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Abstract. In the present paper, we investigate the model of a single-server queueing system with unlimited queue (of 𝑀𝑋/𝐺/1/∞-type), random
volume customers, unlimited memory buffer and multiple vacations. In analyzed system, arriving customers (that form Poisson entrance flow of
groups of customers) transport some information measured in bytes so they are assumed to be additionally characterized by some non-negative
random volume. Customer service time generally depends on his volume. Information delivered by a customer is written out into dedicated
unlimited memory buffer until customer ends his service. In addition, in considered system the mechanism of multiple vacations is implemented
which means that server can have some breaks (rests) for a random period of time but breaks begin only in the moments when there is no customer
present in the system. The above-mentioned mechanism has obvious influence on customer waiting time and, in consequence, on customers
total volume. For the introduced model, we obtain general formula for the steady-state customers total volume distribution in the terms of
Laplace–Stieltjes transforms as well as formulae defining its first two moments. Analysis of some interesting, practical special cases of the model
and numerical computations are attached as well together with examples of possible applications of the model regarding real telecommunication
or computer systems.

Keywords: single-server queueing system; queueing systems with random volume customers; queueing systems with vacations; total volume;
Laplace–Stieltjes transform.

1. INTRODUCTION

Queueing theory is a scientific area that was started by A.K. Er-
lang in the 1920s. In the beginning, research was concentrated
mainly on mathematical models describing telephone exchanges
working process.

In first simple models analyses, some additional assumptions
were introduced that made mathematical computations much
easier. These models did not take into consideration all techni-
cal aspects of analyzed real-life telecommunication systems but
approximated satisfactorily their working process. First pub-
lications were those connected with queueing systems of the
𝑀/𝑀/𝑛/𝑚-type according to Kendall’s modified notation. In
such models, we assume that customers form Poisson arrival
flow, customer service time is exponentially distributed, system
has 𝑛 servers working independently without breaks and 𝑚 ad-
ditional places in waiting room (queue) i.e. when all servers are
busy, the arriving customers wait patiently (if there is at least one
free place in the waiting room) until there is a free server that can
start their service (usually according to FIFO discipline). Re-
sults obtained in this case are: number of customer distribution
(at least in the steady state), waiting time distribution function
and loss probability (in this case steady-state loss probability
is obviously equal to value 𝑝𝑛+𝑚, where 𝑝𝑘 , 𝑘 = 0, . . . , 𝑛 +𝑚
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is the steady-state number of customers present in the system).
Mathematical analysis of the above-mentioned models is not
complicated as it demands primarily the use of Markov chains
with continuous time [1].

Later on, main results for the system of the 𝑀/𝐺/1/∞-type
were obtained by Felix Pollaczek and Aleksandr Khinchin [2,3].
Here we have only one server working, customer service time
is distributed in any way and waiting room is unlimited. In this
model, mathematical background is a little bit more complicated
as analysis needs the use of more complicated random processes
and integral transforms (especially Laplace or Laplace–Stieltjes
transform). But interestingly, for that simple model we cannot
obtain even exact formula for the steady-state number of cus-
tomers distribution, the main result is presented in the term of
a generating function: 𝑃(𝑧) = ∑∞

𝑘=0 𝑝𝑘𝑧
𝑘 . During whole pre-

vious century, many interesting papers and monographs were
published that faced the problem of real-life telecommunication
systems analysis. Investigated systems were modeled by more
and more complex stochastic processes – see e.g. [4, 5]. Be-
sides many authors modified well-known models, introducing
additional practical assumptions, and obtained new interesting
results.

The example of such modifications are queueing systems with
vacations. Here we assume that server can have some breaks.
Taking breaks from work makes sense because sometimes real
devices should be repaired or simply turned off to save energy
(especially when using batteries). First papers dealing with this
problem were [6–9]. In those articles (investigating queueing
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models of the 𝑀/𝐺/1/𝑛 and 𝑀/𝐺/1/∞-types) we can find
some classical results for models of queueing systems with va-
cations connected mainly with number of customer distribution
and waiting time distribution function. Later on, there appeared
many published papers that were devoted to above-mentioned
models and their modifications e.g. [10–12]. Over the last 20
years the problem of such models analyzing is more and more
often present in works of many scientists from different coun-
tries [13–20] because analyzed models well describe problems
occurring in real computer devices (especially those used in
computer networks e.g. routers) related to the need to have a
certain energy-saving mode – see additionally [21–24]. In cited
papers some more interesting characteristics were obtained such
as the number of served packets in some time instant 𝑡 (in non-
steady state) or distribution of time to the first overload of the
buffer (in the case when it is limited).

In the end of 20-th century, together with the headway in
computer science, the role of queueing theory increased be-
cause it was clear that well-known classical models (after some
changes or introduced generalizations) may be adapted to new
real-life computer systems. In this way, it started the new di-
rection in queueing theory called theory of queueing systems
with random volume customers. In analyzed models, it was
additionally assumed that each arriving customer has some
random volume (as transporting some information measured
in bytes) and his service time generally depends on this vol-
ume. Moreover, system owns additional memory buffer (lim-
ited or unlimited) in which above-mentioned information is
written out until customer ends his service. The purpose of
analysis for such systems is much wider and mathematical
background is more complicated. The main aim of research
is to find characteristics of the customers total volume (the
sum of the volumes of all customers present in the system)
and formulae defining loss characteristics (in the case when
memory buffer is limited). Papers devoted to this issue often
used classical models, introducing to them only small correc-
tions [25, 26] and authors did not take into consideration sub-
stantial influence of the character of dependency between cus-
tomer service time and his volume on total customers volume
characteristics (or took it only on the level of marginal dis-
tributions). But it turned out quickly that analysis would need
new mathematical approach. As examples of initial works an-
alyzing analogous models and introducing new methodolog-
ical approach, we can indicate articles [27, 28] and mono-
graph [29].

In recent years, many new papers appeared also dealing with
this problem e.g. [30–35]. Because of constant headway in the
area of computer science, the number of publications and their
citations have been still increasing and the scientific soundness
of these works has been becoming meaningful because obtained
results can be successfully used in the real-life computer or
telecommunication systems analysis or designing process. Cus-
tomer volume is a practical concept present e.g. in the process
of data packets servicing (sending) where packets are described
by their sizes having influence on time length of their deliv-
ering to the end user. It is worth noting that there have been
very few publications so far on queueing systems with random

volume customers, implementing an additional vacation mech-
anism, that could study the characteristics of the customers total
volume in such systems, as well as the influence of the main sys-
tem parameters (arrival rate, service time distribution, vacation
period distribution) on these features. Some initial research can
be found in works [36, 37] that investigate systems with unreli-
able servers of the 𝑀/𝐺/∞ and 𝑀/𝐺/1/∞-types but analyzed
models cannot be exactly understood as models with vacations.
Therefore, our main motivation was to build a new modification
of the classical single-server queueing system with a vacation
policy assuming the additional random character of customer
size (volume) and obtain important, from the practical point of
view, performance characteristics of such systems (especially
those related to customers total volume distribution). Indeed,
based on these characteristics (especially first steady-state two
moments of customers total volume), it is possible to calculate
approximations of needed sizes of memory buffers of real-life
computer or telecommunication systems (with limited memory
buffers) in which we have additional vacation mechanism. It
may be useful in the process of such systems initial design-
ing.

