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Abstract: Water levels in freshwater resources have been descending daily as global
temperatures have risen and a coastal recession has occurred. The losses in these water basins
have a signi�cant in�uence on natural life. While drought is a global environmental issue, its
consequences may be seen in Turkey. This study looks at the loss of water areas in Burdur
Lake, one of Turkey’s major lakes, between 2010 and 2021. The areas were identi�ed using
supervised classi�cation, and the classi�cation process was carried out for 2010, 2013, 2016,
2019, and 2021, respectively. Furthermore, several drought detection metrics, such as land
surface temperature, soil moisture values, Normalized Vegetation Index (NDVI), Enhanced
Vegetation Index (EVI), Palmer Drought Severity Index (PDSI), and precipitation amounts,
have been evaluated for the study area between 2010 and 2021. The values of all drought
detection indicators were also evaluated monthly for each year of the study. The analysis
reveals abnormalities in all parameters, particularly in recent years, when compared to earlier
years. Water areas decreased by 36.48% as a result of the classi�cations, whereas sandy
areas increased by 89.85%. Again, the average values of various parameters used for drought
detection over the years were compared. As a result, the indicator parameters gave reliable
results as well as a means of monitoring the drought.

Keywords: ecology, land surface temperature, satellite imagery, lake monitoring, Earth
observation

1. Introduction

In recent years, global warming has been highlighted as the most serious ecological threat
to the Earth’s surface, with a direct negative impact on life in a variety of ecosystems
(Vezzulli et al., 2015; Abirami et al., 2021; Alfonso et al., 2021). Water losses along
coastlines and evaporation in water regions are exacerbated by an increase in surface
temperature compared to previous years (Woolway et al., 2020).
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Meteorological drought is a dynamic situation caused by a lack of precipitation that
naturally creates a hydrological imbalance in the landscape as a serious consequence (Tren-
berth et al., 2014; Pachauri et al., 2021). Drought also has negative impacts on agriculture,
the economy, ecosystems, and society (Daryanto et al., 2016; Abbasian et al., 2021).
Prolonged droughts lead to disasters such as death, famine, or mass migration in some
countries (Wilhite, 2005; Godfray et al., 2010). Droughts in actively �owing waterways,
such as groundwater and rivers, also harm energy output in these areas (van Loon, 2015).

Remote sensing methods are frequently used in watersheds to actively monitor drought
and take precautions (AghaKouchak et al., 2015; Varghese et al., 2018; Shorachi et al.,
2022). Especially in recent years, satellite images with high spatial and temporal resolution
have been used to precisely monitor changing water levels due to di�erent factors
(Rojas et al., 2011; Hu et al. 2019). In addition to drought monitoring, predictive modeling
studies were conducted to assess the e�ects of future droughts (Park et al., 2018; Feng et al.,
2019).

The United Nations has established Sustainable Development Goals (SDGs) that must
be achieved by 2030 in order to create a more livable world. A comprehensive assessment
of the impacts of climate change and the solutions that can be found is provided in the
13th SDG, "Climate Action". According to this report, drought will be a factor that could
force 700 million people to migrate by 2030. Within the framework of the SDGs, there
are remote sensing studies that demonstrate the impact of drought on water resources
(Bhaga et al., 2020). In this study, the utility of di�erent drought indices for detection
was investigated and demonstrated. As a result, they emphasized the e�ectiveness of
Landsat-8 and Sentinel-2 in drought detection using remote sensing methods. The active
use of remote sensing methods in alignment with the goal is appropriate for monitoring
and taking emergency actions.

Google Earth Engine (GEE) is commonly used for drought monitoring. [12]Ben-
zougagh et al. (2022) conducted a study on the water level in a dam over a seven-year period
and utilized the Normalized Di�erence Water Index (NDWI) to analyze water surfaces.
Their �ndings suggest that water withdrawals can be identi�ed using satellite images,
and these conclusions can be validated by various drought parameters. Another GEE
study emphasized the signi�cance of LST and NDVI data in drought monitoring (Zhao
et al., 2021). It is claimed that while assessing vegetation health, real-time monitoring
of NDVI data can provide information about the region’s dryness. [22]Ghazaryan et al.
(2020) examined drought in agricultural products over a 3-year period using various
parameters such as NDVI, LST, and Normalized Di�erence Moisture Index (NDMI).
They also supported their �ndings with Sentinel-1 Synthetic Aperture Radar backscatter
values and found that di�erent parameters respond di�erently to drought conditions.

Due to the fact that some high-resolution satellite images are only commercially
available, moderate-resolution and open-access satellite images, such as Landsat and
Sentinel, have also been productively utilized in various environmental studies (Pan et al.,
2020). The Landsat series of satellites have found applications in a variety of �elds,
including heat-sensitive sensing applications, land cover mapping, damage detection, and
land change analysis, owing to the multi-band system’s sensitivity to multiple spectral
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bands, such as thermal andmultispectral (Roy et al., 2015; Liu et al., 2018;Alam et al., 2020;
Shamsuzzoha et al., 2021). In this study, Landsat 4 and 5 satellite images were used for the
year 2010, while Landsat 8 satellite images were used for the years between 2013 and 2021.

