
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2024, VOL. 70, NO. 2, PP. 341–348
Manuscript received February 14, 2024; revised June, 2024. doi: 10.24425/ijet.2024.149550

Procedurally generated AI compound media for
expanding audial creations, broadening immersion

and perception experience
Grzegorz Samson

Abstract—Recently, the world has been gaining vastly increas-
ing access to more and more advanced artificial intelligence tools.
This phenomenon does not bypass the world of sound and visual
art, and both of these worlds can benefit in ways yet unexplored,
drawing them closer to one another. Recent breakthroughs open
possibilities to utilize AI driven tools for creating generative art
and using it as a compound of other multimedia. The aim of
this paper is to present an original concept of using AI to create
a visual compound material to existing audio source. This is
a way of broadening accessibility thus appealing to different
human senses using source media, expanding its initial form.
This research utilizes a novel method of enhancing fundamental
material consisting of text audio or text source (script) and
sound layer (audio play) by adding an extra layer of multimedia
experience – a visual one, generated procedurally. A set of images
generated by AI tools, creating a story-telling animation as a new
way to immerse into the experience of sound perception and focus
on the initial audial material. The main idea of the paper consists
of creating a pipeline, form of a blueprint for the process of
procedural image generation based on the source context (audial
or textual) transformed into text prompts and providing tools
to automate it by programming a set of code instructions. This
process allows creation of coherent and cohesive (to a certain
extent) visual cues accompanying audial experience levering it to
multimodal piece of art. Using nowadays technologies, creators
can enhance audial forms procedurally, providing them with
visual context. The paper refers to current possibilities, use cases,
limitations and biases giving presented tools and solutions.

Keywords—procedural generation; generative media; multi-
modal art; audiovisual perception; text-to-image; transformers;
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I. INTRODUCTION

THE advent of transformer networks has opened up new
avenues for processing semantic constructs with a high

degree of abstraction and transferring them across various
domains and media [1]. Information encoded through text can
now be transformed and mapped onto a different representa-
tion channel, such as the visual domain [2], [3]. This presents
new frontiers for exploring the creation of transgressive mul-
timodal messages, where an additional channel is built upon
the source context, extending the content into a multimodal
spectrum of representation [4].
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A. Historical Context

In the past, individuals experimented with creating visual
effects for existing audio material [5], [6]. This could be done
either by preparing a visual message to play in parallel with
the sound or by algorithmically generating a visual display
that was more or less closely related to the audio message.
The approach of preparing a visual message allowed for
strong anchoring in the audio context, enabling semantic,
high-contextual mapping of information [4]. However, this
method was time-consuming and required human involvement
throughout the process.

B. Algorithmic Generation

The algorithmic generation approach allowed for the cre-
ation of visualizations based on the physical features of the
sound, represented through vision-generating algorithms [7].
This approach enabled the creation of visual context in real-
time but resulted in the loss of the ability to represent semantic
context. Without the use of deep learning models, we are
unable to effectively process information with a high level
of abstraction and context [8].

C. Current Possibilities

The recent availability of transformer models allows for new
ways of processing and contextual representation of messages
[1], [9]–[12]. Mapping audio material in the visual domain
has gained new levels of exploration, especially for layers
containing verbal messages.

II. RELATED WORK

The subject of media creation using generative techniques
has been recently extensively explored in academic research.
There is a notable focus on generating coherent narratives in
the textual domain using various deep learning architectures
[13], as well as visualizing content in graphical form. Text-
based story visualization has seen multiple attempts and stud-
ies, particularly employing Generative Adversarial Networks
(GANs) [14]–[17]. Latent Diffusion Models (LDMs) offer
even more promising results in the context of high-quality
visualization [2], [13], [18], [19].

The issue of visually mapping sound semantics is a separate
area. Semantic visual segmentation has been an object of
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research interest [20]–[22] but adaptation of audio to visual
using deep learning transformers is yet underexplored area
[23].