In this paper, we investigate the classical 𝑀𝑋/𝐺/1/∞ queue-
ing system, for which we additionally assume that each customer
belonging to an arriving group is characterized by some random
volume (size) and system has unlimited memory buffer in which
information delivered by customers is written out. Customer ser-
vice time is generally dependent on his volume and, in addition,
the server rests for a random time in the case when it is empty (so
we have some mechanism of multiple vacations implemented).
The goals of our research are obtaining main characteristics of
the customers total volume, analyzing chosen practical special
cases of the model as well as showing possible applications of
calculated results in the process of real-life computer or telecom-
munication systems designing and performance evaluation.

The rest of the paper is organized as follows. In Section 2,
we obtain main results concerning the most important customer
total volume characteristics. In this section, we prove formula
for the steady-state customer total volume in analyzed queueing
system in the terms of Laplace–Stieltjes transforms and formu-
lae defining first two moments of this random variable. The next
Section 3 contains exact analysis of interesting special cases
of the model together with numerical examples and possible
applications for the real-life computer or telecommunication
systems (e.g. calculating approximations of loss characteristics
for analogous systems but with limited memory buffer size).
In the last section, we present important conclusions and final
remarks.

2. EXACT ANALYSIS OF A SINGLE-SERVER QUEUEING
SYSTEM WITH RANDOM VOLUME CUSTOMERS AND
MULTIPLE VACATIONS

Let us consider the queueing system 𝑀𝑋/𝐺/1/∞ i.e. single-
server queueing system with infinite queue to which the groups
of customers are arriving at random moments of time. Let 𝑎 be
a parameter of a Poisson entrance flow of such groups (which
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means that time between neighboring moments of groups of
customers arrival is exponentially distributed with parameter
𝑎). Let 𝜃 be a random number of customers in a group and
𝑔𝑘 = P{𝜃 = 𝑘}, 𝑘 = 1,2, . . . be distribution of this random vari-
able, whereas 𝐺 (𝑧) = ∑∞

𝑘=1 𝑔𝑘𝑧
𝑘 be generating function of the

number of customers in a group. Denote by 𝐵(𝑡) the distribution
function (DF) of customer service time 𝜉. Note that in classical
queueing models, customer service time distribution function
𝐵(𝑡) can be defined in any way if only it is left-side continuous,
non-decreasing and satisfy conditions: 𝐵(𝑡) = 0 for 𝑡 ≤ 0 and
lim𝑡→∞ 𝐵(𝑡) = 1. In the case where we additionally assume that
customers are characterized by some random non-negative vol-
ume (size) 𝜁 , having distribution function 𝐿 (𝑥) (this assumption
will appear in the next section), we usually treat customer service
time as dependent on this volume. In some, very special mod-
els, these random variables may be treated as independent but in
most computer or telecommunication systems they are depen-
dent and the character of the above-mentioned dependency may
be different e.g. customer service time can be proportional to his
volume – then 𝐵(𝑡) = 𝐿 (𝑡/𝑐), where 𝑐(𝑐 > 0) is some constant
coefficient (e.g. in computer networks, data packet service time
is proportional to its size), or character of dependency can be
more complex, then we have to define two-dimensional common
distribution function of customer volume and his service time
𝐹 (𝑥, 𝑡). Evidently, in such cases we have: 𝐹 (𝑥, 𝑡) = 𝐿 (𝑥)𝐵(𝑡) if
RV 𝜁 and 𝜉 are independent, and in other cases we can calcu-
late 𝐵(𝑡) using relation: 𝐵(𝑡) = lim𝑥→∞ 𝐹 (𝑥, 𝑡). It is clear that
definition (formula) of function 𝐹 (𝑥, 𝑡) contains the character
of this dependency. Moreover, we are able to obtain relation for
𝐵(𝑡) basing on it. Now we additionally introduce the multiple
vacation mechanism to this queueing system in the following
way: if at the moment of service completion the system be-
comes empty, the server is turned off (rests) for a random period
of time 𝜅 whose DF is equal to 𝐻 (𝑦). After this time elapses, the
server starts handling requests again if the system is not empty
at that moment. If, on the other hand, at the end of the time 𝜅

of the server being in the switched-off state, there is no single
request in the system, then the server is switched off again for
time 𝜅, and so on.

2.1. Number of customers distribution

First we determine the generating function (GF) 𝑃(𝑧) =
∞∑︁
𝑘=0

P{𝜂 = 𝑘}𝑧𝑘 of the number of customers 𝜂 present in analyzed

system in steady state. The final result (that can be understood
as the generalization of Pollaczek–Khinchine formula [3] for
systems with multiple vacations) is rather well known and was
published before (see e.g. [13]) but in this paper we show the
different (and probably less complicated) way of its obtaining.
Moreover, partial results obtained in this subsection will be used
in the next one to calculate customers total volume characteris-
tics for the analyzed model (main new results presented in this
paper).

Theorem 1. For the analyzed single-server queueing system
with multiple vacations, the following relation holds:

𝑃(𝑧) = 1− 𝑎𝛽1𝐺
′ (1)

𝑎𝜅1

× (1− 𝑧)𝛽(𝑎− 𝑎𝐺 (𝑧)) [1− 𝜅(𝑎− 𝑎𝐺 (𝑧))]
(1−𝐺 (𝑧)) [𝛽(𝑎− 𝑎𝐺 (𝑧)) − 𝑧] , (1)

where 𝛽1 = E𝜉, 𝜅1 = E𝜅 and 𝛽(𝑞) =
∫ ∞
0 𝑒−𝑞𝑡 d𝐵(𝑡), 𝜅(𝑞) =∫ ∞

0 𝑒−𝑞𝑦 d𝐻 (𝑦) are Laplace–Stieltjes transforms (LSTs) of dis-
tribution functions 𝐵(𝑡) and 𝐻 (𝑦), respectively.

Proof. Let us introduce the following notations: 𝜂(𝑡) is the
number of customers in the system at time instant 𝑡, 𝜈(𝑡) is the
indicator function, i.e. 𝜈(𝑡) = 1 if the server is occupied at time
𝑡, and 𝜈(𝑡) = 0 if the server “has a rest” at this time.

Denote by 𝜉∗ (𝑡) the length of time interval from customers
(being served at time 𝑡) service beginning to the instant 𝑡, if
𝜈(𝑡) = 1, or the length of time interval from the last shutdown
of the server to the instant 𝑡, if 𝜈(𝑡) = 0.

In the following, we will analyze the Markov stochastic pro-
cess (𝜂(𝑡), 𝜈(𝑡), 𝜉∗ (𝑡)), which will be characterized by functions
having the following probabilistic sense:

𝑃𝑘 (1, 𝑦, 𝑡) d𝑦 = P{𝜂(𝑡) = 𝑘, 𝜈(𝑡) = 1, 𝜉∗ (𝑡) ∈ [𝑦, 𝑦+d𝑦)},
𝑘 = 1,2, . . . ; (2)

𝑃𝑘 (0, 𝑦, 𝑡)d𝑦 = P{𝜂(𝑡) = 𝑘, 𝜈(𝑡) = 0, 𝜉∗ (𝑡) ∈ [𝑦, 𝑦+d𝑦)},
𝑘 = 0,1, . . . ; (3)

𝑃𝑘 (𝑚, 𝑡) = P{𝜂(𝑡) = 𝑘, 𝜈(𝑡) = 𝑚} =
𝑡∫

0

𝑃𝑘 (𝑚, 𝑦, 𝑡) d𝑦,

𝑚 = 0,1; 𝑘 = 1,2, . . . ; (4)

𝑃0 (𝑡) = 𝑃0 (0, 𝑡) = P{𝜂(𝑡) = 0}; (5)

𝑃𝑘 (𝑡) = P{𝜂(𝑡) = 𝑘} = 𝑃𝑘 (1, 𝑡) +𝑃𝑘 (0, 𝑡), 𝑘 = 1,2, . . . . (6)

For simplicity, we assume that the densities 𝑏(𝑦) and ℎ(𝑦) of
customer service time 𝜉 and vacation period 𝜅 exist, respectively.