One of the most commonly used methods in remote sensing studies is image classi�ca-
tion. Satellite image classi�cation is a powerful technique used for extracting information
from images (Abburu and Golla, 2015). Classi�cation in remote sensing can be cate-
gorized into two main types: unsupervised and supervised classi�cation. Unsupervised
classi�cation does not require prior knowledge of the region (Mohammady et al., 2015),
resulting in quicker results in terms of the implementation timeline. In contrast, supervised
classi�cation necessitates having class information in the satellite image beforehand
and de�ning training samples (Domadia and Zaveri, 2011), essentially teaching speci�c
information to the algorithm during the classi�cation process. It is commonly observed
that supervised classi�cation methods tend to yield higher overall accuracy compared to
unsupervised approaches (Yiqiang et al., 2010; Batur and Maktav, 2012; Sabuncu and
Sunar, 2017). In this study, the Maximum Likelihood approach, which is a supervised
classi�cation method, was employed, and the �ndings were examined in this context.

The Land Surface Temperature (LST) parameter is derived from the thermal bands of
satellite images and represents temperature values within a speci�c time frame in a given
region (Cristóbal et al., 2018). The most commonly used satellites for obtaining LST
through remote sensing methods are Landsat 8 and MODIS, using the corresponding
bands (Avdan and Jovanovska, 2016; Long et al. 2020). These satellites can also reveal
correlations between drought and LST in a particular region (Swain et al., 2011). In another
study conducted in Turkey, LST and vegetation indices were simultaneously assessed
around Salt Lake, revealing a consistent relationship between these values over the years
(Orhan et al., 2014). Water losses in large lakes can be associated with LST in general.

Another crucial parameter employed in drought analysis is soil moisture (Yan et al.,
2006). Soil moisture levels tend to be higher during seasons with heavy rainfall and lower
during periods of low rainfall, often referred to as dry seasons (Kar and Kumar, 2019). The
reduced soilmoisture resulting fromdrought conditions can lead to inadequate nourishment
of vegetation, causing it to dry out prematurely (Lian et al., 2020). Consequently, this
premature drying of plants may increase the risk of unexpected �res (Sazib et al.,
2021). Since the 1970s, remote sensing methods have been utilized for the detection
and assessment of soil moisture (Babaeian et al., 2019). Optical images, thermal images,
active microwave, and passive microwave data from remote sensing systems are employed
to determine soil moisture levels (Babaeian et al., 2019). All image-derived parameters
acquired from various satellites have advantages and disadvantages.

Speci�c indices are occasionally used to extract particular land surface properties
from satellite images. These indices are derived by processing the image bands collectively
and are commonly employed, especially in drought detection. The Normalized Di�erence
Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Palmer Drought Severity
Index (PDSI) are some of the signi�cant indices frequently utilized in drought detection,
yielding successful results (Zargar et al., 2011; Choi et al., 2013; Liu et al., 2020).
Previous research has demonstrated that years of drought in a region can be identi�ed by
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anomalies in NDVI and EVI measurements (Mbatha and Xulu, 2018; Qiu et al., 2022).
The methodology section provides detailed explanations of various indices. This study
employed NDVI, EVI, and PDSI, extensively used in the literature for drought detection,
and investigated their correlations.

Turkey, particularly in recent years, has experienced the tangible e�ects of global
climate change, with recurring phenomena such as diminishing water resources, droughts,
and �ooding disasters becoming regular occurrences (Turan, 2018). Drought initially
manifests its impact in the agricultural sector and then extends to negatively a�ect
other sectors, making early detection and intervention crucial in mitigating its adverse
consequences (Kapluhan, 2013). The water level of Lake Burdur, located in the study
region, has been steadily declining, and this can be attributed to both dams constructed on
the rivers that supply water to the lake and the region’s ongoing drought (Ayan and Cengil,
2022). In the context of remote sensing studies in the region, the water level between
2009 and 2019 was determined using the Normalized Di�erence Water Index (NDWI),
a spectral index derived from satellite band calculations. The results revealed a reduction
in the lake’s water area by 17 km2 between 2009 and 2019 (Kaya and Kaplan, 2021).
In another study conducted by Ta‡ and Akp�nar (2021), the conditions of the lakes in
the region were investigated using remote sensing and Geographic Information Systems
(GIS) methods. According to their �ndings, based on an analysis of satellite images taken
between 1985 and 2021, the water area of Lake Burdur has decreased by nearly 40%. In
[16]˙olak et al. (2022), the ecological consequences of drought in Lake Burdur were
examined, and the abundance of waterfowl in the Burdur Basin between 1969 and 2020
was discussed. The study observed that the total waterfowl abundance in 2005 had halved
by 2020 (˙olak et al., 2022).

