEDGEMENTS

This research is supported by the University Natural Science

Foundation of Anhui Province (Grant No.2022AH051578,

2023AH051551) and Guiding Science and Technology

Foundation of Huainan (Grant No.2020050).

REFERENCES

[1] H. Cui et al., “Multimodal Trajectory Predictions for

Autonomous Driving using Deep Convolutional

Networks,” in 2019 International Conference on

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

 12

Robotics and Automation (ICRA), 2019, pp. 2090–

2096. doi: 10.1109/ICRA.2019.8793868.
[2] F. Leon and M. Gavrilescu, “A review of tracking

and trajectory prediction methods for autonomous

driving,” Mathematics, vol. 9, no. 6. 2021. doi:

10.3390/math9060660.

[3] Z. Sheng, Y. Xu, S. Xue, and D. Li, “Graph-Based

Spatial-Temporal Convolutional Network for

Vehicle Trajectory Prediction in Autonomous

Driving,” IEEE Transactions on Intelligent

Transportation Systems, vol. 23, no. 10, pp. 17654–

17665, Oct. 2022, doi: 10.1109/TITS.2022.3155749.

[4] Y. Zhang, W. Wang, R. Bonatti, D. Maturana, and S.

Scherer, “Integrating kinematics and environment

context into deep inverse reinforcement learning for

predicting off-road vehicle trajectories,” in

Proceedings of Machine Learning Research, ML

Research Press, 2018, pp. 894–905.

[5] S. J. Qiao, N. Han, X. W. Zhu, H. P. Shu, J. L.

Zheng, and C. A. Yuan, “A Dynamic Trajectory

Prediction Algorithm Based on Kalman Filter,” Tien

Tzu Hsueh Pao/Acta Electronica Sinica, vol. 46, no.

2, 2018, doi: 10.3969/j.issn.0372-2112.2018.02.022.

[6] H. Rong, A. P. Teixeira, and C. Guedes Soares,

“Ship trajectory uncertainty prediction based on a

Gaussian Process model,” Ocean Engineering, vol.

182, 2019, doi: 10.1016/j.oceaneng.2019.04.024.

[7] S. Becker, R. Hug, W. Hübner, and M. Arens, “An

Evaluation of Trajectory Prediction Approaches and

Notes on the TrajNet Benchmark.” 2018.

[8] M. M. Kordmahalleh, M. G. Sefidmazgi, and A.

Homaifar, “A sparse recurrent neural network for

trajectory prediction of atlantic hurricanes,” in

GECCO 2016 - Proceedings of the 2016 Genetic and

Evolutionary Computation Conference, 2016. doi:

10.1145/2908812.2908834.

[9] E. Lukasik et al., “Recognition of handwritten Latin

characters with diacritics using CNN,” Bulletin of

the Polish Academy of Sciences Technical Sciences,

vol. 69, no. No. 1, pp. e136210–e136210, 2021, doi:

10.24425/bpasts.2020.136210.

[10] J. Wróbel and A. Kulawik, “Influence of modelling

phase transformations with the use of LSTM

network on the accuracy of computations of residual

stresses for the hardening process,” Bulletin of the

Polish Academy of Sciences Technical Sciences, vol.

71, no. 4, pp. e145681–e145681, 2023, doi:

10.24425/bpasts.2023.145681.

[11] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L.

Fei-Fei, and S. Savarese, “Social LSTM: Human

trajectory prediction in crowded spaces,” in

Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern

Recognition, 2016. doi: 10.1109/CVPR.2016.110.

[12] A. Vaswani et al., “Attention is all you need,” in

Advances in Neural Information Processing Systems,

2017.

[13] Y. Yuan, X. Weng, Y. Ou, and K. Kitani,

“AgentFormer: Agent-Aware Transformers for

Socio-Temporal Multi-Agent Forecasting,” in

Proceedings of the IEEE International Conference

on Computer Vision, 2021. doi:

10.1109/ICCV48922.2021.00967.

[14] A. Graves, “Supervised Sequence Labelling,” 2012.

doi: 10.1007/978-3-642-24797-2_2.

[15] M. Abebe, Y. Noh, Y. J. Kang, C. Seo, D. Kim, and

J. Seo, “Ship trajectory planning for collision

avoidance using hybrid ARIMA-LSTM models,”

Ocean Engineering, vol. 256, 2022, doi:

10.1016/j.oceaneng.2022.111527.

[16] J. Yin, C. Ning, and T. Tang, “Data-driven models

for train control dynamics in high-speed railways:

LAG-LSTM for train trajectory prediction,” Inf Sci

(N Y), vol. 600, 2022, doi: 10.1016/j.ins.2022.04.004.

[17] N. Zhang, N. Zhang, Q. Zheng, and Y. S. Xu, “Real-

time prediction of shield moving trajectory during

tunnelling using GRU deep neural network,” Acta

Geotech, vol. 17, no. 4, 2022, doi: 10.1007/s11440-

021-01319-1.

[18] H. Xue, D. Q. Huynh, and M. Reynolds, “PoPPL:

Pedestrian Trajectory Prediction by LSTM with

Automatic Route Class Clustering,” IEEE Trans

Neural Netw Learn Syst, vol. 32, no. 1, 2021, doi:

10.1109/TNNLS.2020.2975837.

[19] J. Gao et al., “VectorNet: Encoding HD maps and

agent dynamics from vectorized representation,” in

Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern

Recognition, 2020. doi:

10.1109/CVPR42600.2020.01154.

