
1. INTRODUCTION

Queueing theory is a scientific area that was started by A. K.
Erlang in the 20’s of the previous century. In the beginning,
research was concentrated mainly on mathematical models de-
scribing telephone exchanges working process.

In first simple models analyzes, some additional assump-
tions were introduced that made mathematical computations
much easier. These models did not take into consideration
all technical aspects of analyzed real-life telecommunication
systems but approximated satisfactorily their working process.
First publications were those connected with queueing systems
of the M/M/n/m-type according to Kendall’s modified nota-
tion. In such models, we assume that customers form Pois-
son arrival flow, customer’s service time is exponentially dis-
tributed, system has n servers working independently without
breaks and m additional places in waiting room (queue) i.e.
when all servers are busy, the arriving customers wait patiently
(if there is at least one free place in the waiting room) until
there is a free server that can start their service (usually ac-
cording to FIFO discipline). Results obtained in this case are:
number of customers distribution (at least in the steady state),
waiting time distribution function and loss probability (in this
case steady-state loss probability is obviously equal to value
pn+m, where pk, k = 0, . . . ,n+m is the steady-state number
of customers present in the system). Mathematical analysis of
the above-mentioned models is not complicated as it demands
primarily the use of Markov chains with continuous time [1].
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Later on, main results for the system of the M/G/1/∞-
type were obtained by Felix Pollaczek and Aleksandr Khinchin
[2, 3]. Here we have only one server working, customer’s ser-
vice time is distributed in any way and waiting room is un-
limited. In this model, mathematical background is a little
bit more complicated as analysis needs the use of more com-
plicated random processes and integral transforms (especially
Laplace or Laplace–Stieltjes transform). But interestingly, for
that simple model we cannot obtain even exact formula for
the steady-state number of customers distribution, the main re-
sult is presented in the term of a generating function: P(z) =
= ∑∞

k=0 pkzk. During whole previous century, many interesting
papers and monographs were published that faced the problem
of real-life telecommunication systems analysis. Investigated
systems were modeled by more and more complex stochas-
tic processes - see e.g. [4, 5]. Besides many authors modified
well-known models, introducing additional practical assump-
tions, and obtained new interesting results.

The example of such modifications are queueing systems
with vacations. Here we assume that server can have some
breaks. Taking breaks from work makes sense because some-
times real devices should be repaired or simply turned off to
save energy (especially when using batteries). First papers
dealing with this problem were [6–9]. In those articles (in-
vestigating queueing models of the M/G/1/n and M/G/1/∞-
types) we can find some classical results for models of queue-
ing systems with vacations connected mainly with number of
customers distribution and waiting time distribution function.
Later on, there appeared many published papers that were de-
voted to above-mentioned models and their modifications e.g
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[10–12]. Over the last 20 years the problem of such models
analyzing is more and more often present in works of many
scientists from different countries [13–20] because analyzed
models well describe problems occurring in real computer de-
vices (especially those used in computer networks e.g. routers)
related to the need to have a certain energy saving mode - see
additionally [21–24]. In cited papers some more interesting
characteristics were obtained such like number of served pack-
ets in some time instant t (in non-steady state) or distribution
of time to the first overload of the buffer (in the case when it is
limited).

In the end of 20-th century, together with the headway in
computer science, the role of queueing theory increased be-
cause it was clear that well-known classical models (after some
changes or introduced generalizations) may be adapted to new
real-life computer systems. By this way, it started the new di-
rection in queueing theory called theory of queueing systems
with random volume customers. In analyzed models, it was ad-
ditionally assumed that each arriving customer has some ran-
dom volume (as transporting some information measured in
bytes) and his service time generally depends on this volume.
Moreover, system owns additional memory buffer (limited or
unlimited) in which above-mentioned information is written
out until customer ends his service. The purpose of analysis for
such systems is much wider and mathematical background is
more complicated. The main aim of research is to find charac-
teristics of the customers’ total volume (the sum of the volumes
of all customers present in the system) and formulae defining
loss characteristics (in the case when memory buffer is lim-
ited). Papers devoted to this issue often used classical mod-
els, introducing to them only small corrections [25,26] and au-
thors did not take into consideration substantial influence of the
character of dependency between customer’s service time and
his volume on total customers’ volume characteristics (or took
it only on the level of marginal distributions). But it turned out
quickly that analysis would need new mathematical approach.
As examples of initial works analyzing analogous models and
introducing new methodological approach, we can indicate ar-
ticles [27, 28] and monograph [29].

