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MODELOWANIE NUMERYCZNE I BADANIA EKSPERYMENTALNE
KRZEPNIĘCIA STOPÓW Co-Cr-Mo

Solidification modeling based on classical macroscopic energy, mass, momentum and solute
continuity equations does not allow lo predict of microstructural parameters satisfactorily. In past
decades several aucmps have been made for the developing of modelling methodology for the
coupling macro transport equations with the transformation kinetics in the micro scale. The
micromodeling focused to the multicomponent alloys is still rare, despite the majority of the new
industrial alloys are formed from complex multicomponent systems. The paper presents the
micromodeling procedure coupled with thermodynamic calculation and experimental inves
tigations for the Co-Cr-Mo alloys, frequently used as biomaterials for the production of
endoprotheses. Both, experimental and numerical results showed that: the grain structure is mainly
influenced by the cooling rate, the partition coefficients exhibit significant dependency on the
cooling rate (especially for molybdenum), the high cooling rate promotes early formation of fine
intragranular carbides. The experimentally obtained values of latent heat of solidification exhibit
important dependency on the initial carbon content, and cannot be ignored in solidification
simulations. The solidification modeling results have been verified using cooling curve analysis
and metallografic investigations. It seems, that the model can be used in engineering applications
for solidification simulations.

Modelowanie krzepnięcia stopów metali oparte na klasycznych makroskopowych równaniach
bilansu pędu, energii, masy nie pozwalają na symulacje mikrostrukruralnych parametrów odlewów
z wystarczającą precyzją. W ostatnich dekadach podjęto szereg prób w celu opracowania
metodologii modelowania matematycznego procesu krzepnięcia, które bazują na sprzęgnięciu
makroskopowych równań transportu z kinetyką transformacji fazowej w skali mikroskopowej.
Jednak prace poświęcone modelowaniu krzepnięcia stopów wieloskładnikowych są nadal rzadkie,
mimo iż stopy te mają istotne znaczenie przemysłowe. Artykuł przedstawia propozycję procedury

'ClNVESTAV UNIDAD SALTILLO. CARRETERA SALTILLO-MONTERREY KM 13.5. A.P. 663. SALTILLO. COAHUILA. MEXICO

" KATEDRA TEORII I INŻYNIERll PROCESÓW METALURGICZNYCH. WYDZIAL METALI NIEŻELAZ:--IYCH, AGH. 30-059 KRAKÓW.

AL MICKJEWICZA 30



54

obliczeniowej mikromodelu skojarzonej z obliczeniami termodynamicznymi i badaniami eks
perymentalnymi dla stopów na bazie układu Co-Cr-Mo, które znajdują zastosowanie przy
produkcji bio-materialów do wytwarzania endoprotez. Zarówno wyniki eksperymentalne jak
i rozwiązania modelowe potwierdzają, iż struktura ziarnowa badanych stopów oraz współczynniki
podziału (zwłaszcza w odniesieniu do molibdenu) wykazują istotną zależność od szybkości
studzenia, oraz iż wysoka szybkość studzenia promuje wczesne tworzenie się wewnątrz
ziarnowych węglików. Ponadto, eksperymentalnie wyznaczone utajone ciepło krzepnięcia
wykazuje istotną zależność od zawartości węgla, co winno być uwzględnione w procedurach
symulacji krzepnięcia. Wyniki obliczeń numerycznych weryfikowano przez analizę krzywej
studzenia stopu i badania metalograficzne. Opracowany model powiązany ze standardowym
oprogramowaniem transportu pędu, masy i ciepła może być wykorzystywany do symulacji
krzepnięcia stopów kobaltowych w zastosowaniach inżynieryjnych.
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- volumic specific heat,
- solute diffusion coefficient in the liquid,
- diffusion coefficient for constituent i in the liquid,
- average temperature gradient near the dendrite tip,
- solute gradient of constituent i near the dendrite tip,
- general function,
- volume solid fraction,
- grain volume fraction of the freely growing equiaxed dendritic grains,

internal solid volume fraction (with respect to the growing grain volume),
excess free energy for real solutions (non-ideal mixing),
partial excess free energy of component i, 
excess free energy of binary system ti. 

- partial free energy of ideal mixing at standard state of component i in phase F, 
- excess partial free energy for component i in phase F, 
- volumic enthalpy,
- volumic enthalpy extracted from the control volume element at time step m + 1 of

macro transport equation solution procedure,
- volumic enthalpy extracted from the control volume element at time step of

micro-model solution procedure,
- partition coefficient,
- partition coefficient for constituent i,
- volumic latent heat of fusion,
- number of micro-model time steps Il r per one macro-model time step /lr,
- slope of the liquidus line in the corresponding binary system (base component vs

i component),
N - number of constituents in the multicomponent system,
n - number of active nuclei,
"m"' - maximum density of nuclei attainable at the infinite undercooling a'I, 
Pe - grain Peclet number, Pe = vR /2 O, 
Pe; - Peclet number associated with the moving tip of the dendrite paraboloid for