Then we introduce notations 𝜇(𝑦) = 𝑏(𝑦)
1−𝐵(𝑦) , 𝛾(𝑦) = ℎ(𝑦)

1−𝐻 (𝑦)
(having the sense of service and “rest” intensities, respectively
– see e.g. [29]). Note that all our results can be obtained without
this assumption (it really does not have influence on final results
because we can change the way of writing equations describing
the system’s behavior or consider densities in generalized sense
with the use of Dirac-delta distribution).

It can be easily shown, analyzing the system’s behavior, that
the introduced functions satisfy the following equations (𝛿𝑘,0
and 𝛿𝑘,1 are defined as follows: 𝛿𝑘,0 = 1 if 𝑘 = 0 and 𝛿𝑘,0 =

0, otherwise and, analogously, 𝛿𝑘,1 = 1 if 𝑘 = 1 and 𝛿𝑘,1 = 0,
otherwise):

𝜕𝑃𝑘 (0, 𝑦, 𝑡)
𝜕𝑡

+ 𝜕𝑃𝑘 (0, 𝑦, 𝑡)
𝜕𝑦

= − (𝑎 +𝛾(𝑦)) 𝑃𝑘 (0, 𝑦, 𝑡)

+
(
1− 𝛿𝑘,0

)
𝑎

𝑘−1∑︁
𝑖=0

𝑃𝑖 (0, 𝑦, 𝑡)𝑔𝑘−𝑖 , 𝑘 = 0,1, . . . ; (7)
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𝜕𝑃𝑘 (1, 𝑦, 𝑡)
𝜕𝑡

+ 𝜕𝑃𝑘 (1, 𝑦, 𝑡)
𝜕𝑦

= − (𝑎 + 𝜇(𝑦)) 𝑃𝑘 (1, 𝑦, 𝑡)

+
(
1− 𝛿𝑘,1

)
𝑎

𝑘−1∑︁
𝑖=1

𝑃𝑖 (1, 𝑦, 𝑡)𝑔𝑘−𝑖 , 𝑘 = 1,2, . . . ; (8)

𝑃𝑘 (1,0+, 𝑡) =
𝑡∫

0

𝑃𝑘+1 (1, 𝑦, 𝑡)𝜇(𝑦) d𝑦

+
𝑡∫

0

𝑃𝑘 (0, 𝑦, 𝑡)𝛾(𝑦) d𝑦, 𝑘 = 1,2, . . . ; (9)

𝑃0 (0,0+, 𝑡) =
𝑡∫

0

𝑃1 (1, 𝑦, 𝑡)𝜇(𝑦) d𝑦

+
𝑡∫

0

𝑃0 (0, 𝑦, 𝑡)𝛾(𝑦)d𝑦, 𝑡 > 0; (10)

𝑃𝑘 (0,0+, 𝑡) = 0, 𝑘 = 1,2, . . . . (11)

For the analyzed model, the steady state exists only if the
following conditions hold: 𝜅1 = E𝜅 < ∞ and 𝜌 = 𝑎𝛽1𝐺

′ (1) =
E𝜉𝐺′ (1) < 1. In such situation, 𝜂(𝑡) ⇒ 𝜂 if 𝑡 →∞ in the sense
of a weak convergence, where 𝜂 is the number of customers
present in the system in steady state. Moreover, then the follow-
ing limits exist:

𝑝𝑘 (𝑚, 𝑦) = lim
𝑡→∞

𝑃𝑘 (𝑚, 𝑦, 𝑡), 𝑚 = 0,1; 𝑘 = 1,2, . . . ; (12)

𝑝0 (0, 𝑦) = lim
𝑡→∞

𝑃0 (0, 𝑦, 𝑡); (13)

𝑝0 = lim
𝑡→∞

𝑃0 (𝑡); (14)

𝑝𝑘 (1) = lim
𝑡→∞

𝑃𝑘 (1, 𝑡), 𝑘 = 1,2, . . . ;
(15)

𝑝𝑘 (0) = lim
𝑡→∞

𝑃𝑘 (0, 𝑡), 𝑘 = 1,2, . . . ;

𝑝𝑘 = lim
𝑡→∞

𝑃𝑘 (𝑡) = 𝑝𝑘 (1) + 𝑝𝑘 (0), 𝑘 = 1,2, . . . (16)

Thus, in steady state, from equations (7)–(11), we obtain the
following equations:

𝜕𝑝𝑘 (0, 𝑦)
𝜕𝑦

= − (𝑎 +𝛾(𝑦)) 𝑝𝑘 (0, 𝑦)

+
(
1− 𝛿𝑘,0

)
𝑎

𝑘−1∑︁
𝑖=0

𝑝𝑖 (0, 𝑦)𝑔𝑘−𝑖 , 𝑘 = 0,1, . . . ; (17)

𝜕𝑝𝑘 (1, 𝑦)
𝜕𝑦

= − (𝑎 + 𝜇(𝑦)) 𝑝𝑘 (1, 𝑦)

+
(
1− 𝛿𝑘,1

)
𝑎

𝑘−1∑︁
𝑖=1

𝑝𝑖 (1, 𝑦)𝑔𝑘−𝑖 , 𝑘 = 1,2, . . . ; (18)

𝑝𝑘 (1,0+) =
∞∫

0

𝑝𝑘+1 (1, 𝑦)𝜇(𝑦) d𝑦

+
∞∫

0

𝑝𝑘 (0, 𝑦)𝛾(𝑦) d𝑦, 𝑘 = 1,2, . . . ; (19)

𝑝0 (0,0+) =
∞∫

0

𝑝1 (1, 𝑦)𝜇(𝑦) d𝑦 +
∞∫

0

𝑝0 (0, 𝑦)𝛾(𝑦) d𝑦; (20)

𝑝𝑘 (0,0+) = 0, 𝑘 = 1,2, . . . . (21)

Introduce now the following GFs:

𝑝 (0) (𝑧, 𝑦) =
∞∑︁
𝑘=0

𝑝𝑘 (0, 𝑦)𝑧𝑘 , 𝑝 (1) (𝑧, 𝑦) =
∞∑︁
𝑘=1

𝑝𝑘 (1, 𝑦)𝑧𝑘 ,

𝑝 (1) (𝑧,0) =
∞∑︁
𝑘=1

𝑝𝑘 (1,0+)𝑧𝑘 . (22)

Multiplying the equation with number 𝑘 in (17) by 𝑧𝑘 , 𝑘 =

1,2, . . ., and adding the resulting equations, we get the following
equation for GF 𝑝 (0) (𝑧, 𝑦):