In recent years, many new papers appeared also dealing with
this problem e.g. [30–35]. Because of constant headway in the
area of computer science, the number of publications and their
citations have been still increasing and the scientific sound-
ness of these works has been becoming meaningful because
obtained results can be successfully used in the real-life com-
puter or telecommunication systems analysis or designing pro-
cess. Customer’s volume is a practical concept present e.g. in
the process of data packets servicing (sending) where packets
are described by their sizes having influence on time length
of their delivering to the ending user. It is worth noting that
there have been very few publications so far on queueing sys-
tems with random volume customers, implementing an addi-
tional vacation mechanism, that could study the characteristics
of the customers’ total volume in such systems, as well as the
influence of the main system parameters (arrival rate, service
time distribution, vacation period distribution) on these fea-
tures. Some initial research can be found in works [36, 37]

that investigate systems with unreliable servers of the M/G/∞
and M/G/1/∞-types but analyzed models cannot be exactly
understood as models with vacations. Therefore, our main
motivation was to build a new modification of the classical
single-server queueing system with a vacation policy assum-
ing the additional random character of customer’s size (vol-
ume) and obtain important, from the practical point of view,
performance characteristics of such systems (especially those
related to customers’ total volume distribution). Indeed, based
on these characteristics (especially first steady-state two mo-
ments of customers’ total volume), it is possible to calculate
approximations of needed sizes of memory buffers of real-life
computer or telecommunication systems (with limited memory
buffers) in which we have additional vacation mechanism. It
may be useful in the process of such systems initial designing.

In this paper, we investigate the classical MX/G/1/∞ queue-
ing system, for which we additionally assume that each cus-
tomer belonging to an arriving group is characterized by some
random volume (size) and system has unlimited memory buffer
in which information delivered by customers is written out.
Customer’s service time is generally dependent on his volume
and, in addition, the server rests for a random time in the case
when it is empty (so we have some mechanism of multiple va-
cations implemented). The goal of our research is obtaining
main characteristics of the customers’ total volume, analyzing
chosen practical special cases of the model as well as show-
ing possible applications of calculated results in the process
of real-life computer or telecommunication systems designing
and performance evaluation.

The rest of the paper is organized as follows. In Sec. 2, we
obtain main results concerning the most important customer’s
total volume characteristics. In this section, we prove formula
for the steady-state customer’s total volume in analyzed queue-
ing system in the terms of Laplace–Stieltjes transforms and
formulae defining first two moments of this random variable.
The next Sec. 3 contains exact analysis of interesting special
cases of the model together with numerical examples and pos-
sible applications for the real-life computer or telecommunica-
tion systems (e.g. calculating approximations of loss charac-
teristics for analogous systems but with limited memory buffer
size). In the last section, we present important conclusions and
final remarks.

2. EXACT ANALYSIS OF A SINGLE-SERVER QUEUEING
SYSTEM WITH RANDOM VOLUME CUSTOMERS AND
MULTIPLE VACATIONS

Let us consider the queueing system MX/G/1/∞ i.e. single-
server queueing system with infinite queue to which the groups
of customers are arriving in random moments of time. Let a be
a parameter of a Poisson entrance flow of such groups (which
means that time between neighboring moments of groups of
customers arrival is exponentially distributed with parameter
a). Let θ be a random number of customers in a group and
gk = P{θ = k}, k = 1,2, . . . be distribution of this random
variable, whereas G(z) = ∑∞

k=1 gkzk be generating function of
the number of customers in a group. Denote by B(t) the dis-
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tribution function (DF) of customer’s service time ξ . Note
that in classical queueing models, customer’s service time dis-
tribution function B(t) can be defined in any way if only it
is left-side continuous, non-decreasing and satisfy conditions:
B(t) = 0 for t ≤ 0 and limt→∞ B(t) = 1. In the case where
we additionally assume that customers are characterized by
some random non-negative volume (size) ζ , having distribu-
tion function L(x) (this assumption will appear in the next sec-
tion), we usually treat customer’s service time as dependent on
this volume. In some, very special models, these random vari-
ables may be treated as independent but in most computer or
telecommunication systems they are dependent and the charac-
ter of the above-mentioned dependency may be different e.g.
customer’s service time can be proportional to his volume -
then B(t) = L(t/c), where c(c> 0) is some constant coefficient
(e.g. in computer networks, data packet’s service time is pro-
portional to its size), or character of dependency can be more
complex, then we have to define two-dimensional common dis-
tribution function of customer’s volume and his service time
F(x, t). Evidently, in such cases we have: F(x, t) = L(x)B(t) if
RV ζ and ξ are independent, and in other cases we can calcu-
late B(t) using relation: B(t) = limx→∞ F(x, t). It is clear that
definition (formula) of function F(x, t) contains the character
of this dependency. Moreover, we are able to obtain relation
for B(t) basing on it. Now we additionally introduce the multi-
ple vacation mechanism to this queueing system in the follow-
ing way: if at the moment of service completion the system
becomes empty, the server is turned off (rests) for a random
period of time κ whose DF is equal to H(y). After this time
elapses, the server starts handling requests again if the system
is not empty at that moment. If, on the other hand, at the end
of the time κ of the server being in the switched-off state, there
is no single request in the system, then the server is switched
off again for time κ , and so on.

A. Number of customers distribution

First we determine the generating function (GF)
P(z) = ∑∞

k=0 P{η = k}zk of the number of customers η
present in analyzed system in steady state. The final result
(that can be understood as the generalization of Pollaczek–
Khinchine formula [3] for systems with multiple vacations)
is rather well known and was published before (see e.g. [13])
but in this paper we show the different (and probably less
complicated) way of its obtaining. Moreover, partial results
obtained in this subsection will be used in the next one to
calculate customers’ total volume characteristics for the
analyzed model (main new results presented in this paper).