constituent i, Pe.> rpv I 2D;,
Q cooling rate of the sample during experiment,
R - radius of the equiaxed dendritic grain, determined by the location of dendrite tips,
rP - radius of dendrite tip,
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- temperature, 
- time, 
- liquidus temperature for the initial alloy composition x0, 
- undercooling, 
- mean value of nucleation undercooling (parameter of the distribution function), 
- standard deviation of the nuclei distribution (parameter of the distribution function), 
- time step length of macro transport equation solution procedure, 
- micro time step length in micro-model solution procedure, 
- volume, 
- concentration, 
- mole fraction of component i in the binary system ij, 
- liquid concentration of component i, 
- solid concentration of component i, 
- liquid concentration of the solute at the dendrite tip, 
- solid concentration of solute in equilibrium with liquid of composition x ·L, 
- liquid concentration of solute in the bulk liquid (initial concentration). 

Greek symbols 
r - Gibbs-Thomson coefficient of the alloy, 
':R - universal ideal gas constant, 
µ - chemical potential, 
µF.; - chemical potential of component i in phase F, 
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x't, - Xo 
- supersaturation, Q = --- , 

x•L - x·s 
- velocity of the dendrite tip, 
- coefficient, Eq. (15), 
- kinetic constant, Eq. (23), 
- impingement weighting function, Eq. (25), 
- function defined in Eq. (13), 
- fraction of solute mixed into the bulk liquid, 
- stability parameter, Eq. (31). 

Super- and subscripts 
O - initial value, 
F - phase index, 
g - grain, 

- component index in multicomponent system, 
k - index of micro-model time step, 
L - liquid phase, 
m - index of macro-model time step, 
S - solid phase. 

1. Introduction 

The metal alloys solidification process plays the most important role in the determining 
the properties of the foundry products. The solidification structures of castings influence the 
mechanical properties and corrosion resistance of the product. Cobalt based alloys, 
frequently used as biomaterials for the production of endoprotheses, must exhibit high 
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corrosion resistance in the physiological solutions and proper mechanical strenght 
(endurance) [l]. The control of the grain structure and solute microsegregation is of primary 
importance in solidyfying processes, which can be accesed by means of controling heat 
flow conditions and alloy composition. Solidification modeling based on classical 
macroscopic energy, mass, momentum and solute continuity equations does not allow to 
predict of microstructural parameters satisfactorily. In past decades several attemps have 
been made for the developing of modelling methodology for the coupling macro transport 
equations with the transformation kinetics in the micro scale [2]. The micromodeling 
focused to the multicomponent alloys is still rare, despite the majority of the new industrial 
alloys are formed from complex multicomponent systems. It has been found that the 
alloying elements, even in low concentrations, significantly influence microstructure and 
microsegregation [3]. The assumption of constant partition coefficient and linearisation 
procedure of equilibrium phase diagram used for binary alloys is unacceptable for 
multicomponent ones. In the paper, we try to exploit several modeling techniques for 
development of adequate deterministic solidification micro-model, which can be used in 
standard micro/macro enthalpy computer code for simulation industrial castings. Model 
predictions are compared with experimental results obtained for multicomponent cobalt 
based alloy (ASTM F- 75) solidification process. 

2. Thermodynamics of multicomponent system 

The starting point for any alloy solidification problem is the equilibrium phase diagram 
for the system in question. In order to predict the paths of solidification of a multi 
component alloy (such as ASTM F- 75) it is essential to know its liquid-solid phase 
equilibrium diagram. The lack of experimental equilibrium data of such complex 
multi-component system enforced us to model the equilibrium system on the basis of 
thermodynamic considerations. The heterogeneous equilibrium condition of n-component 
system is expressed by the set of equations [ 4, 5]: 

i= l, .. ,N (1) 

expressing the equality of a chemical potential µ of each component in two phases 

(2) 

where F stands for L (liquid phase) or S (solid phase). 

Following the generalized conception of Ch o u and Ch a n g [ 6] the derivation of 
Gibbs energies of 3 component system from those of three binary system, the excess free 
energy of ternary system i-j-k can be evaluated from: 

(ij = 12, 13, 23), (3) 
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where excess free energy exe;j of binary system i-j, expressed as 

exe .. = Xij x.u [A+ e.ix; - Xij) + C(X;j - X;j)2] lj I J I] I] I j I] I j • (4) 

The parameters A;j, Bij, C;J of the binary system model are in general functions of 
temperature, and must obey the following constraints 

and the weighting factors are defined as 

(5) 

The generalization of eq. (3) leads to the N component systems of the form: 

N-I N 

exe= L, L, X;Xj [A;j + Bij (X/j - X/1) + Ci, (X/j - X/1)2]. 
i=I j=i+I 

(6) 

Several geometrical models, relating X; and xj with XY X/ have been proposed up to 
date. In present calculation we have used simple Col i net model [5], where XY = X;, X/ 
= xj, XY - X/1 = 2x; - 1. 

