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Abstract—Using appropriate signal processing tools to analyze 

time series data accurately is essential for correctly interpreting the 

underlying processes. Commonly employed methods include 

kernel-based transforms that utilize base functions and 

modifications to depict time series data. This paper refers to the 

analysis of audio data using two such transforms: the Fourier 

transform and the wavelet transform, both based on assumptions 

regarding the signal's linearity and stationarity. However, in audio 

engineering, these assumptions often do not hold as the statistical 

characteristics of most audio signals vary over time, making them 

unsuitable for treatment as outputs from a Linear Time-Invariant 

(LTI) system. Consequently, more recent methods have shifted 

towards breaking down signals into various modes in an adaptive, 

data-specific manner, potentially offering benefits over traditional 

kernel-based methods. Techniques like empirical mode 

decomposition and Holo-Hilbert Spectral Analysis are examples of 

this. The effectiveness of these methods was tested through 

simulations using speech signals for both kernel-based and 

adaptive decomposition methods, demonstrating that these 

adaptive methods are effective for analyzing audio data that is both 

nonstationary and an output of the nonlinear system. 
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I. INTRODUCTION 

IME-FREQUENCY analysis is a crucial tool for data 

processing, beneficial for analyzing signals and extracting 

significant information. This technique breaks down a signal 

into vital time-varying features that reveal the system's inherent 

behavior, help set parameters for system modeling, or verify the 

accuracy of an existing model. Fourier spectral analysis has 

traditionally been a staple for mapping overall energy-frequency 

distributions. The spectrogram, which applies Fourier spectral 

analysis within a constrained time window, is fundamental to 

achieving time-frequency distribution. The Fourier transform 

applies under general conditions [1]; however, Fourier spectral 

analysis yields meaningful results only when the system is linear 

and the data is strictly periodic or stationary [2]. Typically, the 

signals used for analysis, whether derived from physical 

measurements or computational models, tend to be 

nonstationary, represent nonlinear processes, and the total signal 

span is too short for proper analysis [2]. The stationarity 

requirement is, for all 𝑡:  
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𝐸(|𝑋(𝑡)2|) < ∞,

𝐸(|𝑋(𝑡)|) = 𝑚,

𝐶(𝑋(𝑡1), 𝑋(𝑡2)) = 𝐶(𝑋(𝑡1 + 𝜏), 𝑋(𝑡2 + 𝜏)) = 𝐶(𝑡1 − 𝑡2)

(1) 

in which 𝐸(∙)  is the expected value defined as an ensemble 

average and 𝐶(∙)  is a covariance function. A less rigorous 

definition is for piecewise stationarity when a signal is 

stationary within a limited time span [2]. In practical scenarios, 

real-world data, such as audio signals, is continuously collected 

and analyzed over a finite and limited duration. As a result, it is 

inherently nonstationary [3]. Nonlinearity is a fundamental 

characteristic of many natural phenomena, often further 

complicated by numerical models, errors, and imperfections in 

measurement tools, detectors, and data acquisition systems. 

While linear systems can approximate real-world processes, 

these complexities may render the resulting data nonlinear. 

Consequently, Fourier-based spectral analysis methods have 

limited applicability and can produce misleading results when 

they approximate nonstationary and nonlinear data with simpler 

models. This limitation stems from two main issues. First, the 

Fourier spectrum requires numerous additional harmonic 

components to simulate nonstationary data that varies globally. 

While these may be mathematically valid, they often lack 

physical relevance. Second, Fourier spectral analysis relies on a 

linear combination of trigonometric functions or kernels [2]. 

Thus, if the data's form deviates from simple sine or cosine 

waves, the resulting spectrum will include harmonics that do not 

necessarily correspond to the signal's energy-frequency 

distribution. 