Theorem 1. For the analyzed single-server queueing system
with multiple vacations, the following relation holds:

P(z) =
1−aβ1G′(1)

aκ1
×

× (1− z)β (a−aG(z)) [1−κ(a−aG(z))]
(1−G(z)) [β (a−aG(z))− z]

, (1)

where β1 = Eξ , κ1 = Eκ and β (q) =
∫ ∞

0 e−qtdB(t), κ(q) =
=

∫ ∞
0 e−qydH(y) are Laplace–Stieltjes transforms (LSTs) of

distribution functions B(t) and H(y), respectively.
Proof. Let us introduce the following notations: η(t) is the

number of customers in the system at time instant t, ν(t) is the
indicator function, i.e. ν(t) = 1 if the server is occupied at
time t, and ν(t) = 0 if the server "has a rest" at this time.

Denote by ξ ∗(t) the length of time interval from customers
(being served at time t) service beginning to the instant t, if
ν(t) = 1, or the length of time interval from the last shutdown
of the server to the instant t, if ν(t) = 0.

In the following, we will analyze the Markov stochastic pro-
cess (η(t),ν(t),ξ ∗(t)), which will be characterized by func-
tions having the following probabilistic sense:

Pk(1,y, t) dy = P{η(t) = k,ν(t) = 1,ξ ∗(t) ∈ [y,y+dy)},

k = 1,2, . . . ; (2)

Pk(0,y, t) dy = P{η(t) = k,ν(t) = 0,ξ ∗(t) ∈ [y,y+dy)},

k = 0,1, . . . ; (3)

Pk(m, t) = P{η(t) = k,ν(t) = m}=
∫ t

0
Pk(m,y, t) dy,

m = 0,1; k = 1,2, . . . ; (4)

P0(t) = P0(0, t) = P{η(t) = 0}; (5)

Pk(t) = P{η(t) = k}= Pk(1, t)+Pk(0, t),

k = 1,2, . . . ; (6)

For simplicity, we assume that the densities b(y) and
h(y) of customer’s service time ξ and vacation period
κ Then we introduce notationsexist, respectively.
µ(y) = b(y)

1−B(y) , γ(y) = h(y)
1−H(y) (having the sense of service and

"rest" intensities, respectively – see e.g. [29]). Note that all
our results can be obtained without this assumption (it really
does not have influence on final results because we can change
the way of writing equations describing the system’s behav-
ior or consider densities in generalized sense with the use of
Dirac-delta distribution).

It can be easily shown, analyzing the system’s behavior, that
the introduced functions satisfy the following equations (δk,0
and δk,1 are defined as follows: δk,0 = 1 if k = 0 and δk,0 =
= 0, otherwise and, analogously, δk,1 = 1 if k = 1 and δk,1 = 0,
otherwise) :

∂Pk(0,y, t)
∂ t

+
∂Pk(0,y, t)

∂y
=−(a+ γ(y))Pk(0,y, t)+

+
(
1−δk,0

)
a

k−1

∑
i=0

Pi(0,y, t)gk−i, k = 0,1, . . . ; (7)

∂Pk(1,y, t)
∂ t

+
∂Pk(1,y, t)

∂y
=−(a+µ(y))Pk(1,y, t)+

+
(
1−δk,1

)
a

k−1

∑
i=1

Pi(1,y, t)gk−i, k = 1,2, . . . ; (8)
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Pk(1,0+, t) =

=
∫ t

0
Pk+1(1,y, t)µ(y)dy+

∫ t

0
Pk(0,y, t)γ(y)dy,

k = 1,2, . . . ; (9)

P0(0,0+, t) =

=
∫ t

0
P1(1,y, t)µ(y)dy+

∫ t

0
P0(0,y, t)γ(y)dy, t > 0; (10)

Pk(0,0+, t) = 0, k = 1,2, . . . . (11)

For the analyzed model, the steady state exists only if the fol-
lowing conditions hold: κ1 = Eκ < ∞ and ρ = aβ1G′(1) =
= a Eξ G′(1)< 1. In such situation, η(t)⇒ η if t → ∞ in the
sense of a weak convergence, where η is the number of cus-
tomers present in the system in steady state. Moreover, then
the following limits exist:

pk(m,y) = lim
t→∞

Pk(m,y, t), m = 0,1; k = 1,2, . . . ; (12)

p0(0,y) = lim
t→∞

P0(0,y, t); (13)

p0 = lim
t→∞

P0(t); (14)

pk(1) = lim
t→∞

Pk(1, t), k = 1,2, . . . ;

pk(0) = lim
t→∞

Pk(0, t), k = 1,2, . . . ; (15)

pk = lim
t→∞

Pk(t) = pk(1)+ pk(0), k = 1,2, . . . ; (16)

Thus, in steady state, from equations (7)–(11), we obtain the
following equations:

∂ pk(0,y)
∂y

=−(a+ γ(y)) pk(0,y)+

+
(
1−δk,0

)
a

k−1

∑
i=0

pi(0,y)gk−i, k = 0,1, . . . ; (17)