For the ternary system, the excess free Gibbs energies exe1, exc2, exe3 are given by: 

(7) 

Finally, the system of equations defining the equilibrium between liquid and solid phase 
in ternary system takes the form 

(
0el,i - "Gs.i) + (9tTlnxr,; - 9tTlnxs,;) + (exel,i - exes,;)= O; i= I, 2, 3 (8) 

with 7 variables (3 molar fractions of liquid, 3 molar fractions of solid, and temperature). 
Knowing the composition of other phase, and having in mind that only 2 of molar fractions 
of solid are independent variables, due to the solid phase mass balance equation 

Xs,1 + Xs,2 + Xs,3 = 1 (9) 

the equation set (8) can be used to obtain unique temperature (liquidus temperature) and 
solid composition in equilibrium with liquid phase. Because the system of equations (8) is 
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nonlinear, its solution is not straightforward, and an efficient numerical technique has to be 
used to solve it. 

TABLE I 
Thermodynamic parameters for solid and liquid phases (eq. (4)) 

Binary system i-j A;i(T) [J] B;i(T) [J] Cj(T) [Jl reference 

Liquid phase 

Cr-Co -29429.0 O.O o.o [5], [7]* 

Cr-Mo 19037.0-8.58 · T 6485.0-2.72 · T O.O [5] 

Co-Mo 2510.0 O.O O.O [5] 

Solid phase 

Cr-Co -47554.0 O.O O.O [5], [7]* 

Cr-Mo 27823.5-8.58 · T 6485.0-2.72 · T O.O [5] 

Co-Mo -25104.0+20.92· T O.O O.O [5] 

* OrginaJ data verified against thermodynamic data from [7] 

Equilibrium diagram (solid - liquid region) for the ASTM F75 alloy used in our work 
has been prepared neglecting minor alloying elements (such as Mn, Si, Ni, Fe, W and C), 
however incorporation of these elements can be easily done. Therefore, we have reduced 
a number of components to three. Thermodynamic data used in computations are those 
reported in [5] and given in Table 1. 
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Fig. I. Liquidus surface projection of Co-Cr-Mo ternary system based on thermodynamic data 
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The calculated liquidus projection of the ternary Co-Cr-Mo system is shown in Fig. 1. 
It shows, that the Co-Cr-Mo system forms the eutectic valleys. The equilibrium system 

of equations (8) can be used not only for the preparation of the equilibrium diagram, but also 
for solidification modeling purposes, as shown in next part of the paper. Moreover, the 
values of theoretically developed liquidus temperatures agree well with those obtained 
from the experimental work on ASTM F- 75 alloy presented below. 

3. Solidification modeling 

The knowledge of phase diagram (solution of Eqs. (8)) makes possible to search for the 
solidification path using two extreme cases: 
- lever rule (fully equilibrium conditions of the solidification process), or 
- Schei! model [8]. 
Both of them assumes complete mixing in the liquid phase. The equilibrium 

solidification (lever rule), requires that diffusion in the solid be sufficiently fast to allow 
complete mixing in solid necessary to maintain equilibrium. The Schei I model assumes no 
diffusion in the solid. Therefore, such marginal behaviors are unlikely to occur in castings, 
and intermediate behavior is expected. Several other models were proposed up to date, 
letting for finite diffusion in liquid and solid phase [9], and finite diffusion in solid with 
complete mixing in liquid [10, 11]. In this paper the Schei I model has been used for 
preliminary calculations, as it gives more realistic results than the lever rule, for the systems 
exhibit solid phase diffusion coefficients much less than in liquid phase. The more 
sophisticated model, with back diffusion effects will be included in future work. 

In the ternary system of the kind shown in Fig. 1, two stages should be considered: first, 
when the composition of liquid moves along smooth liquidus surface, and the second after 
the instant at which the solidification path reaches the minimum of eutectic valley (or valley 
floor). During the first stage single solid phase is formed, and the following Schei I model 
equations should be used: 

(xL.i - xs,;) dfs = (1 - fs) dxL,i (i = 1, 2), (10) 

When solidification path reaches the eutectic valley, solute balance equations can be 
expressed in the following form 

xL_;dfs - Xs1;dfs1 - Xs2,;dfs2 = (l - fs)dxL.i (i=l,2), (11) 

where 
Is - overall solid fraction, by the definition [s = Vs I V, and 

fs =/Sa+ fs1 + [si, (12) 

Isa - solid fraction attained just before entering eutectic valley, Isa= Vs.a I V, 
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fs1 ,Js2 - solid fractions of the phases ( 1 and 2) forming eutectic composition in the eutectic 
valley, by the definition/si= Vs1IV,fs2 = Vs2IV, 