𝜕𝑝 (0) (𝑧, 𝑦)
𝜕𝑦

= − (𝑎− 𝑎𝐺 (𝑧) +𝛾(𝑦)) 𝑝 (0) (𝑧, 𝑦). (23)

Its solution has the form:

𝑝 (0) (𝑧, 𝑦) = [1−𝐻 (𝑦)] 𝑒−(𝑎−𝑎𝐺 (𝑧) )𝑦 𝑝 (0) (𝑧,0),

where evidently 𝑝 (0) (𝑧,0) = 𝑝0 (0,0+), whereas

𝑝 (0) (𝑧, 𝑦) = [1−𝐻 (𝑦)] 𝑒−(𝑎−𝑎𝐺 (𝑧) )𝑦 𝑝0 (0,0+). (24)

Analogously, from (18) we obtain the following equation for GF
𝑝 (1) (𝑧, 𝑦):

𝜕𝑝 (1) (𝑧, 𝑦)
𝜕𝑦

= − (𝑎− 𝑎𝐺 (𝑧) + 𝜇(𝑦)) 𝑝 (1) (𝑧, 𝑦). (25)

Its solution has the form:

𝑝 (1) (𝑧, 𝑦) = [1−𝐵(𝑦)] 𝑒−(𝑎−𝑎𝐺 (𝑧) )𝑦 𝑝 (1) (𝑧,0). (26)

In the same way, from (19) we obtain equation for GF 𝑝 (1) (𝑧,0):

𝑝 (1) (𝑧,0) =
1
𝑧

∞∫
0

𝑝 (1) (𝑧, 𝑦)𝜇(𝑦) d𝑦−
∞∫

0

𝑝1 (1, 𝑦)𝜇(𝑦) d𝑦

+
∞∫

0

𝑝 (0) (𝑧, 𝑦)𝛾(𝑦) d𝑦−
∞∫

0

𝑝0 (0, 𝑦)𝛾(𝑦) d𝑦, (27)
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whereas, taking into consideration (20), we have:

𝑝 (1) (𝑧,0) =
1
𝑧

∞∫
0

𝑝 (1) (𝑧, 𝑦)𝜇(𝑦) d𝑦

+
∞∫

0

𝑝 (0) (𝑧, 𝑦)𝛾(𝑦) d𝑦− 𝑝0 (0,0+). (28)

If we substitute in (28) the functions 𝑝 (0) (𝑧, 𝑦) and 𝑝 (1) (𝑧, 𝑦)
from (24) and (26), respectively, we obtain:

𝑝 (1) (𝑧,0) =
𝑝 (1) (𝑧,0)

𝑧
𝛽(𝑎− 𝑎𝐺 (𝑧))

−𝑝0 (0,0+) [1− 𝜅 (𝑎− 𝑎𝐺 (𝑧))] .

Hence

𝑝 (1) (𝑧,0) =
𝑝0 (0,0+)𝑧 [1− 𝜅 (𝑎− 𝑎𝐺 (𝑧))]

𝛽 (𝑎− 𝑎𝐺 (𝑧)) − 𝑧
. (29)

Substituting the value of 𝑝 (1) (𝑧,0) in this form to (26), we
obtain:

𝑝 (1) (𝑧, 𝑦) =
𝑝0 (0,0+)𝑧 [1− 𝜅 (𝑎− 𝑎𝐺 (𝑧))]

𝛽 (𝑎− 𝑎𝐺 (𝑧)) − 𝑧

× [1−𝐵(𝑦)] 𝑒−(𝑎−𝑎𝐺 (𝑧) )𝑦 . (30)

For GF 𝑝(𝑧, 𝑦) = ∑∞
𝑘=0 𝑝𝑘 (𝑦)𝑧𝑘 , where 𝑝𝑘 (𝑦) = 𝑝𝑘 (0, 𝑦) +

𝑝𝑘 (1, 𝑦), 𝑘 = 0,1, . . . (note that 𝑝0 (1, 𝑦) = 0), we obviously have:
𝑝(𝑧, 𝑦) = 𝑝 (0) (𝑧, 𝑦) + 𝑝 (1) (𝑧, 𝑦). Introduce now the following
functions:

𝑃(0) (𝑧) =
∞∫

0

𝑝 (0) (𝑧, 𝑦) d𝑦

= 𝑝0 (0,0+)
∞∫

0

[1−𝐻 (𝑦)] 𝑒−(𝑎−𝑎𝐺 (𝑧) )𝑦 d𝑦

= 𝑝0 (0,0+)
1− 𝜅 (𝑎− 𝑎𝐺 (𝑧))
𝑎 (1−𝐺 (𝑧)) (31)

and

𝑃(1) (𝑧) =
∞∫

0

𝑝 (1) (𝑧, 𝑦) d𝑦

= 𝑝0 (0,0+)
𝑧 [1− 𝜅 (𝑎− 𝑎𝐺 (𝑧))]
𝛽 (𝑎− 𝑎𝐺 (𝑧)) − 𝑧

×
∞∫

0

[1−𝐵(𝑦)] 𝑒−(𝑎−𝑎𝐺 (𝑧) )𝑦 d𝑦

= 𝑝0 (0,0+)
𝑧 [1− 𝜅 (𝑎− 𝑎𝐺 (𝑧))] [1− 𝛽 (𝑎− 𝑎𝐺 (𝑧))]

𝑎 (1−𝐺 (𝑧)) [𝛽 (𝑎− 𝑎𝐺 (𝑧)) − 𝑧] . (32)

Hence, we obtain that

𝑃(𝑧) = 𝑃(0) (𝑧) +𝑃(1) (𝑧)

= 𝑝0 (0,0+)
(1− 𝑧)𝛽 (𝑎− 𝑎𝐺 (𝑧)) [1− 𝜅 (𝑎− 𝑎𝐺 (𝑧))]

𝑎 (1−𝐺 (𝑧)) [𝛽 (𝑎− 𝑎𝐺 (𝑧)) − 𝑧] .

From the fact that 𝑃(1) = 1, we obtain
𝑝0 (0,0+)

𝑎
=

1− 𝑎𝛽1𝐺
′ (1)

𝑎𝜅1
, where 𝛽1 = E𝜉 and 𝜅1 = E𝜅, what ends the

proof. □

Now, we can also easily calculate the value of probability that
the system is empty:

𝑝0 = P{𝜂 = 0} = 𝑃(0) = (1− 𝑎𝛽1𝐺
′ (1)) [1− 𝜅(𝑎)]
𝑎𝜅1

.

Corollary 1. In the case when the entrance flow is single Pois-
sonian, we have 𝐺 (𝑧) = 𝑧 and obtain:

𝑃(𝑧) = (1− 𝑎𝛽1) 𝛽(𝑎− 𝑎𝑧) [1− 𝜅(𝑎− 𝑎𝑧)]
𝑎𝜅1 [𝛽(𝑎− 𝑎𝑧) − 𝑧] .

For example, if the vacation period is exponentially distributed
(say, with parameter 𝑟), we obtain:

𝑃(𝑧) = (1− 𝑎𝛽1) (1− 𝑧)𝛽(𝑎− 𝑎𝑧)
[1+ 𝑎𝜅1 (1− 𝑧)] [𝛽(𝑎− 𝑎𝑧) − 𝑧] ,

where 𝜅1 = 1/𝑟 . If, in addition, customer service time is also
exponentially distributed (say, with parameter 𝜇), we have:

𝑃(𝑧) = 1− 𝑎𝛽1
(1− 𝑎𝛽1𝑧) [1+ 𝑎𝜅1 (1− 𝑧)] ,

where again 𝜅1 = 1/𝑟 and additionally 𝛽1 = 1/𝑢.