∂ pk(1,y)
∂y

=−(a+µ(y)) pk(1,y)+

+
(
1−δk,1

)
a

k−1

∑
i=1

pi(1,y)gk−i, k = 1,2, . . . ; (18)

pk(1,0+) =

=
∫ ∞

0
pk+1(1,y)µ(y)dy+

∫ ∞

0
pk(0,y)γ(y)dy,

k = 1,2, . . . ; (19)

p0(0,0+) =

=
∫ ∞

0
p1(1,y)µ(y)dy+

∫ ∞

0
p0(0,y)γ(y)dy; (20)

pk(0,0+) = 0, k = 1,2, . . . . (21)

Introduce now the following GFs:

p(0)(z,y) =
∞

∑
k=0

pk(0,y)zk, p(1)(z,y) =
∞

∑
k=1

pk(1,y)zk,

p(1)(z,0) =
∞

∑
k=1

pk(1,0+)zk. (22)

Multiplying the equation with number k in (17) by zk,
k = 1,2, . . ., and adding the resulting equations, we get the
following equation for GF p(0)(z,y):

∂ p(0)(z,y)
∂y

=−(a−aG(z)+ γ(y)) p(0)(z,y). (23)

Its solution has the form:

p(0)(z,y) = [1−H(y)]e−(a−aG(z))y p(0)(z,0),

where evidently p(0)(z,0) = p0(0,0+), whereas

p(0)(z,y) = [1−H(y)]e−(a−aG(z))y p0(0,0+). (24)

Analogously, from (18) we obtain the following equation for
GF p(1)(z,y):

∂ p(1)(z,y)
∂y

=−(a−aG(z)+µ(y)) p(1)(z,y). (25)

Its solution has the form:

p(1)(z,y) = [1−B(y)]e−(a−aG(z))y p(1)(z,0). (26)

In the same way, from (19) we obtain equation for GF
p(1)(z,0):

p(1)(z,0) =
1
z

∫ ∞

0
p(1)(z,y)µ(y)dy−

∫ ∞

0
p1(1,y)µ(y)dy+

+
∫ ∞

0
p(0)(z,y)γ(y)dy−

∫ ∞

0
p0(0,y)γ(y)dy, (27)

whereas, taking into consideration (20), we have:

p(1)(z,0) =

=
1
z

∫ ∞

0
p(1)(z,y)µ(y)dy+

∫ ∞

0
p(0)(z,y)γ(y)dy− p0(0,0+).

(28)
If we substitute in (28) the functions p(0)(z,y) and p(1)(z,y)

from (24) and (26), respectively, we obtain:

p(1)(z,0) =

=
p(1)(z,0)

z
β (a−aG(z))− p0(0,0+) [1−κ (a−aG(z))] .

Hence

p(1)(z,0) =
p0(0,0+)z [1−κ (a−aG(z))]

β (a−aG(z))− z
. (29)

Substituting the value of p(1)(z,0) in this form to (26), we
obtain:

p(1)(z,y) =
p0(0,0+)z [1−κ (a−aG(z))]

β (a−aG(z))− z
×
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× [1−B(y)]e−(a−aG(z))y. (30)

For GF p(z,y) = ∑∞
k=0 pk(y)zk, where pk(y) =

= pk(0,y) + pk(1,y), k = 0,1, . . . (note that p0(1,y) =
= 0), we obviously have: p(z,y) = p(0)(z,y) + p(1)(z,y).
Introduce now the following functions:

P(0)(z) =
∫ ∞

0
p(0)(z,y)dy =

= p0(0,0+)
∫ ∞

0
[1−H(y)]e−(a−aG(z))ydy =

= p0(0,0+)
1−κ (a−aG(z))

a(1−G(z))
(31)

and

P(1)(z) =
∫ ∞

0
p(1)(z,y)dy =

= p0(0,0+)
z [1−κ (a−aG(z))]

β (a−aG(z))− z
×

×
∫ ∞

0
[1−B(y)]e−(a−aG(z))ydy =

= p0(0,0+)
z [1−κ (a−aG(z))] [1−β (a−aG(z))]

a(1−G(z)) [β (a−aG(z))− z]
. (32)

Hence, we obtain that

P(z) = P(0)(z)+P(1)(z) =

= p0(0,0+)
(1− z)β (a−aG(z)) [1−κ (a−aG(z))]

a(1−G(z)) [β (a−aG(z))− z]
.

From the fact that P(1) = 1, we obtain p0(0,0+)
a =

= 1−aβ1G′(1)
aκ1

, where β1 = Eξ and κ1 = Eκ , what ends the
proof. □

Now, we can also easily calculate the value of probability
that the system is empty:

p0 = P{η = 0}= P(0) =
(1−aβ1G′(1)) [1−κ(a)]

aκ1
.

Corollary 1. In the case when the entrance flow is single Pois-
sonian, we have G(z) = z and obtain:

P(z) =
(1−aβ1)β (a−az) [1−κ(a−az)]

aκ1 [β (a−az)− z]
.

For example, if the vacation period is exponentially distributed
(say, with parameter r), we obtain:

P(z) =
(1−aβ1)(1− z)β (a−az)

[1+aκ1(1− z)] [β (a−az)− z]
,

where κ1 = 1/r. If, in addition, customer’s service time is also
exponentially distributed (say, with parameter µ), we have:

P(z) =
1−aβ1

(1−aβ1z) [1+aκ1(1− z)]
,

where again κ1 = 1/r and additionally β1 = 1/u.