Xs1.;, xs2.; - mole fraction of component i in solid phases 1 and 2 respectively. 
If the equation describing eutectic valley floor is known 

( 13) 

(it can easily be found from equilibrium phase diagram), the Schei I model can be 
expressed in more useful form 

(1 - fs) xL,i = [(xL; - Xsz;) - (xsv - Xs1.;) .8] dfs (i=l,2), (14) 

where: 
/3- coefficient obtained by the elimination offs1 and/s2 from the equations using eutectic 

valley floor function and differential mass balance (dfs = dfs1 + dfsz) 

J(/J 
-J (xL.l - Xs2.1) - (xu - Xs2.2) 

/3=--X_1 _ 
dr/J 

(xs2.1 - Xs11) - Cxs2.2 - Xs1.2) 
Jx1 

(15) 

An application of Schei I model in macro-micro solidification model is straightfor 
ward. Let us assume that enthalpy method is used for the macro heat transfer equation. At 
each time step m of length .1 t111, the enthalpy extracted from the control volume element is 
calculated from macro transport equation and is denoted .1 H111

• Then, splitting the 
solidification path into M small steps of equal length (for simplicity) .1r= .1rk = L1t111! M, we 
obtain L1h = L1 h k = L1Hml M, and the micro scale energy balance of the control volume can be 
expressed as a function of differential increment of solid phase: 

(16) 

Temperature Tk+1 together with liquid composition (xL.I, xL.2)k+i must satisfy 
equilibrium conditions (8). Liquid composition should also follow Sch e il model, 
which can be locally (where full differentials are substituted by finite increments) 
expressed in the form 
- for the stage before entering eutectic valley, 

X k + I = X k . + l [( k k )] ,1 fk + I 
L,, L,1 (1 _ Jl) X L,i - X S,i LJ S (17) 

- and after entering eutectic valley 
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Introducing Schei I model relationships ( 17, 18) into equilibrium equations set (8) we 
can obtain an implicitly defined form for temperature as a function of solid fraction 
increment alone, Tk + 1 = F (l),fJ + 1). Therefore, micro-scale energy balance (16) can be 
solved against solid fraction increment l),fj + 1, as the rest of variables are already known 
from the previous k step of the procedure. Special procedure will be required because of 
nonlinearity of the equation (16) due to an implicit definition of function F(l),ff +1) (as 
a solution of nonlinear system of equations). Evaluation of solid fraction increments enable 
to determine composition of liquid phase (Eqs. (17, 18)) at new computational step k + 1, 
then the composition of solid phase(s) in equilibrium with liquid phase from equilibrium 
equation set (8) again. The procedure described here is continued until solid fraction 
reaches unity. If the assumption on complete mixing is not strictly satisfied, the simple 
modification of Schei 1 equation is possible. In such case, the left hand side of Eq. (10) 
should be multiplied by the constant E, expressing the fraction of solute mixed into the bulk 
liquid [5]. 

Most practical metallurgical alloys solidify with a dendritic structure in a mold. The 
cobalt based alloys are not an exception from this rule. Both columnar and equiaxed 
dendrites can be formed in the ingot, depending on the local heat transfer conditions. Our 
attention will be focussed on equiaxed dendritic growth modeling, the experiment carried 
out for the ASTM F75 alloy has brouth results for this solidification regime. Obviously 
Schei 1 model described above has no ability to predict dendrites growth. From several 
literature models for the modeling of microstructure formation the model of Rapp a z and 
coworkers [12] seems to be most reliable to be implemented in the multi-component system 
solidification. Original Rapp a z model has been developed for binary alloys solidifying in 
equiaxed regime [13]. According to the classifiction introduced by Stefanescu [2], 
Rapp a z model belongs to the deterministic simple geometry class models, which use 
dendrite tip kinetics model and solutal field to describe growth of equiaxed grain. It means 
that the solutal field is the main driving force of dendritic growth; thermal, curvature and 
capillary undercooling are neglected. The main simplifying assumptions of the model are: 
- rapid thermal diffusion at the scale of the grain (uniform temperature equal to the 

dendrite tip temperature), 
- the interdendritic liquid extends to the grain envelope remains in constant solute 

concentration (so called complete mixing of solute is achieved), 
- the spherical diffusion envelope around the grain is replaced by the solute boundary 

layer of unknown thickness, 
- an overall solute and thermal balance is satisfied at the scale of the grain. 
As in Schei I model application, the micro scale energy balance of the control volume 

( 16) is utilized. At every micro time step k of length i), r the increment of solid phase i). f J + 1 

has to be predicted by the model. 
Nucleation of the grain occurs in an undercooled melt, and can be described by the 

continuous model (Ga us s normal distribution density function) 
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__!!!}__ = n111ax ex [(L1T - L1T11)
2
] 

d(L1 D L1 Ta -vzn P 2(L1 Ta)2 .
(19) 

As soon as nucleus appears, it grows. At a given undercooling L1 T, the density of nuclei 
is given by the integral of the distribution function (19). Therefore, during consequent 
computational steps the number of active nuclei n(t) is calculated, until the maximum 
undercooling (recalescence point) is reached. 