2.2. Total customers volume distribution

Assume additionally that each customer is characterized by
some random volume 𝜁 (where 𝜁 is non-negative random vari-
able (RV)) which does not depend on other customers volumes,
and customer service time 𝜉 generally depends on his volume.
Let 𝐹 (𝑥, 𝑡) = P{𝜁 < 𝑥, 𝜉 < 𝑡} be the joint DF of random variables
𝜁 and 𝜉. Denote by

𝛼(𝑠, 𝑞) =
∞∫

0

∞∫
0

𝑒−𝑠𝑥−𝑞𝑡 d𝐹 (𝑥, 𝑡)

the double LST of DF 𝐹 (𝑥, 𝑡). Then, we have obviously that
𝐿 (𝑥) = P{𝜁 < 𝑥} = 𝐹 (𝑥,∞) and 𝐵(𝑡) = P{𝜉 < 𝑡} = 𝐹 (∞, 𝑡). The
respective LSTs of RVs 𝜁 and 𝜉 have the following forms:

𝜑(𝑠) =
∞∫

0

𝑒−𝑠𝑥 d𝐿 (𝑥) = 𝛼(𝑠,0),

𝛽(𝑞) =
∞∫

0

𝑒−𝑞𝑡 d𝐵(𝑡) = 𝛼(0, 𝑞).
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Denote by 𝜎(𝑡) the total volume of all customers present in the
system at time instant 𝑡 (i.e. the sum of the volumes of such
customers). In steady state, we have evidently that 𝜎(𝑡) ⇒ 𝜎,
where 𝜎 is the steady-state total volume. Let 𝐷 (𝑥) = P{𝜎 < 𝑥}
be DF of RV 𝜎 and 𝛿(𝑠) =

∫ ∞
0 𝑒−𝑠𝑥 d𝐷 (𝑥) be its LST. Now we

will prove general formula for the function 𝛿(𝑠) (what is the
most important new result presented in this paper).

Theorem 2. For the analyzed single-server queueing system
with multiple vacations and random volume customers, we have
the following relation:

𝛿(𝑠) = 1− 𝜌

𝜒
· 1− 𝜅 (𝑎− 𝑎𝐺 (𝜑(𝑠)))

1−𝐺 (𝜑(𝑠))

×
{
1+ 𝜑(𝑠) −𝛼 (𝑠, 𝑎− 𝑎𝐺 (𝜑(𝑠)))

𝛽 (𝑎− 𝑎𝐺 (𝜑(𝑠))) −𝜑(𝑠)

}
, (33)

where 𝜌 = 𝑎𝛽1𝐺
′ (1), 𝜒 = 𝑎𝜅1.

Proof. Denote by 𝐿𝑘
∗ (𝑥) the 𝑘-fold Stieltjes convolution of DF

𝐿 (𝑥) at the point 𝑥 and by 𝐴 ∗𝐵(𝑥) the Stieltjes convolution of
DF 𝐴(𝑥) and 𝐵(𝑥) at the point 𝑥.

It is clear that (based on total probability theorem in contin-
uous form) that

𝐷 (𝑥) =
∞∑︁
𝑘=0

∞∫
0

𝑝𝑘 (0, 𝑦)𝐿𝑘
∗ (𝑥) d𝑦

+
∞∑︁
𝑘=1

𝑝𝑘 (1, 𝑦)
[
𝐿𝑘−1
∗ ∗𝐸𝑦 (𝑥)

]
d𝑦, (34)

where the meaning of the conditional distribution 𝐸𝑦 (𝑥) can
be found e.g. in [29]. If we use LST to both sides of above-
mentioned equation, we obtain:

𝛿(𝑠) =
∞∑︁
𝑘=0

(𝜑(𝑠))𝑘
∞∫

0

𝑝𝑘 (0, 𝑦) d𝑦

+
∞∑︁
𝑘=1

(𝜑(𝑠))𝑘−1
∞∫

0

𝑝𝑘 (1, 𝑦)𝑒𝑦 (𝑠) d𝑦

=

∞∫
0

𝑝 (0) (𝜑(𝑠), 𝑦) d𝑦

+ 1
𝜑(𝑠)

∞∫
0

𝑝 (1) (𝜑(𝑠), 𝑦) 𝑒𝑦 (𝑠) d𝑦, (35)

where

𝑒𝑦 (𝑠) = [1−𝐵(𝑦)]−1
∞∫

𝑥=0

𝑒−𝑠𝑥
∞∫

𝑢=𝑦

d𝐹 (𝑥,𝑢) (36)

(see again [29]). Functions 𝑝 (0) (𝑧, 𝑦) and 𝑝 (1) (𝑧, 𝑦) were defined
in (24) and (30), respectively.

Then we obtain

∞∫
0

𝑝 (0) (𝜑(𝑠), 𝑦) d𝑦 = 𝑃(0) (𝐺 (𝜑(𝑠)))

= 𝑝0 (0,0+)
1− 𝜅 (𝑎− 𝑎𝐺 (𝜑(𝑠)))
𝑎 (1−𝐺 (𝜑(𝑠))) . (37)

From (30) and (36) we obtain:

∞∫
0

𝑝 (1) (𝜑(𝑠), 𝑦) 𝑒𝑦 (𝑠) d𝑦

=
𝑝0 (0,0+)𝜑(𝑠) [1− 𝜅 (𝑎− 𝑎𝐺 (𝜑(𝑠)))]

𝛽 (𝑎− 𝑎𝐺 (𝜑(𝑠))) −𝜑(𝑠)

×
∞∫

0

[1−𝐵(𝑦)]𝑒−(𝑎−𝑎𝐺 (𝜑 (𝑠) ) )𝑦𝑒𝑦 (𝑠) d𝑦.

The integral in the above-mentioned formula can be calculated
as follows:

∞∫
0

[1−𝐵(𝑦)]𝑒−(𝑎−𝑎𝐺 (𝜑 (𝑠) ) )𝑦𝑒𝑦 (𝑠) d𝑦

=

∞∫
𝑦=0

𝑒−(𝑎−𝑎𝐺 (𝜑 (𝑠) ) )𝑦 ©«
∞∫

𝑥=0

𝑒−𝑠𝑥
∞∫

𝑢=𝑦

d𝐹 (𝑥,𝑢)
ª®®¬ d𝑦

=

∞∫
𝑥=0

𝑒−𝑠𝑥
∞∫

𝑢=0

©«
𝑢∫

𝑦=0

𝑒−(𝑎−𝑎𝐺 (𝜑 (𝑠) ) )𝑦 d𝑦
ª®®¬ d𝐹 (𝑥,𝑢)

=
1

𝑎 (1−𝐺 (𝜑(𝑠)))

×
∞∫

0

∞∫
0

𝑒−𝑠𝑥
[
1− 𝑒−(𝑎−𝑎𝐺 (𝜑 (𝑠) ) )𝑢] d𝐹 (𝑥,𝑢)

=
𝜑(𝑠) −𝛼 (𝑠, 𝑎− 𝑎𝐺 (𝜑(𝑠)))

𝑎 (1−𝐺 (𝜑(𝑠))) .