Audio data, such as music or speech, changes over time and 

thus cannot be described by a mathematical expression or 

accurately represented by a linear system. As a result, modern 

methods for analyzing audio data often involve breaking down 

a signal into various modes that adapt to the data, offering 

potential improvements over traditional kernel-based 

transforms. One such technique is empirical mode 

decomposition (EMD) [2], which has proven effective across 

numerous signal processing applications. EMD-based 

approaches decompose a signal into intrinsic mode functions 

(IMFs), derived by identifying local extremes and creating 

upper and lower envelopes. These IMFs, which can have well-

defined Hilbert transforms, allow for the computation of 

instantaneous frequencies, facilitating the precise localization of 

events within the signal in both time and frequency domains [2]. 
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Despite its effectiveness, the standard EMD method has some 

drawbacks, such as mode-mixing, noise sensitivity, and data 

sampling issues. However, modifications to the EMD method 

have been implemented to address these issues. 

II. REVIEW OF NONSTATIONARY DATA PROCESSING METHODS 

Methods for processing nonstationary data generally fall into 

kernel-based and data-dependent (adaptive) categories. Kernel-

based methods utilize a predetermined basis, such as 

trigonometric functions in Fourier analysis or specific wavelet 

functions in wavelet analysis, and operate under the assumption 

that the signal being analyzed comprises these basis functions. 

On the other hand, data-dependent methods break down a signal 

into a collection of intrinsic mode functions. This 

decomposition is achieved by directly extracting the energy 

linked to different intrinsic time scales without presupposing the 

signal's characteristics. 

A. The spectrogram 

The classical short-time Fourier transform (STFT) captures a 

time-varying signal representation by applying a finite window 

length to localize the signal in time, followed by performing a 

Fourier transform on each time segment [4]. STFT can be 

expressed as: 

STFT{𝑥(𝑡)}(𝑡, 𝜔) = ∫ 𝑥(𝑡)

∞

−∞

ℎ∗(𝑡 − 𝜏)𝑒−𝑖𝜔𝑡 , (2) 

where ℎ∗ is a specific window function. Because it is based on 

Fourier analysis with a fixed window size, the data is assumed 

to be piecewise stationary, leading to a consistent time-

frequency resolution throughout the analysis. Accurately 

localizing an event in time requires a narrow window width, 

which leads to diminished frequency resolution and vice-versa. 

B. The wavelet analysis 

The wavelet transform [5] creates a signal representation 
using a variable time window that adjusts the scale of the basic 
wavelet function, thereby providing a multiscale representation 
of the signal. The wavelet transform is generally defined as 
follows: 

W(𝑠, 𝑢) = ∫ 𝑥(𝑡)
1

√𝑠

∞

−∞

𝜓∗ (
𝑡 − 𝑢

𝑠
), (3) 

in which 𝜓∗(∙) is the basic wavelet function that satisfies certain 

general conditions, namely, it is orthonormal, and its mean 

value is zero, 𝑢  is a translation of the origin (which gives a 

temporal time location of an event), and 1 √𝑠⁄  gives a frequency 

scale [2]. Wavelet analysis offers uniform resolution across all 

scales, which is a significant benefit compared to the STFT. The 

time-frequency resolution grids of both the wavelet and STFT 

transforms are illustrated in Fig. 1 below. 

 

Fig. 1. Time-frequency resolution grid for STFT (left panel) and wavelet 

transform (right panel). 

C. Empirical mode decomposition 

Empirical mode decomposition is an adaptive method for 

time-frequency analysis that breaks down signals into intrinsic 

mode functions (IMFs). Each IMF adheres to two criteria: the 

number of extrema and zero-crossings must either be equal or 

differ by no more than one, and the average value between the 

envelope formed by local maxima and the envelope formed by 

local minima must be zero [2]. The determination of each IMF 

component involves subtracting the mean of its envelope 

(calculated as the average of the upper and lower envelopes, 

illustrated in Fig. 2) from the signal itself: 

𝑢𝑖 = 𝑠(𝑡) − 𝑚𝑖 , (4) 

where 𝑚𝑖 is a signal's mean of the envelope. 

 

Fig. 2. Mean values of the upper and lower envelope of the input signal. 

After the first IMF is calculated and it fulfills the previously 

mentioned requirements, it is subtracted from the input signal 

𝑠(𝑡)  (see Fig. 3) and the whole process is repeated with a 

residual signal 𝑟1 in Eq. (5): 

𝑟1 = 𝑠(𝑡) − 𝑢1 (5) 

 

Fig. 3. First intrinsic mode function derived during the empirical mode 

decomposition analysis sifting phase. 