In the control volume of constant value, the growth of active nuclei is described by the 
evolution of solid fraction with time t according to 

4 
f5(t) = J;(t)fg(t) = f;(t) n (t) 3 nR3 (t),

where internal solid fraction f;(t) is expressed as 

f;(t) = Q f(Pe(t))

and correction function f(Pe(t)) [13] 

(20) 

(21) 

(22) 

In the Eq. (21, 22) the grain Pee 1 et number is used, based on the grain radius R, velocity 
of dendrite tip v and solute diffusion coefficient in liquid D. 

The velocity of the dendrite tip is usually related to the undercooling by the classical 
power law 

V=7]L1T2 (23) 

or can be evaluated via KGT (Kurz-Giovanola-Trivedi) model [14, 15]. 
The growth of the dendrite tips in a finite time interval L1r advances the gram 

radius such that 

L1R = vL1r. (24) 

The control volume energy balance equation (16) is used to calculate the temperature 
change ( Tś ' 1 - Tk) during time step L1r, than other parameters describing solidification 
path can be evaluated for the current time step (namely R(t), fg(t), f;(t), fs(t), n(t) and 
liquid/solid concentrations of solute). 

The dendrite tips velocity vis expected to be strongly influenced by solute segregation 
when the impingement of the grains takes place, and the solute boundary layers overlap. 
This phenomena is taken into account, verifying supersaturation according to the changes in 
bulk liquid concentration outside the grain, evaluated from the solute balance around the 
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grain boundaries. Also the geometrical considerations are to be incorporated, preserving
overlapping of the grains at the final stage of building grains structure. Therefore the
Joh n son-Meh 1 or A vrami [16], Fraś [17], or Speich-Fi sher [18, 19] procedure can
be introduced. In present paper the modified Speich - Fisher impingement weighting
function lfl(/2) for the grain fraction in Eq. (20) (this equation describes free grains growth)
were used. The value of lflifs) is equal to unity before impingement, and

(25)

after impingement, wheref8_,mp is a value of grain fraction at the beginning of impingement
(for equiaxed eutectic grains is equal to 0.72 (fee) or 0.52 (bee)).

When the dendritic grains are built, the interdendritic solute concentration equalizes
with the solute concentration in the remnant liquid. Then the Schei I equations are
adequate for the description of the solidification path.

The extention of the model described above for the multi-component alloy requires only
an assumption that the kinetics of the dendrite growth is formally preserved, but the
diffusion solutal fields are superimposed. Therefore total undercooling should be calculated
according to the formula

(26)

if the KGT model for multi-component alloy (described below) [12], is to be used. When
classical power law kinetics is used, the kinetic constant 1J should be fitted to the
experimental data, using the same assumption and also the internal fraction should be
related to the supersaturation of all constituents. Convex combination of individual
supersaturiations produces the best results. The liquid phase concentrations together with
solid phase ones (or instead of solid phase, partition coefficients k;'s) can be calculated
using multi-component equilibrium equations (8). All other properties of the Rapp az at al.
model are preserved.

The critical point for the model is to use reliable dendrites growth kinetics. For the
ternary or multi-component alloys, dendrite growth model were proposed by Rapp az at al.
[ 12] and Bob ad i 11 a et al. [20]. As in binary systems, the growth of dendrite is primarily
assumed to be controlled by the solute diffusion. The mathematical solution of the diffusion
problem for steady-state growing dendrite (described by the paraboloid of revolution) was
derived by Ivantsov [21], who derived the relationship between supersaturation and the
Pe cle t number associated with the moving tip of the dendrite tip paraboloid

Q = Iv (Pe), (27)

where Pe= rPv/2D, and Ivantsov function is defined by
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lv(z) = z E1 (z)e2 (28) 

E1(z) - an exponential integral function, Et(z) = f [exp(-u)/u] du.
z 

In the multicomponent system the diffusion fields around the dendrite tip associated 
with each constituent i can be expressed employing Iv a n ts o v solution (27) with respect to 
the supersaturation and Pe c Ie t number of constituent i 

. . 
Q. = XL.i - xo,; = XL,; - xo,; = 1 (P ·)

, * * * v e1 . 
xL,i - Xs,; XL,;(1 - k;)

(29) 

By using linearized phase diagram approximation for multicomponent system, 
individual constituent undercooling reads 

[ 1 l [ 1 lL1T.=mx0· 1------- =m·Xo· 1-------- . 1
' ·' l - Q;(l - k;) ' ·' 1 - lv(Pe;) (1 - k;) 

(30) 

Also, according to Rapp a z model assumption, that the diffusion fields of all species 
can be superimposed, inserting Eq. (24) to Eq. (22), gives the relationship of the total 
undercooling of the dendrite tip to the supersaturations of all solute species. 