This study aims to assess water losses in Lake Burdur over the past 10 years utilizing
satellite images and to examine their relationship with various parameters. The study
explores the correlation between average Land Surface Temperature (LST) and average
soil moisture levels from 2010 to 2021, as well as their relationship with changes in the
lake’s water area. What sets this study apart from previous works by Ta‡ and Akp�nar
(2021) and [34]Kaya and Kaplan (2021) is the calculation of water areas using a supervised
classi�cation approach, which provides a comprehensive assessment of the region’s land
cover. Furthermore, the study delves into the impacts of drought on the land surface,
utilizing Normalized Di�erence Vegetation Index (NDVI), Enhanced Vegetation Index
(EVI), and Palmer Drought Severity Index (PDSI), which are image indices derived
from di�erent satellite image bands. The study investigates their connection with drought
parameters and established values in the literature. The analysis includes the examination
of Land Surface Temperatures, soil moisture, NDVI, EVI, PDSI, precipitation values, and
changes in the lake area, with the results being discussed in detail.

This study’s contributions to the literature can be summarized as follows: (i) areal
loss detection accuracy in watersheds using supervised classi�cation, (ii) the relationship
between land surface temperatures, soil moisture, NDVI, EVI, PDSI, and precipitation
values with drought and water losses and the correlation between them.
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2. Study area and dataset

The study was conducted around Lake Burdur, located in the Mediterranean region
of Turkey. The Lake Burdur basin is often referred to as the ’lakes region’ (Ayan and
Cengil, 2022). Lake Burdur spans an area of 153 km2 and boasts a depth of 8.87 meters
(Wikipedia, 2022). The lake exhibits extremely high salinity as a result of alluvial deposits
(Yi§itba‡�o§lu and Abdullah, 2010). Due to its salinity and the presence of arsenic in the
water, Lake Burdur does not support a wide variety of �sh species. Nevertheless, it is
a pivotal habitat in the country, particularly for bird species (Yi§itba‡�o§lu and Abdullah,
2010). Figure 1 displays the geographic location of the study area on the map.

Fig. 1. The study area where Lake Burdur is located

The satellite images used in the study are di�erent for each parameter. Landsat 4-5 and
Landsat-8 satellite images, which are freely available from the United States Geological
Survey (USGS), were used for supervised classi�cation. The satellite images utilized
were taken in 2010, 2013, 2016, 2019, and 2021, respectively. Since Landsat-8 was
not yet available in 2010, only Landsat 4-5 satellite imagery for 2010 was used. The
satellite images used for supervised classi�cation are given in Figure 2. Table 1 show the
bands and wavelength value ranges in the electromagnetic spectrum of the Landsat 4-5
and Landsat 8 satellites, respectively. Moreover, Landsat satellite images were used to
calculate NDVI and EVI values. NDVI and EVI are indices frequently used in vegetation
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health monitoring. Since drought directly a�ects vegetation health, NDVI and EVI values
were analyzed. Between 2010 and 2021, annual average NDVI and EVI values in the
study area were calculated and utilized for the analysis.

Fig. 2. Satellite images used in the study

As shown in Table 1, Landsat 8 features a greater number of bands compared to
Landsat 4-5. For the supervised classi�cation process in this study, the Red, Green, Blue,
and Near-Infrared bands, which are common to both satellites, were utilized. In Landsat
8, an additional band was included for coastal and aerosol studies. Moreover, a band for
cirrus cloud detection is also present. Landsat 8 also boasts a panchromatic band with
a spatial resolution of 15 meters. The scene size of both satellites is equivalent, allowing
for their joint analysis. Image acquisition dates and process levels are given in Table 2.

LST values were determined using the MODIS satellite. The National Aeronautics
and Space Administration (NASA) launched the MODIS satellite in 1999 and has been
providing LST values to the public free of charge since 2000 (Wan, 2008). The MODIS
satellite, equipped with 36 di�erent spectral bands, is employed in a wide range of
applications, including temperature analysis, agricultural applications, glacier mapping,
and disaster monitoring (Hall et al., 2001; Xiao et al., 2006; Vancutsem et al., 2010;
Sun et al., 2016). One of the advantages of the MODIS satellite over other thermal band
satellites is its ability to collect temperature data from the same location every 8 days,
o�ering su�cient temporal resolution for the study’s requirements. Another reason for
choosing the MODIS satellite for LST detection is that Landsat 8, which features a thermal
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Table 1. Summary of scale factor determinations for tidal gravimeters in the framework of the EPOS-PL and
EPOS-PL+ projects

Landsat 4-5 Wavelength (� m) Spatial resolution (m)

Band 1 � Blue 0.45�0.52 30

Band 2 � Green 0.52�0.60 30

Band 3 � Red 0.63�0.69 30

Band 4 � Near-Infrared 0.76�0.90 30

Band 5 � Shortwave infrared portions 1 1.55�1.75 30

Band 6 � Thermal 10.40�12.50 120

Band 7 � Shortwave infrared portions 2 2.08�2.35 30

Landsat 8 Wavelength (� m) Spatial resolution (m)