Thus, the analyzed signal is decomposed into a set of 𝑛 

components (see Fig. 4 with six IMFs), and the last residual 𝑟𝑛: 

𝑠(𝑡) =∑𝑢𝑗

𝑛

𝑗=1

+ 𝑟𝑛, (6) 

where 𝑟𝑛 is dc offset or general trend in the analyzed signal. 
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Fig. 4. Sample input signal decomposed into 6 IMFs. 

D. Ensemble empirical mode decomposition 

Traditional empirical mode decomposition (EMD) 

encounters several issues, notably mode-mixing, where similar 

frequency information appears across multiple intrinsic mode 

functions (IMFs). This is especially prominent when bursts of 

high-frequency content occur in the signal. An example of such 

a decomposition is illustrated in Fig. 5, where bursts of high 

frequencies are distributed from IMF1 to IMF3. 

 

Fig. 5. Mode-mixing in EMD signal’s decomposition. 

Ensemble Empirical Mode Decomposition (EEMD) 

addresses the mode-mixing issue by averaging the 

decomposition outcomes across multiple noisy iterations of the 

original signal [6]. As depicted in Fig. 6, this approach 

significantly reduces mode-mixing, though noise persists in the 

intrinsic mode functions (IMFs), resulting in different IMF 

realizations for the same input signal. 

 

Fig. 6. Mode-mixing in EMD corrected with EEMD analysis. 

To address these issues, the Complete Ensemble EMD with 

Adaptive Noise (CEEMDAN) method was introduced in [7] and 

later refined in [8]. This approach involves adding specific noise 

at each stage of the decomposition process and calculating a 

distinct residue to extract each IMF mode. However, despite 

these improvements, CEEMDAN still encounters challenges 

such as some degree of mode-mixing, unwanted residual noise, 

and the potential splitting of the signal across different modes 

[9]. 

E. Masked and iterated masked EMD 

A novel method to enhance EMD decomposition, Masked 

EMD, was recently suggested in [10]. This technique involves 

introducing a masking signal into the input before sifting. Doing 

so reduces mode-mixing since the sift overlooks signal 

components that change slower than the frequency of the 

masking signal [9]. In this method, any signal content with 

frequencies significantly lower than the masking frequency is 

disregarded during that iteration and replaced by the mask. 

Eventually, the mask is removed, enabling accurate retrieval of 

intermittent signal activity [9]. While selecting the appropriate 

masking signals is an active area of research, it often remains a 

manual task, requiring expertise and potentially introducing 

subjective bias [10] - [14]. 

The problem of selecting an appropriate masking signal has 

been recently addressed with the introduction of iterated masked 

EMD (itEMD) [9]. This sifting technique automatically selects 

mask signal frequencies directly from the data, enabling it to 

detect oscillations and reduce mode-mixing without manually 

specifying masking signals. Figure 7 below illustrates the 

itEMD decomposition of the same signal depicted in Fig. 5 and 

Fig. 6. 

 

Fig. 7. EMD’s mode-mixing problem resolved with itEMD method.  

F. Hilbert-Huang transform 

The Hilbert-Huang transform analyzes a signal's energy or 

power distribution across frequency and time. It employs 

Hilbert spectral analysis (HSA) [2], [15] to study the 

instantaneous frequency of the input signal as a function of time, 

making it particularly effective for analyzing nonlinear and 

nonstationary data. Instantaneous frequency is determined using 

the Hilbert transform, allowing the signal to be represented as 

follows: 

𝑠(𝑡) = 𝑅𝑒𝑎𝑙 {∑𝑎𝑗(𝑡)exp (𝑖 ∫𝜔𝑗(𝑡) 𝑑𝑡)

𝑛

𝑗=1

}, (7) 
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where 𝑎𝑗(𝑡)  and 𝜔𝑗(𝑡)  are instantaneous amplitude and 

frequency, respectively. For this analysis to be valid, the input 

signal must fulfill specific prerequisites met by each of the 

intrinsic mode functions (IMFs) derived via EMD-based 

methods. The outcome is a frequency-time distribution of the 

signal's amplitude (or energy), enabling the detection of 

localized features. For illustration, Fig. 8 and Fig. 9 below 

display the Hilbert-Huang transform applied to a nonlinear and 

nonstationary signal. 