B. Total customers’ volume distribution

Assume additionally that each customer is characterized by
some random volume ζ (where ζ is non-negative random vari-
able (RV)) which does not depend on other customers’ vol-
umes, and customer’s service time ξ generally depends on his
volume. Let F(x, t) = P{ζ < x,ξ < t} be the joint DF of ran-
dom variables ζ and ξ . Denote by

α(s,q) =
∫ ∞

0

∫ ∞

0
e−sx−qtdF(x, t)

the double LST of DF F(x, t). Then, we have ob-
viously that L(x) = P{ζ < x} = F(x,∞) and B(t) =
= P{ξ < t} = F(∞, t). The respective LSTs of RVs ζ and
ξ have the following forms:

φ(s) =
∫ ∞

0
e−sxdL(x) = α(s,0),

β (q) =
∫ ∞

0
e−qtdB(t) = α(0,q).

Denote by σ(t) the total volume of all customers present
in the system at time instant t (i.e. the sum of the vol-
umes of such customers). In steady state, we have evi-
dently that σ(t) ⇒ σ , where σ is the steady-state total vol-
ume. Let D(x) = P{σ < x} be DF of RV σ and δ (s) =
=

∫ ∞
0 e−sxdD(x) be its LST. Now we will prove general for-

mula for the function δ (s) (what is the most important new
result presented in this paper).

Theorem 2. For the analyzed single-server queueing sys-
tem with multiple vacations and random volume customers, we
have the following relation:

δ (s) =
1−ρ

χ
· 1−κ (a−aG(φ(s)))

1−G(φ(s))
×

×
{

1+
φ(s)−α (s,a−aG(φ(s)))
β (a−aG(φ(s)))−φ(s)

}
, (33)

where ρ = aβ1G′(1), χ = aκ1.
Proof. Denote by Lk

∗(x) the k-fold Stieltjes convolution of
DF L(x) at the point x and by A∗B(x) the Stieltjes convolution
of DF A(x) and B(x) at the point x.

It is clear that (based on total probability theorem in contin-
uous form) that

D(x) =
∞

∑
k=0

∫ ∞

0
pk(0,y)Lk

∗(x)dy+

+
∞

∑
k=1

pk(1,y)
[
Lk−1
∗ ∗Ey(x)

]
dy, (34)

where the meaning of the conditional distribution Ey(x) can
be found e.g. in [29]. If we use LST to both sides of above-
mentioned equation, we obtain:

δ (s) =
∞

∑
k=0

(φ(s))k
∫ ∞

0
pk(0,y)dy+

+
∞

∑
k=1

(φ(s))k−1
∫ ∞

0
pk(1,y)ey(s)dy =

=
∫ ∞

0
p(0) (φ(s),y)dy+

1
φ(s)

∫ ∞

0
p(1) (φ(s),y)ey(s)dy, (35)
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where

ey(s) = [1−B(y)]−1
∫ ∞

x=0
e−sx

∫ ∞

u=y
dF(x,u), (36)

(see again [29]). Functions p(0)(z,y) and p(1)(z,y) were de-
fined in (24) and (30), respectively. Then we obtain∫ ∞

0
p(0) (φ(s),y)dy = P(0)(G(φ(s))) =

= p0(0,0+)
1−κ (a−aG(φ(s)))

a(1−G(φ(s)))
. (37)

From (30) and (36) we obtain:∫ ∞

0
p(1) (φ(s),y)ey(s)dy =

=
p0(0,0+)φ(s) [1−κ (a−aG(φ(s)))]

β (a−aG(φ(s)))−φ(s)
×

×
∫ ∞

0
[1−B(y)]e−(a−aG(φ(s)))yey(s)dy.

The integral in the above-mentioned formula can be calculated
as follows: ∫ ∞

0
[1−B(y)]e−(a−aG(φ(s)))yey(s)dy =

=
∫ ∞

y=0
e−(a−aG(φ(s)))y

(∫ ∞

x=0
e−sx

∫ ∞

u=y
dF(x,u)

)
dy =

=
∫ ∞

x=0
e−sx

∫ ∞

u=0

(∫ u

y=0
e−(a−aG(φ(s)))ydy

)
dF(x,u) =

=
1

a(1−G(φ(s)))
×

×
∫ ∞

0

∫ ∞

0
e−sx

[
1− e−(a−aG(φ(s)))u

]
dF(x,u) =

=
φ(s)−α (s,a−aG(φ(s)))

a(1−G(φ(s)))
.