Like in the binary system KGT model, the application of marginal stability criterion 
[22] leads to the approximate equation for the dendrite tip radius 

[
r ]1

/2 
rp = 2rc ~------- ,L «»; Śx (Pe;) - E 

(31) 

where the solute gradient Ex; of constituent i near the tip, is given by 

V 
Ex;= - D; XL,; (1 - k;).

For the low growth rates, average temperature gradient E can be neglected in Eq. (31), 
and the stability parameter śx(Pe) approaches unity [15]. 

Combining Eq. (30) and linearized phase diagram relationship (neglecting curvature 
undercooling) in the form 

(32) 

where: 
T* - temperature at the dendrite tips, 
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we can derive the relationship between velocity of dendrite tips v (or tip radius rp) as 
a function of total undercooling L1 Tin the form of 2-nd order polynomial equation 

(33) 

where A 1, A2, A3 are the coefficients 

A 
_ 2L,m;x0,; (1- k;) !;(Pe;) 

2 - 
1-(1-k;)Qi 

The value of A2 coefficient is implicity dependent on undercooling L1 T 

As pointed out by the authors of the procedure described above, the main difficulty 
becomes in the determination of the parameters related to the multi-component phase 
diagram (k;'s and m;'s). In our opinion, the direct substitution of binary counterparts, and 
linearization of multi-component phase diagram can lead to the erroneous results, which we 
acknowledged in the case of Co-Cr-Mo alloy. 

The alternative solution, as described in [23], represents the 11..,SM procedure applied to 
the postulated multi-component alloy Rapp a z type solidification model, in order to obtain 
estimates for the nucleation and growth kinetic parameters. Obtained fitting results differs 
from ones predicted by the KGT multi-component model. The KGT predictions and fitted 
kinetic model are shown in Fig. 2. 
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Fig. 2. Kinetic models of solidification, velocity of dendrite tip vs undercooling 
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4. Experimental investigations 

The experimental studies were conducted using the computer-aided thermal analysis 
described thoroughly in the paper [24]. Three compositions of the alloy (ASTM F-75) were 
examined, with varying carbon content. The composition of the alloys are presented in the 
Table 2. 

TABLE 2 
Chemical composition of the selected alloys 

Sample Composition (wt. %) 

C Mn Si Ni Cr Mo Fe w Co 

l and 2 0.09 0.06 o.os o.os 26.52 6.18 0.28 0.04 balance 

3 and 4 O.IS 0.06 0.06 0.06 26.28 6.11 0.04 0.04 balance 

5 and 6 0.27 0.07 0.066 0.068 27.26 6.67 0.57 0.04 balance 

The alloys were melted under an inert atmosphere of argon in an electrical induction 
furnace equipped with a high alumina crucible. In each experiment the load consisted of 
1000 gr of alloy. The molten metal was heated up to 1600°C. Alloy samples were poured 
into small alumina crucibles (3 cm of internal diameter and 4 cm of height) preheated to 
1000°C, equipped with thermocouples type B. The alumina crucibles were cooled under 
different conditions to achieve different cooling rates. A detailed diagram of the 
experimental set up for the acquisition of the temperature-time data was presented in our 
paper (24]. For the acquisition and managing of the data the commercial program 
Workbench of Strawberry Co. was used, being registered the signals with a frequency of 
1 Hz. Data were acquired and stored with accuracy of 0.1 °C. For each set of experimental 
conditions, the experiment was repeated three times for assuring reproducibility. 

The thermal investigations was complemented by the metallografic analysis and 
microanalysis. The solidified samples were sectioned transversely approximately 15 mm 
from the bottom of the sample. The samples were firstly polished and secondly etched with 
a specific chemical reactive (5 volumes of concentrated HCl and 1 volume of oxygenated 
water). The identification and quantification of the phases were made using an image 
analysis system, and the microanalysis was made using Energy Dispersive Spectrometry 
(EDS) and Scanning Electron Microscopy (SEM). 

The cooling curves recorded for each sample were smoothed using Fourier series and 
their derivatives were calculated numerically point by point using the Savi tzky- Go 1 ay 
algorithm [25]. Once the first derivative was obtained for each experiment, the 
corresponding zero curve was generated, employing commercial program Table Curve 2D 
of Jandel Scientific. Then, the latent heat of solidification was evaluated using procedure 
described in [24] and their values are given in Table 3. 
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TABLE 3 
Latent heat of solidification 

Sample C (wt.%) LiH(KJ/Kg) std. dev. 

I and 2 0.09 183,42 9.22 

3 and 4 O.IS 210.02 8.08 

5 and 6 0.27 230.48 5.65 

The microstructure and appearing phases were identified using an optical microscope. It 
was possible to observe the dendritic equiaxed structure of the grains, with inter- and 
intragranular carbides reach phases of the block morphology aligned in the interdendritic 
region. 