 

Fig. 8. Nonlinear and nonstationary synthetic signal example. 

 

Fig. 9. Hilbert-Huang transform of signal shown in Fig. 8. 

G. Other methods 

The synchrosqueezed transform (SST) [16] enhances the 

continuous wavelet transform (CWT) by calculating 

instantaneous frequencies and using a reassignment algorithm 

to concentrate them at the core of the time-frequency area [17]. 

This process results in more precise time-frequency 

representations than those produced by the STFT and CWT, 

which can suffer from spectral smearing due to finite sampling 

lengths. Additionally, this "squeezing" effectively reduces the 

number of unnecessary wavelet coefficients, yielding a more 

sparse representation. 

Singular Spectrum Analysis (SSA) [18] is another technique 

that decomposes a time series into a limited number of distinct 

and interpretable components, such as a slowly varying trend, 

oscillatory components, and unstructured noise. SSA utilizes a 

specifically constructed matrix's singular value decomposition 

(SVD) based on the time series data. It does not require the 

assumption of a parametric model or stationarity conditions for 

the time series, making SSA a model-free approach with broad 

applicability. 

Other methods are Intrinsic-Time Scale Decomposition 

(ITD) [19] and Fourier Decomposition Method (FDM) [20]. 

H.  Holo-Hilbert Spectral Analysis 

The Holo-Hilbert Spectral Analysis (HHSA) proposed in [21] 

can be applied to overcome the limitations of the previous 

methods. HHSA is a nonlinear analysis tool that uses empirical 

mode decomposition to detect intrinsic amplitude modulations 

by representing data across multiple dimensions, including 

amplitude modulation, carrier, and time. The carrier frequency 

in HHSA aligns with the frequency dimension in traditional 

kernel-based spectral analyses. Unlike simple measurements of 

pairwise couplings, HHSA utilizes instantaneous frequency 

information to comprehensively capture the energy and content 

of all potential modulating and carrier frequencies in data 

derived from nonstationary and nonlinear processes. In essence, 

the HHSA method extends HHT with the second layer of sifting. 

An example of a HHSA analysis is presented with the synthetic 

signal shown in Fig. 10. The signal consists of slow 5Hz data 

with 0.5Hz amplitude modulation (red signal in Fig. 10) and fast 

37Hz data modulated by the slow signal (blue signal in Fig. 10). 

Iterated masked EMD was used to decompose this 

nonstationary signal, and sifting process is showed in Fig. 11. 

 

Fig. 10. Nonstationary signal with slow (red) and fast (blue) components 

with amplitude modulations (black plot is the sum). 

 

Fig. 11. itEMD first layer sifting process. IMF-1 and IMF-4 contain 

frequencies of 37Hz and 5Hz. 

It turns out that each IMF has its modulations, which could 

be further investigated. In Fig. 12, the amplitude modulations in 

IMF-1 and IMF-4 are visible. 

 

Fig. 12. Amplitude modulations in IMF-1 and IMF-4. 
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The second level of sifting on each IMF reveals all amplitude 

modulations and intrinsic couplings of components to 

understand the analyzed signal better. Figure 13 shows the result 

where the distribution of power versus frequency is on the left 

panel (carrier frequency spectrum), time-frequency analysis is 

in the middle, and holospectrum (amplitude modulation 

spectrum) is on the right panel. Two main input signal 

components (at 5Hz and 37Hz) are modulated with 0.5Hz and 

5Hz, respectively, corresponding to the parameters of a 

synthetic signal in Fig. 10. 

 

Fig. 13. Holo-Hilbert spectral analysis of nonstationary signal from Fig. 10. 