Then we obtain: ∫ ∞

0
p(1) (φ(s),y)ey(s)dy =

= p0(0,0+)φ(s) [1−κ (a−aG(φ(s)))]×

× [φ(s)−α (s,a−aG(φ(s)))]
a(1−G(φ(s))) [β (a−aG(φ(s)))−φ(s)]

. (38)

Hence, from (35), (37) and (38) we finally obtain, after some
calculations, relation (33). □

Basing on proven theorem, we can obtain formulae for first
two moments of steady-state customers’ total volume. We use
here well-known properties of the Laplace–Stieltjes transform,
namely δ1 =−δ ′(0), δ2 = δ ′′(0):

δ1 = aα11G′(1)+
aβ1φ1G′′(1)

2(1−ρ)
+

+
β2φ1ρ2

2β 2
1 (1−ρ)

+
φ1κ2ρ
2β1κ1

, (39)

δ2 = aα21G′(1)+

+φ1ρ3
(

3α11β2 +β3φ1

3β 3
1 (1−ρ)

+
β2φ1κ2

2β 3
1 κ1(1−ρ)

)
+

+
β 2

2 φ2
1 ρ4

2β 4
1 (1−ρ)2 +

ρ2 (β2φ2 +2α12φ1(1−ρ))
2β 2

1 (1−ρ)
+

+
α11φ1κ2ρ2

β 2
1 κ1

+
φ2

1 κ3ρ2

3β 2
1 κ1

+
aβ1φ2G′′(1)

2(1−ρ)
+

+
aα11φ1G′′(1)

1−ρ
+

aφ2
1 κ2G′′(1)

2κ1(1−ρ)
+

(aβ1φ1G′′(1))2

2(1−ρ)2 +

+
φ2κ2ρ
2β1κ1

+
aβ2φ2

1 G′′(1)ρ
β1(1−ρ)2 +

aβ1φ2
1 G′′′(1)

3(1−ρ)
. (40)

In formulae (39) and (40) βi denotes i-th moment of the ran-
dom variable ξ , φi – i-th moment of the random variable ζ ,
κi – i-th moment of the random variable κ and αi j – mixed
(i+ j)-th moment of the random vector (ζ ,ξ ).

Corollary 2. In the case when the entrance flow is sin-
gle Poissonian (each group contains only one customer, then
G(z) = z and ρ = aβ1), we obtain:

δ (s) =
1−ρ

χ
· 1−κ (a−aφ(s))

1−φ(s)
×

×
{

1+
φ(s)−α (s,a−aφ(s))
β (a−aφ(s))−φ(s)

}
. (41)

Then, formulae defining first two moments are the following:

δ1 = aα11 +
1
2

aφ1

(
aβ2

1−ρ
+

κ2

κ1

)
, (42)

δ2 = aα21 +a2α12φ1 +
a(3φ2κ2 +2aφ2

1 κ3)

6κ1
+

+
a4β 2

2 φ2
1

2(1−ρ)2 +
a2β2φ2

2(1−ρ)
+

a2α11φ1κ2

κ1
+

+
a3α11φ1β2

1−ρ
+

a3β3φ2
1

3(1−ρ)
+

a3β2φ2
1 κ2

2κ1(1−ρ)
. (43)

3. SPECIAL CASES ANALYSIS AND NUMERICAL RE-
SULTS

In this section, we investigate some simple special cases of
the analyzed model, illustrating obtained results by numerical
examples. For simplicity, we assume customers’ arrival flow
is single Poissonian, i.e. we will use in our computations only
formula (41).

A. Customer’s service time and his volume are indepen-
dent

Assume additionally that customer’s service time and his vol-
ume are independent. Then, basing on (41), we obtain the fol-
lowing formula:

δ (s) =
1−ρ

χ
· 1−κ (a−aφ(s))

1−φ(s)
×

×
{

1+
φ(s)(1−β (a−aφ(s)))

β (a−aφ(s))−φ(s)

}
. (44)
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Table 1. Exemplary δ1 calculations for M/M/1/∞(V ) system with ex-
ponentially distributed vacation period, a = 1, f = 1 (customer’s service
time and his volume are independent)

δ1 r = 1.1 r = 1.6 r = 2.1 r = 2.6 r = 3.1

µ = 1.1 10.9091 10.6250 10.4762 10.3846 10.3226
µ = 1.6 2.5758 2.2917 2.1429 2.0513 1.9893
µ = 2.1 1.8181 1.5341 1.3853 1.2937 1.2317
µ = 2.6 1.5341 1.2500 1.1012 1.0096 0.9476
µ = 3.1 1.3853 1.1012 0.9524 0.8608 0.7988
µ = 3.6 1.2937 1.0096 0.8608 0.7692 0.7072

Now we demonstrate interesting numerical computations in
case where customer’s volume is exponentially distributed
with parameter f , his service time is exponentially distributed
with parameter µ and vacation period is exponentially dis-
tributed with parameter r. After rather simple calculations, we
finally obtain:

δ (s) =
(1−ρ)(s+ f )2

[s(1+χ)+ f ](s+ f −ρ f )
, (45)

where ρ = a
µ . In this case we may also obtain the exact form

of steady-state customers’ total volume distribution (basing on
Laplace transform inversion):

D(x) = L −1(δ (s)/s) =

= 1− (1−ρ)χ2e−(1+χ)−1 f x −ρ2e−(1−ρ) f x

χ(1−ρ)−ρ
. (46)

Formulae defining first two moments of customers’ total vol-
ume are the following:

δ1 =
1
f

(
χ +

ρ
1−ρ

)
, (47)

δ2 =
2 [χ(1+χ(1−ρ))(1−ρ)+ρ]

f 2(1−ρ)2 . (48)

In Tab. 1. we present exemplary results for δ1, for fixed values
a = 1, f = 1 (changing r and µ), whereas in Fig. 1. we present
3-dimensional graph of function δ1(r,µ). Of course, the values
of 1/ f and δ1 have to be measured in the same information
units (e.g. B, kB, MB and so on).