In the Table 4 the cooling rates and corresponding grain sizes, measured using the 
planimetrie method for each sample are presented. It can be observed that the grain size is 
a direct function of the cooling rate. No significant effect of the carbon content on grain size 
was observed. 

TABLE 4 
Cooling rates vs grain sizes and carbon content 

Sample 
C Cooling Rate Q Grain Size 

(wt. %) (°C/s) (nominal diameter, mm) 

I 0.09 7.90 4.5 

2 0.09 5.25 5.4 

3 0.18 9.06 4.3 

4 0.18 6.90 5.2 

5 0.27 12.55 3.9 

6 0.27 7.07 4.5 

In order to characterize the segregation of main alloying elements (Cr and Mo) a linear 
analysis across the dendritic and inter-dendritic regions by scanning microscope was made. 
Fig. 3. shows an example of such an analysis. 

The regions analyzed were selected to assure that the line analysis covers three 
secondary dendrite arms and their adjacent interdendritic regions (white line in the figure). 
The scanning electron microscope signal proportional to the Co, Cr, Mo, C along the line 
are also shown in Fig. 3. The partition coefficient values of constituent i were calculated 
according to the formula 

X1. 
k·=-·' 

I ' X2,; 
(34) 

where: 
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xi,i, x2,; - concentrations of constituent i in phase 1 and 2, respectively, 
The values of measured partition coefficients are presented in Table 5 for all samples, 

The results show that the partition coefficients are more sensitive on cooling rate than on 
carbon content. 

ii 
Co: 2642 

:VFS: 2616 

Cr: 2265 
VFS: 2327 

Mo: 716 
:VFS: 68 

35 li: 100 66.576um 

Fig, 3, Line analysis using SEM 

TABLE 5 
Partition coefficient values for Cr and Mo as a function of carbon content and cooling 

rate (dendritic region/interdendritic region) 

Sample C Cooling Rate Q 
kc, std, dev. kMo std, dev. 

(wt,%) (°C/s) 

l 0,09 7,90 0.863 O.Ol I 0,684 0.047 

2 0.09 5.25 0.850 0.016 0.615 0.017 

3 0.18 9.06 0.892 0.008 0.697 0.030 

4 0.18 6.90 0.858 0.025 0.653 0.043 

5 0.27 12.55 0.898 0.005 0.742 0.002 

6 0.27 7.07 0.887 0.029 0.687 0.024 

5. Numerical results 

The computer program utilizing the multi-component Rapp a z model and multi 
component Schei I model discussed in previous sections was developed to study 
solidification path of Co-Cr-Mo alloys. In order to simplify calculations, it is useful to carry 
out thermodynamic computations first. 
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It is also useful to approximate representation of the liquidus surface (polynomial 
approximation of the several data obtained from the solution of equilibrium equations 
(8)), eutectic valley floor equation (13), composition of solid phases in equilibrium 
with composition of eutectic valley floor liquid (in the form parameterized by the 
composition of liquid to enable simple evaluation of corresponding composition 
of solid in equilibrium with liquid - equilibrium chord). The results of our calculations 
are presented in Appendix 1. 

The form of the computer program is that it can be used for interpreting measurement 
results and can be incorporated in the standard macro enthalpy code, to be used for practical 
engineering purposes. The data required, behind all parameters characterizing alloy 
thermo-physical properties and equilibrium diagram, consist of heat rejected from the 
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Fig. 4. Model predictions for three samples: a) cooling curves (solid lines) vs model predictions (dashed lines), 
TL (xo) - liquidus temperature for the initial alloy composition; b) volume fractions evolution,/5- solid fraction, 
Jg- grain fraction,_{; - internal solid fraction of the grain,/£ - eutectic valley phase; c) solidification paths in 

ternary system Co-Cr-Mo 
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control volume, macro time step, composition of the alloy, and parameters characterizing 
the stage of the chilling process (i.e. initial solid fraction, etc.). 

The cooling curves for 3 samples and corresponding model predictions for the time 
evolution of temperature, fraction of phases, and corresponding solidification paths are 
presented in Fig. 4. 

The calculated and measured final grain sizes for all samples are given in Table 6. 

TABLE 6 
Measured and predicted grain sizes 

Sample Cooling Rate Q Measured grain size Predicted grain size Predicted fraction of 
(°C/s) (mm) (mm) eut. valley phase, % 

1 7.90 4.5 4.56 11.86 

2 5.25 5.4 5.23 11.80 

3 9.06 4.3 4.33 13.38 

4 6.90 5.2 4.81 13.27 

5 12.55 3.9 4.08 15.70 

6 7.07 4.5 4.76 15.35 

Partition coefficients, which could be compared with measured values, have been 
calculated using appropriate averaging procedure: the concentration of solute constituents 
in dendrite arms were averaged against solid volume attained at grains growth 
end as an integral average. The same procedure has been used for interdendritic 
phase and eutectic valley phase separately. The results are compared with measured 
coefficient values in Table 7. 