A step further would be to show the time-varying HHSA 

analysis already done in [22]. Figure 14 illustrates the outcome 

of HHSA on synthesized data with time-varying coupling 

strength. A synthesized signal 𝑥(𝑡) with time-varying coupling 

strength from 0 to 1 is shown in panel A, where the modulated 

signal 𝑥𝑓𝐴(𝑡)  shows a power increase corresponding to the 

coupling strength. In panel B, the time-resolved power spectrum 

derived from the Hilbert-Huang Transform (HHT) is displayed, 

while panel C shows the amplitude spectrum of the envelope at 

four different time points obtained via Holo-Hilbert Spectral 

Analysis (HHSA). These demonstrate how HHSA tracks four 

distinct levels of coupling strength over time [22]. 
 

 

Fig. 14. Time-varying HHSA example analysis [22]. 

These methods have been successfully adopted in biomedical 

and neuroscience data analysis [27] - [29], and they can also be 

applied in the analysis of audio data. 

III. APPLICATION OF EMD-BASED METHODS TO SPEECH DATA 

The speech signal, shaped by a complex psycho-acoustic 

process developed over thousands of years of human evolution, 

contains information such as the speaker's age, height, emotion, 

accent, health, physiological disorders, and identity, fueling 

various subfields of Speech Processing [23], [24]. However, 

speech is inherently nonlinear and nonstationary [25], making 

the extraction of such detailed information a complex task [24], 

[26]. Methods based on Empirical Mode Decomposition (EMD) 

might uncover more insights into speech signals than traditional 

Fourier and wavelet-based methods. 

The specific signal analyzed was the vowel 'A' spoken by a 

female and recorded at 48kHz sampling frequency. This speech 

signal's waveform and Fourier spectrum are displayed in Fig. 

15. STFT and wavelet analysis are illustrated in Fig. 16 (left and 

right panels, respectively). Although these transforms clearly 

show the speech signal's fundamental frequency and harmonics 

at approximately 200, 400, 600, 800, 950, 1050, and 1100 Hz, 

they fail to reveal how these components interact or how their 

parameters evolve over time. 

 

 

Fig. 15. Female voice letter ‘A’ - its waveform on the left and FFT on the 

right. 

 

 

Fig. 16. STFT (left panel) and wavelet transform (right panel) of the speech 

signal (letter 'A'). 

Iterated masked EMD was used to decompose speech into 6 

IMFs, the first 3 providing meaningful signal information. 

These 3 IMFs were analyzed with another level of 

decomposition to get the amplitude modulations hidden in the 

original data. Figures 18, 19, and 20 show the HHT spectrum of 

carrier signals in IMF1 - IMF3, respectively. 
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Fig. 17. Iterated Masked EMD sifting process where IMF-1 to IMF-3 

contains meaningful speech signal information. 

 

 

Fig. 18. HHT spectrum of carrier signal IMF-1 changing around 1kHz. 

 

 

Fig. 19. HHT spectrum of carrier signal IMF-2 changing around 800Hz. 

 

Fig. 20. HHT spectrum of carrier signal IMF-3 changing around 400Hz. 

The holospectrum of the speech signal is shown in Fig. 21, 

where it is evident that the component changing around 1kHz 

with about 380Hz amplitude modulation is the essential part of 

letter A spoken by this particular person. 

 

Fig. 21. Holo-Hilbert spectral analysis of speech signal. 

IV. CONCLUSIONS 

This paper provides an overview of data analysis and 
processing from a nonlinear and nonstationary perspective, 
contrasting with the traditional short-time linear and stationary 
analysis approach. Audio data, such as music or speech, is 
inherently nonstationary and cannot be fully captured by 
mathematical expressions or approximated through linear 
systems. This has led to the adoption AM-FM representations 
for audio data, which conceptualize audio as a collection of AM-
FM signals. A speech signal is just one example of audio data 
that defies linear modeling. For instance, quantization noise is 
typically modeled as white noise added to a system, but in 
reality, it is a nonstationary, input-dependent, and nonlinear 
error signal. 

Additionally, the time series of state variables in systems with 
feedback mechanisms - such as modulators, adaptive filters, 
prediction algorithms, and IIR filters - tend to alter their 
parameters over time. Methods like Empirical Mode 
Decomposition (EMD) are inherently empirical, and each 
technique discussed in the literature has limitations. As a result, 
time-frequency analysis techniques, such as the Holo-Hilbert 
Spectrum analysis method, remain a dynamic field of study. 
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