Then we obtain:

∞∫
0

𝑝 (1) (𝜑(𝑠), 𝑦) 𝑒𝑦 (𝑠) d𝑦

= 𝑝0 (0,0+)𝜑(𝑠) [1− 𝜅 (𝑎− 𝑎𝐺 (𝜑(𝑠)))]

× 𝜑(𝑠) −𝛼 (𝑠, 𝑎− 𝑎𝐺 (𝜑(𝑠)))
𝑎 (1−𝐺 (𝜑(𝑠))) [𝛽 (𝑎− 𝑎𝐺 (𝜑(𝑠))) −𝜑(𝑠)] . (38)

Hence, from (35), (37) and (38) we finally obtain, after some
calculations, relation (33). □

Based on proven theorem, we can obtain formulae for first
two moments of steady-state customers total volume. We use
here well-known properties of the Laplace–Stieltjes transform,
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namely 𝛿1 = −𝛿′ (0), 𝛿2 = 𝛿′′ (0):

𝛿1 = 𝑎𝛼11𝐺
′ (1) + 𝑎𝛽1𝜑1𝐺

′′ (1)
2(1− 𝜌)

+ 𝛽2𝜑1𝜌
2

2𝛽2
1 (1− 𝜌)

+ 𝜑1𝜅2𝜌

2𝛽1𝜅1
, (39)

𝛿2 = 𝑎𝛼21𝐺
′ (1)

+𝜑1𝜌
3

(
3𝛼11𝛽2 + 𝛽3𝜑1

3𝛽3
1 (1− 𝜌)

+ 𝛽2𝜑1𝜅2

2𝛽3
1𝜅1 (1− 𝜌)

)
+

𝛽2
2𝜑

2
1𝜌

4

2𝛽4
1 (1− 𝜌)2

+ 𝜌2 (𝛽2𝜑2 +2𝛼12𝜑1 (1− 𝜌))
2𝛽2

1 (1− 𝜌)

+ 𝛼11𝜑1𝜅2𝜌
2

𝛽2
1𝜅1

+
𝜑2

1𝜅3𝜌
2

3𝛽2
1𝜅1

+ 𝑎𝛽1𝜑2𝐺
′′ (1)

2(1− 𝜌)

+ 𝑎𝛼11𝜑1𝐺
′′ (1)

1− 𝜌
+
𝑎𝜑2

1𝜅2𝐺
′′ (1)

2𝜅1 (1− 𝜌) + (𝑎𝛽1𝜑1𝐺
′′ (1))2

2(1− 𝜌)2

+ 𝜑2𝜅2𝜌

2𝛽1𝜅1
+
𝑎𝛽2𝜑

2
1𝐺

′′ (1)𝜌
𝛽1 (1− 𝜌)2 +

𝑎𝛽1𝜑
2
1𝐺

′′′ (1)
3(1− 𝜌) . (40)

In formulae (39) and (40) 𝛽𝑖 denotes 𝑖-th moment of the random
variable 𝜉, 𝜑𝑖 – 𝑖-th moment of the random variable 𝜁 , 𝜅𝑖 – 𝑖-th
moment of the random variable 𝜅 and 𝛼𝑖 𝑗 – mixed (𝑖 + 𝑗)-th
moment of the random vector (𝜁, 𝜉).

Corollary 2. In the case when the entrance flow is single Pois-
sonian (each group contains only one customer, then 𝐺 (𝑧) = 𝑧

and 𝜌 = 𝑎𝛽1), we obtain:

𝛿(𝑠) = 1− 𝜌

𝜒
· 1− 𝜅 (𝑎− 𝑎𝜑(𝑠))

1−𝜑(𝑠)

×
{
1+ 𝜑(𝑠) −𝛼 (𝑠, 𝑎− 𝑎𝜑(𝑠))

𝛽 (𝑎− 𝑎𝜑(𝑠)) −𝜑(𝑠)

}
. (41)

Then, formulae defining first two moments are the following:

𝛿1 = 𝑎𝛼11 +
1
2
𝑎𝜑1

(
𝑎𝛽2
1− 𝜌

+ 𝜅2
𝜅1

)
, (42)

𝛿2 = 𝑎𝛼21 + 𝑎2𝛼12𝜑1 +
𝑎(3𝜑2𝜅2 +2𝑎𝜑2

1𝜅3)
6𝜅1

+
𝑎4𝛽2

2𝜑
2
1

2(1− 𝜌)2 +
𝑎2𝛽2𝜑2
2(1− 𝜌) +

𝑎2𝛼11𝜑1𝜅2
𝜅1

+ 𝑎3𝛼11𝜑1𝛽2
1− 𝜌

+
𝑎3𝛽3𝜑

2
1

3(1− 𝜌) +
𝑎3𝛽2𝜑

2
1𝜅2

2𝜅1 (1− 𝜌) . (43)

3. SPECIAL CASES ANALYSIS AND NUMERICAL
RESULTS

In this section, we investigate some simple special cases of
the analyzed model, illustrating obtained results by numerical
examples. For simplicity, we assume that customers arrival flow
is single Poissonian, i.e. we will use in our computations only
formula (41).

3.1. Customer service time and his volume are
independent

Assume additionally that customer service time and his volume
are independent. Then, based on (41), we obtain the following
formula:

𝛿(𝑠) = 1− 𝜌

𝜒
· 1− 𝜅 (𝑎− 𝑎𝜑(𝑠))

1−𝜑(𝑠)

×
{
1+ 𝜑(𝑠) (1− 𝛽 (𝑎− 𝑎𝜑(𝑠)))

𝛽 (𝑎− 𝑎𝜑(𝑠)) −𝜑(𝑠)

}
. (44)

Now we demonstrate interesting numerical computations in case
where customer volume is exponentially distributed with pa-
rameter 𝑓 , his service time is exponentially distributed with
parameter 𝜇 and vacation period is exponentially distributed
with parameter 𝑟 . After rather simple calculations, we finally
obtain:

𝛿(𝑠) = (1− 𝜌) (𝑠+ 𝑓 )2

[𝑠(1+ 𝜒) + 𝑓 ] (𝑠+ 𝑓 − 𝜌 𝑓 ) , (45)

where 𝜌 = 𝑎
𝜇

. In this case we may also obtain the exact form
of steady-state customers total volume distribution (based on
Laplace transform inversion):

𝐷 (𝑥) = L −1 (𝛿(𝑠)/𝑠)

= 1− (1− 𝜌)𝜒2𝑒−(1+𝜒)−1 𝑓 𝑥 − 𝜌2𝑒−(1−𝜌) 𝑓 𝑥

𝜒(1− 𝜌) − 𝜌
. (46)

Formulae defining first two moments of customers total volume
are the following:

𝛿1 =
1
𝑓

(
𝜒+ 𝜌

1− 𝜌

)
, (47)

𝛿2 =
2 [𝜒(1+ 𝜒(1− 𝜌)) (1− 𝜌) + 𝜌]

𝑓 2 (1− 𝜌)2 . (48)

In Table 1 we present exemplary results for 𝛿1, for fixed values
𝑎 = 1, 𝑓 = 1 (changing 𝑟 and 𝜇), whereas in Fig. 1 we present
3-dimensional graph of function 𝛿1 (𝑟, 𝜇). Of course, the values
of 1/ 𝑓 and 𝛿1 have to be measured in the same information units
(e.g. B, kB, MB and so on).