III. THEORY

A. Main Assumptions

In this discussion of audial works based on semantic context
such as audio plays, it is assumed that the source fundaments
consist of textual material as a framework adapted into the
audio domain. This textual message can be mapped from the
text level to the visual level, serving as an additional and
extending mode of communication and information represen-
tation from the perspective of audiovisual integration [4]. The
main paradigms concerning the visualization of audio content
in this research are:

• Mapping the semantic context (key visual elements),
• Mapping the aura, emotional context within audio.

B. Mapping Semantic Context

By processing information represented in textual form,
Large Language Models (LLMs) [24] are capable of trans-
forming it into a recognised semantic context, which can then
be converted into a text prompt serving as input for text-to-
image diffusion models [1]–[3]. This provides the opportunity
to visualize concepts that may have a direct graphic represen-
tation [13].

C. Mapping Aura

Audiovisual context can trigger emotional response in art
recipients [6], [25]. Visual context can effectively comple-
ment the auditory context, enhancing emotionally charging its
message to significantly appeal to the human senses. Current
image processing methods that use convolutional networks
enable the identification and representation of elements with
emotional values [10], [26]. LLMs are capable of processing
information, generalizing, and transferring it to the abstract
plane of emotions, and then proposing a method of visual
mapping similarly to the mapping of other semantic context
[27], [28].

D. Proposed Methods

Audial artistic forms incorporating semantic representation,
such as audio plays, can benefit from various innovative
possibilities for visual engagement, creating a visual cue for
the recipient. For generation approaches, example methods
may include:

• Aura Panel Method: Aura panels are generated to
loosely convey the context-related mood, emotional con-
text of a given scene.

• Scenery Method: Scenery panels are generated to convey
the character of the place where the sound is located,
immersing the listener in it. The place remains as an
abstract visual cue, not exact adaptation.

• Context Isolation Method: Separate context panels are
generated to represent the current context in isolation

from the sequence of events and their interdependencies.
This method focuses on presenting a key element that
serves as a temporary visual cue, representing an idea.

• Storyboard Method: Storyboard panels are generated
to represent distinct subsequent elements of the story.
This allows for the representation of the entire palette
of constituent sound elements, providing visual context.

• Visual Novel Method: Component elements are gener-
ated, which, when combined, create panels with a high
level of customization. This is a set of assets that allows
for the composition of visual context.

Fig. 1. Panel-Based Pipeline Conceptual Flowchart.

E. Abstract-Oriented Component Media Perception

As the level of complexity and context mapping increases,
so do the expectations of the audience. The audience is capable
of accepting the contextual conventionality of abstract visual
projections to the abstract nature of music as there are many
forms of visual representation of sound [5], [6]. The situation
becomes problematic when a visualization of a context that
has a tangible representation in reality appears [17].

F. Semantic-Oriented Component Media Perception

With advancements in technology, audiences are becoming
accustomed to higher quality composite media [29]. The initial
awe for the possibilities of creating procedural composite
media may be replaced by expectations for their adequacy,
coherence, and consistency. The admiration initially sparked
by the discovery of such a level of accuracy in semantic
representation evolves into a pursuit for further precision,
detail, and coherence [13], [15], [16]. This evolution drives the
continuous development and refinement of new technologies
and underscores the objective of this work: to enhance and
perfect the procedural generation process.

IV. AUTOMATED PIPELINE CONCEPT

A. Retrieving Semantic Context

Leveraging speech-to-text technologies, audio content can
be transmuted into textual representations, thereby enabling
semantic analysis and subsequent visual generation based on
the interpreted data. This transformation essentially converts
an audio-encoded signal into a text-based one, as transcrip-
tion. While contemporary technologies can identify individual
speakers, they fall short in capturing non-verbal cues that carry
semantic meaning for humans, such as intonation, timbre,
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and phrasing, as well as ancillary auditory elements like
background noise, sound events, and music. Deep learning
techniques for speech processing are offering broader possi-
bilities of speech recognition [30] and give promising results
in speech-to-image transformation [31].

B. Using Intermediary Semantic Source

To maximize the contextual input for automating the gen-
eration of visual content, an intermediary textual medium
is advisable. In the case of audio plays, the script serves
this purpose, offering supplementary details about scenes,
characters, and narrative elements that are conveyed in the
audio format. This enriched context enhances the effectiveness
of tools designed for visual media generation.