Band 1 � Coastal aerosol 0.43�0.45 30

Band 2 � Blue 0.45�0.51 30

Band 3 � Green 0.53�0.59 30

Band 4 � Red 0.64�0.67 30

Band 5 � Near-Infrared 0.85�0.88 30

Band 6 � Shortwave infrared portions 1 1.57�1.65 30

Band 7 � Shortwave infrared portions 2 2.11�2.29 30

Band 8 � Panchromatic 0.50�0.68 15

Band 9 � Cirrus 1.36�1.38 30

Band 10 � Thermal infrared sensor 10.6�11.19 100

Band 11 � Thermal infrared sensor 11.50�12.51 100

Table 2. Image acquisition dates and process levels

Satellite Image acquisition date Process level

Landsat 4-5 03.10.2010 C1 � Level 1

Landsat 8 20.05.2013 C1 � Level 1

Landsat 8 22.05.2016 C1 � Level 1

Landsat 8 14.05.2019 C1 � Level 1

Landsat 8 19.05.2021 C1 � Level 1

band and higher spatial resolution, was launched in 2013, making data collection for the
years 2010, 2011, and 2012 impossible. Average LST values were gathered in a study area
encompassing Lake Burdur over a span of 12 years, beginning in 2010 and concluding in
2021. Additionally, PDSI values were obtained from the TerraClimate dataset, derived
from the MODIS satellite (Abatzoglou et al., 2018). The study area was monitored at
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short intervals with frequent transitions using the MODIS satellite, known for its high
temporal resolution, and PDSI values were computed.

Soil moisture data was collected through collaboration with NASA’s Soil Moisture
and Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) satellites, in
partnership with the United States Department of Agriculture. The SMOS satellite, the
�rst of its kind, was launched to provide explicit soil moisture data (Kerr et al., 2010).
With data provided by satellites at 3-day intervals, they o�er a high temporal resolution
and play a signi�cant role in applications that demand �eld monitoring (O’Neill et al.,
2010). Soil moisture values were extracted from images captured between 2010 and 2021
in the vicinity of Lake Burdur for this study.

3. Methodology

The work�ow diagram followed in the study is given in Figure 3.
When the work�ow diagram is examined in outline, it is seen that it consists of four

sections. These are �Data preparation�, �Image process�, �Analysis of drought parameters�
and �Results� respectively. The reason for choosing the study area is discussed in the
"Study area and dataset" section. To examine the water loss around Lake Burdur’s shore,
satellite images were classi�ed. The Maximum Likelihood method was employed for
classi�cation. The percentage change in land classes was computed as an outcome of
supervised classi�cation. Over a span of 12 years, six di�erent parameters were scrutinized.
These parameters were individually analyzed on a monthly basis for each year. The results
of these various parameters were subsequently compared using graphical representations.
The correlations between the parameters and their relationships to one another were
statistically examined using the Spearman rank correlation coe�cient method. Finally,
the consistency of the results was assessed through Principal Component Analysis (PCA).

The classi�cation method used in this study is the Maximum Likelihood method. A
pixel is assigned to a certain class in the Maximum Likelihood technique based on its
mean and covariance in the multispectral distribution (Sisodia et al., 2014). Maximum
Likelihood classi�cation is widely used in remote sensing applications due to the minimum
probability of miscalculation (Pal and Mather, 2003; Kuching, 2007).

The classi�cation process was carried out with the Maximum Likelihood approach
for �ve di�erent years within the scope of the study: 2010, 2013, 2015, 2019, and 2021.
For the classi�cation process, �ve di�erent classes were selected in the study area. The
selected classes are Water, Agriculture, Urban Area, Bare Soil, and Sandy, respectively.
The classi�cation assessed the changes in the areas of the classes in satellite images
according to di�erent years. As a result, the association between changes in water areas
and changes in agricultural and sandy areas throughout time was investigated.

The Land Surface Temperature (LST) was calculated using the Google Earth Engine
(GEE) platform. GEE provides access to satellite imagery and other data while operating in
the cloud, facilitating the processing of large datasets (Kumar and Mutanga, 2018). Due to
its continually improving technology and the continuous in�ux of new data, GEE has found
applications in various �elds (Mutanga and Kumar, 2019). The LST was derived from
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Fig. 3. Work�ow of the study
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MODIS images, a medium-resolution observation satellite. Each pixel value in theMODIS
satellite image represents an 8-day average of land surface temperatures (Wan et al., 2021),
resulting in high temporal resolution data suitable for continuous observations. Over a pe-
riod of 12 years, spanning from 2010 to 2021, average temperature values in the study area
were recorded for each year, and their relationships with other parameters were analyzed.

The GEE platform was also used to determine soil moisture values. With the soil
moisture data set available in GEE, the number of studies in this �eld has increased
(Sazib et al., 2018). As in the case of land surface temperature data, surface soil moisture
was extracted for 12 years between 2010 and 2021 with SMOS and SMAP data around
Lake Burdur. The soil moisture values acquired are annual average values, and the
relationship with other parameters was examined within the scope of the study.