Fig. 1. Graph presenting function δ1(r,µ) in the M/M/1/∞(V ) queueing
system with exponentially distributed vacation period (customer’s ser-
vice time and his volume are independent )

Table 2. Loss probability approximations for M/M/1/∞(V ) system with
exponentially distributed vacation period, a = 1, µ = 3, r = 1, f = 1
(MB−1) (customer’s service time and his volume are independent)

V [MB] PLOSS V [MB] PLOSS

0.0 1.0000 5.0 0.1285
0.5 0.8411 5.5 0.1023
1.0 0.6996 6.0 0.0813
1.5 0.5769 6.5 0.0644
2.0 0.4722 7.0 0.0510
2.5 0.3841 7.5 0.0403
3.0 0.3109 8.0 0.0318
3.5 0.2506 8.5 0.0251
4.0 0.2012 9.0 0.0197
4.5 0.1610 9.5 0.0155

Obtained results have also very important meaning for real-
life computer systems. As it was shown e.g. in [29], based
on exact formula for D(x), we are able to approximate loss
characteristics for analogous systems but having limited (by
constant value V ) total volume (in this case V does not mean
the number of positions in the waiting room (that is infinite)
but limitation of total volume of all customers present in the
system). Arriving customers must have enough small volume
that guarantees they will be accepted to the system. Note that
the value of V is usually measured in information units like
bytes (B), kilobytes (kB), megabytes (MB) etc. Here we use
some approximate formula:

pLOSS ≈ 1−
∫ V

0
D(V − x)l(x)dx, (49)

where l(x) is the density function of the customer’s volume.
Substitute now, for example, a = 1, µ = 3, r = 1, f = 1 (which
means that mean value of customer’s volume equals 1

f = 1)
and use formulae (49) and (46). Then we obtain results pre-
sented in Tab. 2. and graphically illustrated in Fig. 2 (here
V and Eζ = 1

f are measured in the same information units
e.g. MB). Analyzed system is usually denoted in literature as
M/M/1/(∞,V ) or M/M/1/∞(V ) [29].

2 4 6 8 10
V

0.2

0.4

0.6

0.8

1.0

P_LOSS

Fig. 2. Graph presenting the approximations of loss probability in the
M/M/1/∞(V ) queueing system with exponentially distributed vacation
period (customer’s service time and his volume are independent )
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B. Customer’s service time proportional to his volume
Assume now that customer’s service time is proportional to his
volume: ξ = cζ , c > 0. Then (from (41)) we obtain:

δ (s) =
1−ρ

χ
· 1−κ (a−aφ(s))

1−φ(s)
×

×
{

1+
φ(s)−φ (s+ c(a−aφ(s)))

φ (c(a−aφ(s)))−φ(s)

}
. (50)

In case when customer’s volume is exponentially distributed
with parameter f and vacation period is exponentially dis-
tributed with parameter r, we obtain the following formula:

δ (s) =
(1−ρ)( f + s)4

( f + s+χs)( f + s−ρ f ) [( f + s)2 +ρ f s]
, (51)

where ρ = ac
f . Analogously like in previous subsection, we

obtain the exact form of steady-state customers’ total volume
distribution. If f ̸= 2ac (ρ ̸= 1

2 ), we obtain:

D(x) = 1− 1
χ −ρ(1+χ)

×

×

[
(1−ρ)χ4e−(1+χ)−1 f x

(1+2χ)2 +ρχ(1+χ)
+

ρ3e−(1−ρ) f x

1−2ρ

]
−

− ρ(1−ρ)√
ρ(4+ρ)

×

×
{

(1−b1)
2e−b1 f x

[1−b1(1+χ)] (1−b1 −ρ)
− (1−b2)

2e−b2 f x

[1−b2(1+χ)] (1−b2 −ρ)

}
,

(52)

where b1 =
2+ρ−

√
ρ(4+ρ)

2 , b2 =
2+ρ+

√
ρ(4+ρ)

2 . Whereas, if
f = 2ac (ρ = 1

2 ), we obtain:

D(x) = 1− 2χ4e−(1+χ)−1 f x

(1+2χ)(1−χ)2 +
e−2 f x

9(1+2χ)
−

− 1
6(1−χ)

[
11−17χ
3(1−χ)

+
f x
2

]
e−

f x
2 . (53)

Formula defining first moment δ1 of customers’ total volume
is the following:

δ1 =
1
f

(
χ +

ρ(2−ρ)
1−ρ

)
. (54)

To obtain δ2 value, we can use general formula (43) with
the following substitutions: φi =

i!
f i , βi =

cii!
f i , κi =

i!
ri , αi j =

c j(i+ j)!
f i+ j . In Tab. 3. we present exemplary results for δ1 for

fixed values a = 1, c = 1 (changing f and r) whereas in Fig. 3.
we present 3–dimensional graph of function δ1(r, f ).