As for the conceptual process of creating visual components
dependent on the audio medium, the following transformation
approach is proposed and expanded as shown in Figure 1:

• Audial Medium
• Textual Medium (Intermediary Medium)
• Visual Medium

To process the textual medium into a visual medium, LDMs
can be used, for which the textual medium can be prepared by
a LLMs. This enables accurate representation of the semantic
context originally present in the audio domain.

V. PIPELINE IMPLEMENTATION

The implementation of the pipeline for procedurally gener-
ating images within the mentioned methods assumes modular
automation. Consumer-grade technologies were chosen due to
market standards and processing quality. The pipeline consists
of three main modules:

• Source-to-Text-Prompt Module: This initial module
processes the source material into text prompts using Lan-
guage Learning Model. For this purpose, the ChatGPT
API, specifically the ’gpt-3.5-turbo’ model (released on
01.03.2023) by OpenAI, is utilized.

• Text-Prompt-to-Image Module: The subsequent module
converts the text prompts into graphics using Latent
Diffusion Model. The Midjourney ’v5-2’ model (released
on 22.06.2023) is employed for this task.

• Image-Sequence-to-Video Module: This concluding
module provides rudimentary image-to-video conversion
capabilities, focusing on the generation of frame se-
quences. It leverages Python libraries like OpenCV (Open
Source Computer Vision Library) to accomplish this task.

A. Automation and Codebase

The automation of tool handling was implemented in
Python, using the Model-View-ViewModel (MVVM) frame-
work for the Graphical User Interface (GUI) as shown in
Figure 2. The source code for the project is available at the fol-
lowing Open Science Framework repository link: https://osf.
io/se8y6/?view only=45a4e52c9dd44a0da12d52ea19302c8a

Fig. 2. Modules Graphical User Interface with parameter
configuration.

B. Overview

The presented solution is functional; however, difficulties in
maintaining coherence at higher levels of semantic mapping
have been described and are discussed separately in detail in
the authors’ Engineering Thesis [32]. The introduced pipeline
procedurally generates panels that can be considered as ma-
terials or components. These components can be subjected to
further fine-tuning.

VI. PIPELINE ANALISYS

A. Autonomous and Automated Generation

While it is entirely possible to achieve complete automation
in the realm of procedural generation, this might come at
the expense of quality and fidelity to the original source
material. Fully autonomous systems may offer a degree of
engagement, but could fail to accurately represent the nuances
of the source [16], [17], [33]. A more balanced approach
might involve treating the generated elements as prefabricated
building components. This allows for better alignment with
the original sound and a more coherent integration of the
generated visuals with the source material.

https://osf.io/se8y6/?view_only=45a4e52c9dd44a0da12d52ea19302c8a
https://osf.io/se8y6/?view_only=45a4e52c9dd44a0da12d52ea19302c8a
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B. Human Involvement

At this stage of technological development of the procedural
media generation process, perfection involves increasing the
input of the human factor. The human factor is important in the
process of supervision, material correction during text prompt
and images generation, selection of appropriate panels, and
their time synchronisation. The quality of the output material
vary, depending on the human intervention in the process [33].

C. Types of Coherence

In evaluating the appropriateness of generated materials as
image panels in relation to the source context, two types of
coherence can be distinguished: vertical and horizontal. These
types differ primarily in their orientation to time axes and
complexity.

• Vertical Coherence: This form of coherence is relatively
straightforward and focuses on the representation of spe-
cific content or information, isolated from its broader
context [3]. The primary concern is temporal consistency
at the immediate moment. For example, if a scene in the
audio layer involves human interaction, a corresponding
visual representation of a human would be displayed. In
cases of low-level vertical coherence, distinctive features
are not crucial. Different visual representations may be
used for the same individual or concept, allowing for
various depicting variants.

• Horizontal Coherence: In this type, the focus is on
maintaining consistent distinctive features across different
panels over time [15], [16]. This ensures the continuity
of the representation of a given person or object by
maintaining closely related characteristics that define its
identity. The same principle applies to other components
of the panels, such as the environment or other objects.