Drought can be directly related to the state of vegetation on the ground surface (Tucker
and Choudhury, 1987). For this reason, it is common to monitor drought with indices
derived from bands in satellite imagery (Karnieli et al., 2010; Javed et al., 2021). The
NDVI formula is as follows:

NDVI =
NIR � RED
NIR + RED

; (1)

where NIR and RED represent the quantities of near-infrared and red light re�ected by
vegetation and detected by satellite sensors, respectively. NDVI values range from +1 to
�1, with negative values indicating a reduction in vegetation density (Myneni et al., 1995).

EVI o�ers increased sensitivity to regions with high biomass by minimizing soil
and atmospheric interferences (Jiang et al., 2008). For this reason, it has been widely
employed in drought analysis over the years (Huang et al., 2014; Xie et al., 2021). In areas
with signi�cant plant diversity where NDVI may not provide precise results, EVI is used
for more accurate veri�cation (Shahzaman et al., 2021). The EVI formula is as follows:

EVI = G �
NIR � RED

„L + NIR + C1 � RED �C2 � BLUE”
; (2)

where L is the canopy background factor, while C1 and C2 are atmospheric correction
factors. G is a gain factor (Shahzaman et al., 2021). According to o�cial data, if the EVI
value is between 0.2 and 0.08, it is assumed that there is drought, while if it is greater
than 0.2, it is assumed that there is healthy vegetation (Liu and Huete, 1995). Within the
scope of the study, Landsat satellite images taken regularly every month for a period of 12
years were used to determine NDVI and EVI values. PDSI is among the earliest indices to
e�ectively gauge drought severity across various climates (Palmer, 1965). PDSI values
span from �4 to +4, with �4 indicating extreme drought and +4 representing extremely
wet land conditions (Huang et al., 2011). PDSI takes into account not only soil and water
content but also additional factors such as temperature and precipitation. Since the advent
of remote sensing technologies, PDSI has been e�ectively employed in conjunction with
other indices to assess drought severity (Bhaga et al., 2020; Mu et al., 2013). In the context
of this study, the average PDSI values over 12 years were calculated, and the changes in
water areas and their relationships with other parameters were examined in this process.
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�Precipitation data� is collected from the Climate Hazards Center at UC Santa
Barbara, which provides access to available datasets from the GEE platform. The center
regularly o�ers global precipitation data and has been monitoring droughts since 1981
(Funk et al., 2014).

4. Results

Figure 4 shows the classi�cation results of satellite images for the years 2010, 2013, 2015,
2019, and 2021. In addition, classi�cation accuracies by years are given in Table 3. Table 4
shows the areas of all classes over the years.

Fig. 4. Result images of classi�cations

Table 3. Overall accuracies and Kappa Coe�cients of the classi�cations

Year Overall Accuracy (%) Kappa Coe�cient

2010 79.31 0.74

2013 90.16 0.87

2016 90 0.87

2019 90 0.86

2021 89.65 0.82

In Figure 4, the urban area appears on the coastline in certain years due to the similarity
in pixel values between the sandy class and the urban area class. Both classes exhibit
comparable re�ectance under incoming sunlight, leading to potential confusion. When
analyzing the land class areas in Table 4 over di�erent years, there is an 11.12% decrease in
water areas between 2010 and 2013, a 9.59% decrease between 2013 and 2016, a 14.08%
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Table 4. The area of the classes depends on the years

Year Water (ha) Agriculture (ha) Urban Area (ha) Bare Soil (ha) Sandy (ha)

2010 4512.43 2304.43 3996.93 3369.57 1537.96

2013 4010.54 3340.23 1197.05 6267.27 2031.13

2016 3659.61 2856.02 2164.10 6637.18 1709.54

2019 3144.45 3443.67 1846.68 5991.84 2384.85

2021 2866.46 2937.75 1820.17 6208.66 2919.86

decrease between 2016 and 2019, and an 8.84% decrease between 2019 and 2021. Overall,
the total water area has decreased by 36.48% from 2010 to 2021. In other signi�cant
classes for drought detection, sandy areas have increased by 89.85% between 2010 and
2021, while agricultural areas have grown by 27.48% during the same period. In the
determination of the annual average LST between 2010-2021 in the same study area, the
average temperature maps are given in Figure 5.

The change in water areas on the northern coast of Lake Burdur, which is our study
area, is visible in the annual average temperature maps shown in Figure 5, as is the
temperature increase in the sandy area in the same region in the following years. Table 5
shows the annual averages of land surface temperature, soil moisture, NDVI, EVI, PDSI,
and precipitation around Lake Burdur to analyze the drought data between 2010 and 2021,
respectively.