Table 1
Exemplary 𝛿1 calculations for 𝑀/𝑀/1/∞(𝑉) system with exponen-
tially distributed vacation period, 𝑎 = 1, 𝑓 = 1 (customer service time

and his volume are independent)

𝛿1 𝑟 = 1.1 𝑟 = 1.6 𝑟 = 2.1 𝑟 = 2.6 𝑟 = 3.1

𝜇 = 1.1 10.9091 10.6250 10.4762 10.3846 10.3226
𝜇 = 1.6 2.5758 2.2917 2.1429 2.0513 1.9893
𝜇 = 2.1 1.8181 1.5341 1.3853 1.2937 1.2317
𝜇 = 2.6 1.5341 1.2500 1.1012 1.0096 0.9476
𝜇 = 3.1 1.3853 1.1012 0.9524 0.8608 0.7988
𝜇 = 3.6 1.2937 1.0096 0.8608 0.7692 0.7072

Obtained results have also very important meaning for real-
life computer systems. As it was shown e.g. in [29], based on
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Fig. 1. Graph presenting function 𝛿1 (𝑟, 𝜇) in the 𝑀/𝑀/1/∞(𝑉) queue-
ing system with exponentially distributed vacation period (customer

service time and his volume are independent)

exact formula for 𝐷 (𝑥), we are able to approximate loss charac-
teristics for analogous systems but having limited (by constant
value 𝑉) total volume (in this case 𝑉 does not mean the number
of positions in the waiting room (that is infinite) but limitation
of total volume of all customers present in the system). Arriving
customers must have enough small volume that guarantees they
will be accepted to the system. Note that the value of V is usu-
ally measured in information units like bytes (B), kilobytes (kB),
megabytes (MB), etc. Here we use some approximate formula:

𝑝LOSS ≈ 1−
𝑉∫

0

𝐷 (𝑉 − 𝑥)𝑙 (𝑥) d𝑥, (49)

where 𝑙 (𝑥) is the density function of the customer volume. Sub-
stitute now, for example, 𝑎 = 1, 𝜇 = 3, 𝑟 = 1, 𝑓 = 1 (which means
that mean value of customer volume equals

1
𝑓
= 1) and use

formulae (49) and (46). Then we obtain results presented in Ta-
ble 2 and graphically illustrated in Fig. 2 (here 𝑉 and E𝜁 = 1

𝑓

are measured in the same information units e.g. MB). Analyzed

Table 2
Loss probability approximations for 𝑀/𝑀/1/∞(𝑉) system with expo-
nentially distributed vacation period, 𝑎 = 1, 𝜇 = 3, 𝑟 = 1, 𝑓 = 1 (MB−1)

(customer service time and his volume are independent)

𝑉 [MB] 𝑃LOSS 𝑉 [MB] 𝑃LOSS

0.0 1.0000 5.0 0.1285

0.5 0.8411 5.5 0.1023

1.0 0.6996 6.0 0.0813

1.5 0.5769 6.5 0.0644

2.0 0.4722 7.0 0.0510

2.5 0.3841 7.5 0.0403

3.0 0.3109 8.0 0.0318

3.5 0.2506 8.5 0.0251

4.0 0.2012 9.0 0.0197

4.5 0.1610 9.5 0.0155

system is usually denoted in literature as 𝑀/𝑀/1/(∞,𝑉) or
𝑀/𝑀/1/∞(𝑉) [29].

2 4 6 8 10
V

0.2

0.4

0.6

0.8

1.0

P_LOSS

Fig. 2. Graph presenting the approximations of loss probability in the
𝑀/𝑀/1/∞(𝑉) queueing system with exponentially distributed vaca-
tion period (customer service time and his volume are independent)

3.2. Customer service time proportional to his volume

Assume now that customer service time is proportional to his
volume: 𝜉 = 𝑐𝜁, 𝑐 > 0. Then (from (41)) we obtain:

𝛿(𝑠) = 1− 𝜌

𝜒
· 1− 𝜅 (𝑎− 𝑎𝜑(𝑠))

1−𝜑(𝑠)

×
{
1+ 𝜑(𝑠) −𝜑 (𝑠+ 𝑐(𝑎− 𝑎𝜑(𝑠)))

𝜑 (𝑐(𝑎− 𝑎𝜑(𝑠))) −𝜑(𝑠)

}
. (50)

In case when customer volume is exponentially distributed with
parameter 𝑓 and vacation period is exponentially distributed
with parameter 𝑟 , we obtain the following formula:

𝛿(𝑠) = (1− 𝜌) ( 𝑓 + 𝑠)4

( 𝑓 + 𝑠+ 𝜒𝑠) ( 𝑓 + 𝑠− 𝜌 𝑓 )
[
( 𝑓 + 𝑠)2 + 𝜌 𝑓 𝑠

] , (51)

where 𝜌 =
𝑎𝑐

𝑓
. Analogously like in previous subsection, we

obtain the exact form of steady-state customers total volume
distribution. If 𝑓 ≠ 2𝑎𝑐 (𝜌 ≠ 1

2 ), we obtain:

𝐷 (𝑥) = 1− 1
𝜒− 𝜌(1+ 𝜒)

×
[
(1− 𝜌)𝜒4𝑒−(1+𝜒)−1 𝑓 𝑥

(1+2𝜒)2 + 𝜌𝜒(1+ 𝜒)
+ 𝜌3𝑒−(1−𝜌) 𝑓 𝑥

1−2𝜌

]
− 𝜌(1− 𝜌)√︁

𝜌(4+ 𝜌)

×
{

(1− 𝑏1)2𝑒−𝑏1 𝑓 𝑥

[1− 𝑏1 (1+ 𝜒)] (1− 𝑏1 − 𝜌)

− (1− 𝑏2)2𝑒−𝑏2 𝑓 𝑥

[1− 𝑏2 (1+ 𝜒)] (1− 𝑏2 − 𝜌)

}
, (52)
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where 𝑏1 =
2+ 𝜌−

√︁
𝜌(4+ 𝜌)

2
, 𝑏2 =

2+ 𝜌 +
√︁
𝜌(4+ 𝜌)

2
.

Whereas, if 𝑓 = 2𝑎𝑐 (𝜌 = 1
2 ), we obtain:

𝐷 (𝑥) = 1− 2𝜒4𝑒−(1+𝜒)−1 𝑓 𝑥

(1+2𝜒) (1− 𝜒)2 +
𝑒−2 𝑓 𝑥

9(1+2𝜒)

− 1
6(1− 𝜒)

[
11−17𝜒
3(1− 𝜒) +

𝑓 𝑥

2

]
𝑒−

𝑓 𝑥

2 . (53)

Formula defining first moment 𝛿1 of customers total volume is
the following:

𝛿1 =
1
𝑓

(
𝜒+ 𝜌(2− 𝜌)

1− 𝜌

)
. (54)

To obtain 𝛿2 value, we can use general formula (43) with

the following substitutions: 𝜑𝑖 =
𝑖!
𝑓 𝑖

, 𝛽𝑖 =
𝑐𝑖𝑖!
𝑓 𝑖

, 𝜅𝑖 =
𝑖!
𝑟 𝑖

, 𝛼𝑖 𝑗 =

𝑐 𝑗 (𝑖 + 𝑗)!
𝑓 𝑖+ 𝑗

. In Table 3 we present exemplary results for 𝛿1 for

fixed values 𝑎 = 1, 𝑐 = 1 (changing 𝑓 and 𝑟) whereas in Fig. 3
we present 3-dimensional graph of function 𝛿1 (𝑟, 𝑓 ).