D. Levels of Coherence in Proposed Approaches

• Aura Panel Approach: This approach operates at a
highly abstract level, where the LLM interprets the
emotional tone of a specific audio context to produce
visually related but loosely connected representations.
The aim is to augment the auditory experience with non-
intrusive visual elements that don’t convey fixed semantic
meaning.

• Context Isolation Approach: This approach assumes the
breaking of cause-and-effect expectations and interdepen-
dencies in favor of visualizing individual elements that
are the focus of attention. These elements directly corre-
late with the separated semantic context. This approach
can be likened to an imaginary stream, where a visual
representations of ideas and concepts are generated one
after the other [34].

• Scenery Approach: This approach involves mapping
through a scenery panel that can accompany audio in-
formation, serving as a backdrop for events. It is charac-
terized by a relatively easy automation process and the
possibility of greater horizontal coherence due to fewer
key details that could distract the recipient.

• Storyboard Approach: This approach offers the cre-
ation of ready-made panels that only need to be time-
synchronized with the audio material. It allows for a
high degree of artistic freedom for the generator, enabling
extraordinary aesthetic effects with minimal human in-
tervention. It is important to note that depending on
the implementation, high graphical quality may only be
associated with vertical coherence, not the horizontal
coherence of individual panels with each other, which
may result in disengaging the audience during audiovisual
projection.

• Visual Novel Approach: This approach involves using
component elements to assemble panels, offering the
promise of the highest level of coherence and customiza-
tion at the cost of the highest level of human intervention
by hand-picking individual elements.

E. Visual Elements as Component Collections

The generated visual elements can be conceptualized as
collections of components that reflect the audio context. These
panels serve not only as transformable entities but also as
aggregations of individual components that can be isolated
and manipulated. This is particularly evident in the proposed
Visual Novel methodology, where libraries of substituent vi-
sual elements can be created to correspond with specific audio
concepts. Two primary approaches to interpreting these panels
are:

• Raster-Based Interpretation: In this approach, a panel
is viewed as an assembly of pixel-based elements within
the context of raster graphics. Specialized raster graphics
editing software can dissect these panels into distinct
components. Additionally, layers with focal points can
be generated by re-running the panels through LDMs
[35]–[37]. These layers can be overlaid to produce spatial
effects like the parallax effect.

• Vector-Based Interpretation: Alternatively, a panel can
be understood as a collection of elements in vector space.
This requires a specific style of panel design with well-
defined edges. Vector components offer more precise sep-
aration and modification capabilities compared to raster-
based elements. Advances in AI-driven image processing
technologies enable accurate conversions from raster to
vector, expanding the possibilities for prototyping in
visual media generation [38].

F. Strategies for Visual Component Generation

Listeners are generally limited to auditory perception for
experiencing audio media. Procedural visual component gener-
ation techniques offer a way to augment these sensory channels
[4], [6], [34]. The added visual elements serve as auxiliary
components designed to enhance the overall perceptual expe-
rience.

The strategy for creating supplementary visual stimuli
should be carefully calibrated. This involves considering both
the methodologies employed and the intended level of inter-
action, as well as the appropriateness of the visual stimulus
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in relation to the auditory content. Two primary approaches to
this are:

• Simplicity and Impact: Visual elements that are straight-
forward in terms of contextual complexity can be easier to
produce technologically, yet still effectively enhance the
aesthetic experience [5]. These elements can be further
enriched by leveraging procedural generation techniques,
making approaches like mood and scenery methods par-
ticularly promising.

• Complexity and Coherence: For more complex tech-
niques that require high fidelity to the original audio,
maintaining semantic coherence becomes crucial. Any
inconsistencies can serve as distractions, detracting from
the overall aesthetic enjoyment and focus on the auditory
content.

VII. FINE-TUNING SUGGESTIONS

Fine-tuning visual components is a critical step in opti-
mizing the viewer’s experience. The process serves multiple
purposes: it enhances immersion by creating more engaging
visuals, it increases coherence between the audio and visual
elements, and it elevates the overall aesthetic quality of the
composite media [4], [6], [29], [34].