Table 5. Average values of the data used for drought around Lake Burdur between 2010 and 2021

Year

Average
Land Surface
Temperature

(�C)

Average Land
Soil Moisture

(m3/m3”
NDVI EVI PDSI Precipitation

(mm)

2010 22.3717 9.7041 0.2272 0.2144 0.6563 1.8173

2011 20.0343 8.1819 0.2406 0.2507 0.7178 1.4518

2012 21.8633 10.5458 0.2216 0.2563 0.7656 1.7979

2013 22.0000 10.3182 0.2462 0.2554 0.5732 1.4052

2014 21.6475 11.0446 0.2228 0.2552 0.4593 1.6155

2015 20.7773 8.1497 0.2315 0.2590 0.8883 1.5527

2016 22.6028 8.7311 0.2194 0.2485 0.1312 1.2663

2017 21.6526 10.3184 0.2357 0.2471 0.3278 1.2749

2018 21.7186 10.3428 0.2323 0.2597 0.3303 1.7578

2019 22.2619 10.1354 0.2125 0.2527 0.4297 1.4237

2020 22.4125 8.7029 0.2298 0.2526 0.2717 1.2612

2021 22.7364 6.7875 0.2025 0.2434 0.1291 1.3041



Drought monitoring in Burdur Lake, Turkey using multi-sensor remote sensing data sets 13

Fig. 5. Map of average land surface temperature values around Lake Burdur between 2010�2021

When the average yearly temperature data were examined, it was discovered that the
majority of the highest LST averages were determined in the last 5 years. The highest
average temperature value was obtained in 2021 at 22.7364. The lowest average soil
moisture value was obtained in 2021 with 6.7875 mm. Looking at the annual average
NDVI and EVI values, the lowest NDVI value was 0.2025 in 2021, while the lowest EVI
value was 0.2144 in 2010. The lowest EVI value after 2010 was 0.2434 in 2021. Looking
at the PDSI values, the lowest PDSI values were obtained in 2016 and 2021. The highest
PDSI values were obtained in the period between 2010 and 2015. The variation of the
obtained average land surface temperature values according to the months is given in
Figure 6.
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Fig. 6. Average land surface temperature values according to the months around Lake Burdur

When comparing the graphs in Figure 6 with the data in Table 5, it becomes evident
that there is a consistent monthly increase in LST values over time. An examination of the
monthly data from the annual average LST values presented in Figure 6 reveals that LST
has consistently remained at or above approximately 10�C in December, corresponding to
the winter months, over the last six years. In prior years, it was observed to be at lower
LST values. Furthermore, upon analyzing the graphs, it becomes apparent that rapid
temperature �uctuations occur more frequently, particularly in the years 2015 and beyond.
The graphs showing the changes in average land soil moisture values during the year are
given in Figure 7.

In the graphs of monthly soil moisture values in Figure 7, it was determined that soil
moisture values started to increase after October, especially in the 6 years after 2016. In
previous years, it was determined that soil moisture increased in earlier months. The graph
in which annual the average land surface temperature and annual average soil moisture
values in the study region are analyzed together is given in Figure 8.

The graph in Figure 8 shows that temperature values and soil moisture values have
a harmonious correlation with each other and that they have increased and decreased
inversely in recent years. In 2018 and the following years, LST values increase while SM
values decrease as expected. Figure 9 and Figure 10 show the monthly changes in NDVI
and EVI values during the year.

Especially when the monthly changes in NDVI values are analyzed, sudden decreases
and irregular changes in NDVI values were observed in some months as of 2013. On the
other hand, more consistent changes in EVI values were observed within months. However,
especially in 2010-2011 and 2012, more intense EVI values in the spring months were
detected in the relevant analyzes. Figure 11 shows the monthly changes in PDSI values
during the year.
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Fig. 7. Average land soil moisture values according to the months around Lake Burdur

Fig. 8. Annual average temperature values and annual average soil moisture around Lake Burdur

While the PDSI values in Figure 11 do not exhibit signi�cant absolute changes, this
is due to the relatively small size of the study region. However, it’s important to note
that the absolute extreme values for PDSI fall within the range of +4 to -4. Nonetheless,
when examining relative comparisons over the years, these o�er substantial insights for
assessing drought in the study area. An analysis of the monthly PDSI graphs clearly
reveals a decrease in values during the year 2016. The graph in Figure 12 shows the
monthly change in the amount of precipitation in the study area.



16 Ahmet Batuhan Polat, Ozgun Akcay, Fazli Kontas

Fig. 9. Monthly changes of the obtained NDVI values over the years around Lake Burdur

Fig. 10. Monthly changes of the obtained EVI values over the years around Lake Burdur
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Fig. 11. Monthly changes in PDSI values in the period between 2010-2021 around Lake Burdur

When the precipitation graphs were analyzed, it was determined that the graphs with
the lowest precipitation were obtained in the last 6-year period. Figure 13 shows the graph
where NDVI, EVI, PDSI and precipitation data are analyzed together according to years.

In Figure 13, the correlation between PDSI and precipitation data is particularly
noteworthy and suggests that two di�erent parameters can be evaluated together. The
graph clearly shows that the parameters used in drought analysis have decreased since
2015. Figure 14. shows the water areas obtained as a result of the classi�cations made in
Lake Burdur, the study area.