[20] M. Liang et al., “Learning Lane Graph

Representations for Motion Forecasting,” in Lecture

Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), 2020. doi: 10.1007/978-3-

030-58536-5_32.

[21] Y. Zhu, D. Qian, D. Ren, and H. Xia, “StarNet:

Pedestrian Trajectory Prediction using Deep Neural

Network in Star Topology,” in IEEE International

Conference on Intelligent Robots and Systems, 2019.

doi: 10.1109/IROS40897.2019.8967811.

[22] Y. Liu, J. Zhang, L. Fang, Q. Jiang, and B. Zhou,

“Multimodal Motion Prediction with Stacked

Transformers,” in Proceedings of the IEEE

Computer Society Conference on Computer Vision

and Pattern Recognition, 2021. doi:

10.1109/CVPR46437.2021.00749.

[23] L. Li, M. Pagnucco, and Y. Song, “Graph-based

Spatial Transformer with Memory Replay for Multi-

future Pedestrian Trajectory Prediction,” in

Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern

Recognition, 2022. doi:

10.1109/CVPR52688.2022.00227.

[24] X. Jia, P. Wu, L. Chen, Y. Liu, H. Li, and J. Yan,

“HDGT: Heterogeneous Driving Graph Transformer

for Multi-Agent Trajectory Prediction via Scene

Encoding,” IEEE Trans Pattern Anal Mach Intell,

vol. 45, no. 11, 2023, doi:

10.1109/TPAMI.2023.3298301.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

 13

[25] Mark Sandler, A. Howard, M. Zhu, A. Zhmoginov,

and Liang-Chieh Chen, “MobileNetV2: Inverted

Residuals and Linear Bottlenecks Mark,”

Convolutional Neural Networks with Swift for

Tensorflow, 2019.

[26] W. Zhan et al., “INTERACTION Dataset: An

INTERnational, Adversarial and Cooperative

moTION Dataset in Interactive Driving Scenarios

with Semantic Maps,” CoRR, vol. abs/1910.03088,

2019, [Online]. Available:

http://arxiv.org/abs/1910.03088

[27] H. Caesar et al., “Nuscenes: A multimodal dataset

for autonomous driving,” in Proceedings of the IEEE

Computer Society Conference on Computer Vision

and Pattern Recognition, 2020. doi:

10.1109/CVPR42600.2020.01164.

[28] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep

into Rectifiers: Surpassing Human-Level

Performance on ImageNet Classification,” in 2015

IEEE International Conference on Computer Vision

(ICCV), 2015, pp. 1026–1034. doi:

10.1109/ICCV.2015.123.

[29] T. Salzmann, B. Ivanovic, P. Chakravarty, and M.

Pavone, “Trajectron++: Dynamically-Feasible

Trajectory Forecasting with Heterogeneous Data,” in

Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), 2020. doi:

10.1007/978-3-030-58523-5_40.

[30] N. Deo and M. M. Trivedi, “Trajectory Forecasts in

Unknown Environments Conditioned on Grid-Based

Plans,” CoRR, vol. abs/2001.00735, 2020, [Online].

Available: http://arxiv.org/abs/2001.00735

[31] B. Do Kim et al., “Lapred: Lane-aware prediction of

multi-modal future trajectories of dynamic agents,”

in Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern

Recognition, 2021. doi:

10.1109/CVPR46437.2021.01440.

[32] Y. Chai, B. Sapp, M. Bansal, and D. Anguelov,

“MultiPath: Multiple Probabilistic Anchor

Trajectory Hypotheses for Behavior Prediction,” in

Proceedings of Machine Learning Research, 2019.

[33] T. Gilles, S. Sabatini, D. Tsishkou, B. Stanciulescu,

and F. Moutarde, “GOHOME: Graph-Oriented

Heatmap Output for future Motion Estimation,” in

Proceedings - IEEE International Conference on

Robotics and Automation, 2022. doi:

10.1109/ICRA46639.2022.9812253.

[34] T. Gilles, S. Sabatini, D. Tsishkou, B. Stanciulescu,

and F. Moutarde, “THOMAS: Trajectory Heatmap

Output with learned Multi-Agent Sampling,” CoRR,

vol. abs/2110.06607, 2021, [Online]. Available:

https://arxiv.org/abs/2110.06607

[35] N. Deo, E. Wolff, and O. Beijbom, “Multimodal

Trajectory Prediction Conditioned on Lane-Graph

Traversals,” in 5th Annual Conference on Robot

Learning , 2021. [Online]. Available:

https://openreview.net/forum?id=hu7b7MPCqiC

[36] N. Lee, W. Choi, P. Vernaza, C. B. Choy, P. H. S.

Torr, and M. Chandraker, “DESIRE: Distant future

prediction in dynamic scenes with interacting agents,”

in Proceedings - 30th IEEE Conference on

Computer Vision and Pattern Recognition, CVPR

2017, 2017. doi: 10.1109/CVPR.2017.233.

[37] H. Zhao et al., “TNT: Target-driveN Trajectory

Prediction.” 2020.

[38] A. Scibior, V. Lioutas, D. Reda, P. Bateni, and F.

Wood, “Imagining the Road Ahead: Multi-Agent

Trajectory Prediction via Differentiable Simulation,”

in IEEE Conference on Intelligent Transportation

Systems, Proceedings, ITSC, 2021. doi:

10.1109/ITSC48978.2021.9565113.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