Substitute now, for example, a = 1, f = 3, r = 1, c = 1 and
use formulae (49) and (52). Then we obtain results presented
in Tab. 4. and graphically illustrated in Fig. 4. These re-
sults are connected again with calculating of loss probability
approximations. Note that, for such fixed parameters, queue-
ing systems analyzed in subsections 3.1 and 3.2 are identical
from the classical point of view (they have the same classi-
cal characteristics such like arrival flow parameter and service
time distribution function) but total volume characteristics are
different (compare tables 1 with 3, 2 with 4 and also graphs

Table 3. Exemplary δ1 calculations for M/M/1/∞(V ) system with ex-
ponentially distributed vacation period, a = 1, c = 1 (customer’s service
time proportional to his volume)

δ1 r = 1.1 r = 1.6 r = 2.1 r = 2.6 r = 3.1

f = 1.1 10.7438 10.4855 10.3503 10.2670 10.2106
f = 1.6 2.0005 1.8229 1.7299 1.6727 1.6339
f = 2.1 1.0926 0.9573 0.8864 0.8428 0.8133
f = 2.6 0.7380 0.6287 0.5715 0.5362 0.5124
f = 3.1 0.5509 0.4593 0.4113 0.3817 0.3617
f = 3.6 0.4365 0.3576 0.3163 0.2908 0.2736

Fig. 3. Graph presenting function δ1(r, f ) in the M/M/1/∞(V ) queueing
system with exponentially distributed vacation period (customer’s ser-
vice time proportional to his volume)

Table 4. Loss probability approximations for M/M/1/∞(V ) system with
exponentially distributed vacation period, a = 1, f =, r = 1, c = 1 (cus-
tomer’s service time proportional to his volume)

V [MB] PLOSS V [MB] PLOSS

0.0 1.0000 5.0 0.0021
0.5 0.6159 5.5 0.0010
1.0 0.3659 6.0 0.0005
1.5 0.2078 6.5 0.0003
2.0 0.1140 7.0 0.0001
2.5 0.0609 7.5 6.04 ·10−5

3.0 0.0319 8.0 2.93 ·10−5

3.5 0.0165 8.5 1.42 ·10−5

4.0 0.0084 9.0 6.84 ·10−6

4.5 0.0042 9.5 3.29 ·10−6
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1  with  3,  and  2  with  4).  It  confirms  that  the  character  of  de-
pendency  between  customer’s  service  time  and  his  volume  has
a  substantial  meaning  in  the  case  of  total  customers’  volume
characteristics.

  It  is  worth  adding  that  in  the  case  when  we  do  not  have  the
exact  form  of  D(x)  distribution,  we  may  approximate  it  with
the  use  of  gamma  distribution  based  on  values  δ1  and  δ2  (see
again  [29])  and  in  this  way  we  obtain  needed  loss  probability
approximations.

C.  Generalization  on  systems  with  sectorized  memory
  buffer
Obtained  results  can  be  generalized  on  systems  with  sector-
ized  memory  i.e.  we  can  consider  systems  in  which  total  vol-
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2 4 6 8 10
V

0.1

0.2

0.3

P_LOSS

Fig. 4. Graph presenting the approximations of loss probability in the
M/M/1/∞(V ) queueing system with exponentially distributed vacation
period (customer’s service time proportional to his volume)

ume contains some sectors in which specific types of data is
located. In such systems, arriving customers are additionally
characterized by random volume vectors i.e. their volumes
are multidimensional (see e.g. [33]). Assume e.g. that total
volume contains n sectors. In the same way as we did it in
Sec. 2. we obtain the following formula describing double
LST of n-dimensional total customers’ volume for the system
M/G/1/∞:

δ (s1, . . . ,sn) =
1−ρ

χ
· 1−κ (a−aφ(s1, . . . ,sn))

1−φ(s1, . . . ,sn)
×

×
{

1+
φ(s1, . . . ,sn)−α (s1, . . . ,sn,a−aφ(s1, . . . ,sn))

β (a−aφ(s1, . . . ,sn))−φ(s1, . . . ,sn)

}
, (55)

where φ(s1, . . . ,sn) is n-dimensional LST of the cus-
tomer’s random volume vector, and α(s1, . . . ,sn,q) is (n+1)-
dimensional LST of the customer’s random volume vector and
his service time.

Using (55), we can obtain formulae defining basic charac-
teristics of customers’ total volume e.g. mixed moments (of
the (i1 + . . .+ in)-th order) δi1...in as we have obvious relation:

δi1...in = (−1)i1+...+in ∂δ i1+...+in(s1, . . . ,sn)

∂ si1
1 . . .∂ sin

n

∣∣
s1=0,...,sn=0.

some numerical results and graphs. We also explained the
way of using obtained results to approximate loss probabili-
ties of analogous systems but with limited total volume and
paid attention on the influence of the character of dependency
between customer’s volume and his service time on total vol-
ume characteristics. In the end, we showed possible general-
ization of obtained results on systems with sectorized memory
e.g. possibility to calculate mixed moments of total volume
vector with the use of generalized l’Hosptal’s rule, by the help
of Mathematica environment.
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