Figure 14 depicts a notable decrease in water areas in the years 2013 and 2019. Upon
examining the parameters provided in Table 5, it becomes evident that the amount of
precipitation decreased signi�cantly, particularly during the periods of 2012�2013 and
2018-2019. Similarly, it has been observed that LST values have increased compared
to previous years, which has reasoned to the alteration in water areas. To determine
the correlation between the drought indicators and indices is important to de�ne the
implications of drought for the region. In statistics, some methods such as Spearman,
Pearson, and Kendall are utilized to compute the pairwise correlation. Speci�cally, the
Spearman rank correlation coe�cient demonstrates its superiority over the other methods
since it does not need approximate normal distributions of the indicators (Eq. 3) (Bonett
and Wrigth, 2000). In Eq. 3, � indicates Spearman’s rank correlation coe�cient while di
and n represent the di�erence between the two ranks of each observation and the number
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Fig. 12. Monthly changes in precipitation values in the period between 2010�2021 around Lake Burdur

Fig. 13. Annual average of NDVI, EVI, PDSI and precipitation values in the period between 2010�2021
around Lake Burdur
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Fig. 14. Areas of water surfaces in Lake Burdur according to years

of observations, respectively. The correlation matrix calculated using the Spearman
rank correlation coe�cient can be seen in Figure 15. Value of �1.0 indicates a negative
correlation, while +1.0 points out a positive correlation between the parameters. When
the matrix was examined, surface temperature and soil moisture specify a considerable
negative correlation. On the other hand, precipitation and soil moisture present a notable
positive correlation:

� = 1 �
6

Í
d2

i

n
�
n2 � 1

� : (3)

Fig. 15. Visualization of the correlation matrix for the drought parameters
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However, the values of the �ve parameters might contain repetition and inconsistencies
to conclude reasonable results about the drought. To reduce data dimension and represent
it more abstractly, principal component analysis was applied (Groth et al., 2013). First, the
principal components having low eigenvalues were eliminated, and then two signi�cant
principal components PC1 and PC2 with 52.4% and 23.1% rational signi�cance values,
respectively which can represent 76% of the information were utilized. The eigenvalues � 1
and � 2 of PC1 and PC2 are 0.15334 and 0.06748 respectively. Furthermore, the �nal two-
dimensional dataset was formed using eigenvectors of orthogonal principal components
and the drought dataset. When the annual changes in the �nal two-dimensional dataset
were analyzed, an irregularity was explicitly observed, particularly after 2016 (Fig. 16).
The �gure shows that the second principal component PC2 got negative values in 2016
and after that. It is considered that the abrupt change in 2016 can be one of the indicators
of the drought in the lake region.

Fig. 16. The temporal distribution of the principal component features

5. Summary and conclusions

The land classi�cations indicate a signi�cant decrease in water areas. The increase in
agricultural land and the substantial decrease in water levels over the years suggest that
lake water is frequently utilized for agricultural irrigation. Furthermore, the rise in sandy
areas over the years is a result of the proliferation of muddy areas caused by the recession
of the water level.

When assessing classi�cation accuracies, it becomes apparent that the overall classi�-
cation accuracy was lower only for the year 2010 compared to other years. This discrepancy
can be attributed to the fact that the image for 2010 was acquired using Landsat 4-5
satellites, an earlier series of Landsat satellites, and the reduced spectral resolution of
Landsat 4-5 as compared to Landsat 8 contributed to the decline in classi�cation accuracy.
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The �ndings align consistently with prior remote sensing investigations conducted in
the respective region in previous years. It has also been revealed that the use of supervised
classi�cation algorithms for detecting decreasing areas yields results that are as consistent
as those obtained using water indices. When evaluating land surface temperatures over the
past 12 years, it becomes evident that the colors representing warmer values in the color
palette have intensi�ed in recent years, especially to the north of Burdur Lake, which
encompasses our study area. This indicates that changes in water areas may be linked to
land surface temperature maps generated by satellites with thermal bands, despite their
limited spatial resolution. When we examine individual years for LST, the discrepancies
in seasonal temperature �uctuations become apparent. As the image dates approach the
present, it is observed that LST is warmer at the beginning of winter and cooler in the
spring months. This phenomenon is believed to result in accelerated evaporation during
the fall, following precipitation, as well as in the associated lake, which does not receive
su�cient replenishment, thereby contributing to the accelerated reduction of water areas.

When examining soil moisture, the second parameter under evaluation in the study,
it becomes evident that the average annual values have remained low in recent years.
This suggests that the soil is not receiving su�cient moisture, and areas that were once
adequately moist are now experiencing a sudden drought. In the course of monthly analysis
of soil moisture values over time, it was observed that soil moisture began to increase
notably after the mid-autumn months in the early 2010s with the onset of precipitation.
However, in recent years, such an increase has occurred in a very brief timeframe before
the winter season. This outcome indicates soil drought due to either the insu�cient
precipitation in the region or the consumption of water from the dam and groundwater, as
mentioned in various sources in the literature, through drilling. When considering soil
moisture and land surface temperatures together, it is evident that some losses in soil
moisture coincide with periods of rising temperatures, as anticipated.