TABLE 7 
Measured partition coefficients vs predicted for the dendritic/interdendritic phase 

Sample 
Cooling Rate Q kc, std. kc, kMo std. kMo 

(°C/s) measured dev. predicted measured dev. predicted 

I 7.90 0.863 0.011 0.910 0.684 0.047 0.694 

2 5.25 0.850 0.016 0.909 0.615 0.017 0.682 

3 9.06 0.892 0.008 0.915 0.697 0.030 0.711 

4 6.90 0.858 0.025 0.910 0.653 0.043 0.698 

5 12.55 0.898 0.005 0.917 0.742 0.002 0.739 

6 7.07 0.887 0.029 0.915 0.687 0.024 0.705 

Unfortunately, lack of the more precise data concerning carbides formation, precluded 
us to incorporate exact analysis on their formation during solidification process. Therefore, 
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only redistribution of the carbon is traced, using constant value coal partition coefficient. It 
is believed, that constant enrichment of the liquid phase with carbon, at the final stage of 
solidification forms the conditions favoring formation of carbides in the interdendritic 
region and finally in the intergranular remnant liquid. In this way, the early formation of 
carbides (in interdendritic region) will be promoted by the high cooling rate by means of 
deeper segregation process and lower temperature. 

6. Conclusions 

The extended Rappaz model with classical power law dendrite tips kinetics enables 
prediction of microstructure formation in ASTM F-75 alloy. Thermodynamic represen 
tation of equilibrium ternary system Co-Cr-Mo, together with Schei! model for multi 
component system applied in solidification modeling just after formation of the dendritic 
grain structure allow to predict full solidification path. The model results have been verified 
using cooling curve analysis and metallografic investigations. It seems, that the model can 
be used in engineering applications for solidification simulations. Both, experimental and 
numerical results showed that: the grain structure is mainly influenced by the cooling rate, 
the partition coefficients exhibit significant dependency on the cooling rate (especially for 
molybdenum), the high cooling rate promotes early formation of fine intragranular 
carbides. The experimentally obtained values of latent heat of solidification exhibit 
important dependency on the initial carbon content, and cannot be ignored in solidification 
simulations. Further experimental investigations should be oriented on the nucleation and 
growth kinetics of carbides. It would result in complete description of the solidification 
modeling of cobalt based alloys of ASTM F-75 type. 
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Appendix 1 

The equation defining eutectic valley floor compositions (Eq. (13)): 

Xc,ev (XM0) = 0.4404 - 0.6065XMo + 11.3966 (xM0)2 - 98.9365 (x\10)3 + 278.6819 (XM0)
4 

- 290.7031 (xM0)
5. 

The equation defining temperature along eutectic valley floor (parametrized consistently 
with eutectic valley composition equation): 
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T'; (X Mo) = 1668.0 - 4O6.646xMo + 84.767 (xM0)2 + 1857.600 (XM0)3 + 14273.078 (xM0)4
- 45226.909 (XM0)5 [KJ. 

The equations defining composition of solid phase S1 (reach with Co) in equilibrium with
liquid of composition defined by the (xcr, xM0),v on eutectic valley:

X Mo.SI (X Mo) = O.O + O.4424XM0 - 0.6884 (XM0)2 + 2.4378 (XM0)3

X o.st (XMo.s1) = 0.3635 + O.5753xMo.Sl + 6.6946 (XMo.s1)2 - 299.020 (XM0,s1)3

+ 1058.189 (XMo.s1)4. 

The equations defining composition of solid phase S2 (reach with Cr) in equilibrium with
liquid of composition defined by the (xcr, xM0) on eutectic valley:

XMo.52 (X Mo) = O.O + 2.O93 lXMo - 44.2787 (XM0)2 + 392.7295 (XM0)3 - 1085.4963 (XM0)4
+ 955.0428 (XM0)5.

Xcr.52 (XMoS2} = 0.5609 + O.3785xMo,S2 - 7.7993 (xMo.52)2 + 22.9800 (XMo.52)3 - 28.7430 (XMo,52)4

+ 12.7715 (XMo,52)5, 

The polynomial approximation of liquidus surface close to the Co vertex in the Gibbs
triangle:

TL(x, y) = 1765.134 - 19.342x - 694.7OOy - 902.500x2 + 928.797xy + 665.5lly2 

+ 1369.O38x3
- 1001.603x2y - 916.515xy2

- 347.55Oy3
- 831.766x4

+ 299.860x3y + 169.649x2y2 - 5.873xy3 - 138.337y4, 

where:
x - Xcr, molar concentration of chromium, x E [0,1], 
y - xM0, molar concentration of molybdenum, y E [0,1], 

X, y must obey inequality X - Xcr,ev(y) = Xcr - Xcr,ev(XMo):::; o 
T - liquidus temperature for the composition (xcr, xM0), [K]. 
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