Table 3
Exemplary 𝛿1 calculations for 𝑀/𝑀/1/∞(𝑉) system with exponen-
tially distributed vacation period, 𝑎 = 1, 𝑐 = 1 (customer service time

proportional to his volume)

𝛿1 𝑟 = 1.1 𝑟 = 1.6 𝑟 = 2.1 𝑟 = 2.6 𝑟 = 3.1

𝑓 = 1.1 10.7438 10.4855 10.3503 10.2670 10.2106

𝑓 = 1.6 2.0005 1.8229 1.7299 1.6727 1.6339

𝑓 = 2.1 1.0926 0.9573 0.8864 0.8428 0.8133

𝑓 = 2.6 0.7380 0.6287 0.5715 0.5362 0.5124

𝑓 = 3.1 0.5509 0.4593 0.4113 0.3817 0.3617

𝑓 = 3.6 0.4365 0.3576 0.3163 0.2908 0.2736

Fig. 3. Graph presenting function 𝛿1 (𝑟, 𝑓 ) in the 𝑀/𝑀/1/∞(𝑉) queue-
ing system with exponentially distributed vacation period (customer

service time proportional to his volume)

Substitute now, for example, 𝑎 = 1, 𝑓 = 3, 𝑟 = 1, 𝑐 = 1 and
use formulae (49) and (52). Then we obtain results presented in

Table 4 and graphically illustrated in Fig. 4. These results are
connected again with calculating of loss probability approxima-
tions. Note that, for such fixed parameters, queueing systems
analyzed in Sections 3.1 and 3.2 are identical from the classical
point of view (they have the same classical characteristics such
as arrival flow parameter and service time distribution function)
but total volume characteristics are different (compare Tables 1
with 3, 2 with 4 and also graphs 1 with 3, and 2 with 4). It
confirms that the character of dependency between customer
service time and his volume has a substantial meaning in the
case of total customers volume characteristics.

Table 4
Loss probability approximations for 𝑀/𝑀/1/∞(𝑉) system with expo-
nentially distributed vacation period, 𝑎 = 1, 𝑓 =, 𝑟 = 1, 𝑐 = 1 (customer

service time proportional to his volume)

𝑉 [𝑀𝐵] 𝑃𝐿𝑂𝑆𝑆 𝑉 [𝑀𝐵] 𝑃𝐿𝑂𝑆𝑆

0.0 1.0000 5.0 0.0021

0.5 0.6159 5.5 0.0010

1.0 0.3659 6.0 0.0005

1.5 0.2078 6.5 0.0003

2.0 0.1140 7.0 0.0001

2.5 0.0609 7.5 6.04 ·10−5

3.0 0.0319 8.0 2.93 ·10−5

3.5 0.0165 8.5 1.42 ·10−5

4.0 0.0084 9.0 6.84 ·10−6

4.5 0.0042 9.5 3.29 ·10−6

2 4 6 8 10
V

0.1

0.2

0.3

P_LOSS

Fig. 4. Graph presenting the approximations of loss probability in the
𝑀/𝑀/1/∞(𝑉) queueing system with exponentially distributed vaca-

tion period (customer service time proportional to his volume)

It is worth adding that in the case when we do not have the
exact form of 𝐷 (𝑥) distribution, we may approximate it with
the use of gamma distribution based on values 𝛿1 and 𝛿2 (see
again [29]) and in this way we obtain needed loss probability
approximations.
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3.3. Generalization on systems with sectorized memory
buffer

Obtained results can be generalized on systems with sectorized
memory i.e. we can consider systems in which total volume con-
tains some sectors in which specific types of data are located. In
such systems, arriving customers are additionally characterized
by random volume vectors i.e. their volumes are multidimen-
sional (see e.g. [33,38]). Assume e.g. that total volume contains
𝑛 sectors. In the same way as we did it in Section 2 we obtain
the following formula describing multidimensional LST of total
customers volume vector for the system 𝑀/𝐺/1/∞:

𝛿(𝑠1, . . . , 𝑠𝑛) =
1− 𝜌

𝜒
· 1− 𝜅 (𝑎− 𝑎𝜑(𝑠1, . . . , 𝑠𝑛))

1−𝜑(𝑠1, . . . , 𝑠𝑛)

×
{
1+ 𝜑(𝑠1, . . . , 𝑠𝑛) −𝛼 (𝑠1, . . . , 𝑠𝑛, 𝑎− 𝑎𝜑(𝑠1, . . . , 𝑠𝑛))

𝛽 (𝑎− 𝑎𝜑(𝑠1, . . . , 𝑠𝑛)) −𝜑(𝑠1, . . . , 𝑠𝑛)

}
, (55)

where 𝜑(𝑠1, . . . , 𝑠𝑛) is 𝑛-dimensional LST of the customer ran-
dom volume vector, and 𝛼(𝑠1, . . . , 𝑠𝑛, 𝑞) is (𝑛+1)-dimensional
LST of the customer random volume vector and his service time.

Using (55), we can obtain formulae defining basic character-
istics of customers total volume vector e.g. mixed moments (of
the (𝑖1 + . . .+ 𝑖𝑛)-th order) 𝛿𝑖1...𝑖𝑛 as we have obvious relation:

𝛿𝑖1...𝑖𝑛 = (−1)𝑖1+...+𝑖𝑛 𝜕𝛿
𝑖1+...+𝑖𝑛 (𝑠1, . . . , 𝑠𝑛)
𝜕𝑠

𝑖1
1 . . . 𝜕𝑠

𝑖𝑛
𝑛

��
𝑠1=0,...,𝑠𝑛=0.

To obtain it, we have to use generalized l’Hospital’s rule for
functions of many variables explained in [39] and [40] and the
help of Mathematica environment (see e.g. [41]). Final results
are very complicated and contain mixed moments 𝛼𝑖1 ,...,𝑖𝑛 , 𝑗 of
the random vectors (𝜁1, . . . , 𝜁𝑛, 𝜉), where 𝜁𝑖 , 𝑖 = 1, . . . , 𝑛, are the
indications of the customer random volume vector. But Math-
ematica environment let us calculate these characteristics for
fixed character of dependency between customer service time
and his volume vector indications and fixed parameters.

4. CONCLUSIONS AND FINAL REMARKS

In the presented paper, we have investigated the model of a
single-server queueing system with random volume customers
and multiple vacations. We obtained general formula for steady-
state customers total volume in terms of Laplace–Stieltjes trans-
forms and formulae defining first two moments of this random
variable. Then we showed exact calculations for some chosen
special cases of analyzed model together with some numerical
results and graphs. We also explained the way of using ob-
tained results to approximate loss probabilities of analogous
systems but with limited total volume and paid attention to the
influence of the character of dependency between customer vol-
ume and his service time on total volume characteristics. In
the end, we showed possible generalization of obtained results
on systems with sectorized memory e.g. possibility to calcu-
late mixed moments of total volume vector with the use of
generalized l’Hosptal’s rule and the help of Mathematica envi-
ronment.
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