The NDVI and EVI values, which were analyzed as part of the study to enhance
vegetation monitoring, did not exhibit signi�cant variations based on the study area’s size.
However, an examination of yearly values reveals that NDVI values have been lower than
in previous years in most cases, particularly after 2015, and these decreases are correlated
with the region’s drought. In contrast, the lowest EVI values were recorded in 2010 and
2021, indicating a notable threat to vegetation health in the region, particularly in the �nal
year of data collection.

PDSI values, similar to the other parameters, have experienced a signi�cant decline,
especially after 2015. When examining PDSI drought values, it is mentioned in the
literature that values ranging between 0.5 and 0.99 are generally considered indicative of
wet conditions and pose no signi�cant danger, whereas values between 0.49 and �0.99
are viewed as approaching normal conditions. Reviewing the changes in the region, it
becomes apparent that there have been years with very low PDSI values since 2015. In
accordance with the PDSI ranges, this decline serves as a warning for the upcoming years,
signifying that there is very little time remaining before reaching the critical level.

Lastly, when analyzing precipitation levels in the study region, it becomes apparent
that the signi�cant rainfall, especially during the autumn months, has decreased over the
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past six years, causing drought. Moreover, the synchronized �uctuations of PDSI and
precipitation levels in the graphical representation illustrate the close correlation between
these two parameters and underscore their signi�cance in drought detection. Compared
to various GEE studies, it is notable that Benzougagh et al. (2022) focused on water level
monitoring with GEE using NDWI in their research. However, their examination was
limited to water areas, and the impact of other land classes in the region on drought was
not assessed. In Zhao et al. (2021), the advantages of LST and NDVI data in drought
monitoring were discussed, but their e�ects on water reservoirs were not investigated. The
study only presented results from a large-scale worldwide analysis. Ghazaryan et al. (2020)
demonstrated that di�erent drought parameters respond di�erently to drought conditions,
but their e�ects, especially in water areas, were not explored in the study. Their research
focused solely on agricultural drought, and the underlying causes were not fully revealed.

6. Conclusions

The scope of this study is aimed at determining the changes in water areas in Lake
Burdur between 2010 and 2021 and correlating these changes with �ve drought detection
parameters: land surface temperature, soil moisture, NDVI, EVI, PDSI, and precipitation
amounts. Landsat images acquired for the years 2010, 2013, 2015, 2019, and 2021 were
classi�ed, and both area losses and increases in di�erent land cover classes were identi�ed.
Subsequently, yearly average land surface temperatures, soil moisture, NDVI, EVI, PDSI,
and precipitation amounts were calculated for the 12-year period from 2010 to 2021
around Lake Burdur. Additionally, monthly variations in these parameters were examined
within the study’s framework.

When considering all of the �ndings, signi�cant variations in the parameters used for
drought monitoring, especially from 2015 onwards, become apparent. Furthermore, an
analysis of land use indicated that water withdrawals supported these �ndings. This study
highlights the advantages of the system implemented on the GEE platform, which can be
applied to various locations for data acquisition and analysis. GEE and remote sensing
techniques provide rapid results and early warning systems for monitoring various natural
disasters, such as drought, thanks to the ever-expanding and updated datasets. This allows
for studies covering diverse terrain dynamics at the end-user level.

Lakes, as closed basins, require careful management to maintain water levels. Small
river tributaries and precipitation play a crucial role in stabilizing water levels. Additionally,
lakes in agricultural regions are often utilized for irrigation. Over time, if more water
is used for irrigation than the lake can replenish, the region faces drought, leading to
a decline in the lake’s water level. If the water level is no longer ecologically sustainable,
it can lead to the extinction of the lake’s ecosystem. Therefore, monitoring water levels,
especially in closed basin lakes, and assessing the parameters that in�uence these levels
are of great signi�cance.

This study demonstrates that decreases in water levels and subsequent area losses can
be correlated and used in conjunction with parameters like soil moisture, LST, NDVI,
EVI, PDSI, and precipitation. It also emphasizes that supervised classi�cation provides
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valuable validation data for identifying areas of decline. If no measures are taken, it
is anticipated that the lake will experience a level of drought that could devastate its
ecosystems. Therefore, it is essential to record various parameters like PDSI, NDVI,
and precipitation amounts, which are scienti�cally proven for drought detection, for
each period and to promptly monitor drought in the region. Under the UN-SDG, active
monitoring through satellite imagery plays a critical role in disaster monitoring. Today,
with changing climate conditions, the risk of natural disasters is escalating exponentially
and poses a signi�cant threat to humanity. Hence, rapid analysis on cloud platforms like
GEE, as demonstrated in this study, can help mitigate the impacts of predictable disasters.
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