A. Role of Creators

The spectrum of creator involvement ranges from full cre-
ative control to varying degrees of automation. As technologies
mature, creators find themselves in a dynamic interplay with
automated systems, where both the generation and selection
of visual elements can be either human-led, machine-assisted,
or fully automated. This evolving landscape offers creators
the flexibility to refine and adjust visual components, thereby
enhancing the aesthetic experience. The nuanced relationship
between human creators and automation technologies provides
a rich tapestry for understanding how visual stimuli can be
crafted to extend aesthetic sensations [33].

B. Current Technologies

Advancements in generative transformers are expanding the
scope and flexibility for implementing various visual effects,
playing a pivotal role in dynamizing the visual component
[35], [39]–[42]. Unlike real photographs, which have a di-
rect reflection in reality and can be naturally altered, these
visual images are prefabricated products without a root source
for fundamental modification. Within this technological land-
scape, it is feasible to incorporate a diverse range of elements
into the transformation of visual media. Operations can be
executed in the realm of virtual visual materials, eliminating
the need for reference to any hypothetical, tangible visual
source. This signifies a new paradigm in the creation of visual
materials, one that leverages pre-existing, procedurally gener-
ated prefabricates for further refinement. The cornerstone of
this methodology is the capability for autonomous generation
of these components.

C. Panel Succession

The succession of panels in a visual representation, as
shown in Figure 3, should be intricately tied to the accom-
panying sound. Some approaches include:

• Fixed Time Changes: In this approach, the panels change
at fixed time intervals, providing a predictable yet poten-
tially less dynamic visual experience.

• Rhythmic Changes: In this approach, the panels change
in synchronization with the musical accents or beats of
the accompanying sound.

• Focus Changes: In this approach, the panel changes to
shift focus to the object of attention, following dynamic
of dialogue or other interactive scenarios.

D. Panel Styling

Common styling can help maintain greater visual coherence
[43]. Panels made in similar styling make it easier for the
audience to compare them, creating the impression that they
represent a common diegesis. Styling may be done outside
the panel generation process, in a form such as passing
images through an external filter (e.g., applying a blur, a filter
suggesting dreaming). Styling using LDM can be achieved
through prompting, e.g.:

• Art medium stylization.
• Composition.
• Graphic styling.
• Referring to a common visual reference.

E. Introducing Motion

The aim is to focus greater attention of the audience on the
visual context, thereby increasing engagement and the impact
of the stimulus [44]. One way to achieve this is by introducing
motion, which can be categorized into three main types:

• Overall Frame Movement: This involves manipulations
like zooming in and out within individual panels to create
a sense of motion and depth.

• Interframe Effects: These include transitions and shifts
between panels, as well as special effects that constitute
a separate, continuous layer between individual panels.
An example would be a fog effect that maintains and
preserves motion continuity while obscuring the changing
panels.

• Intraframe Movement: This refers to the movement or
animation within a single frame or panel, such as the
motion of characters or objects, which adds another layer
of dynamism to the visual experience.

F. Intraframe Movement

This involves the motorization of elements within the panels
creating points of interests:

• Adding artificial visual effects (commonly abbreviated
as ’VFX’), e.g., related to weather (rain, fog), uniform
movement of areas such as water, flame, leaves, wind.

• Adding depth of field and manually creating spatial
movements in the frame by shifting layers relative to each
other.
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Fig. 3. Fine-tuning visual sequence through panel succession by puzzle-like composing 4 sets of sequences into one. An inter-
mediary example demonstrating storyboard and context isolation method features available at: https://youtu.be/Ier6ROLrF4w.
Additionally, showcase with transitions using storyboard method is available at: https://youtu.be/a1oYdO6oRIc.

• Animating characters:
– Adding lip movement.
– Adding eye movement.
– Adding facial expressions, head movement.
– Adding body movement.

G. Generative Transformations

Applying generative transformations to the image, such as:
• Using intermediary panels between the seed of the gen-

erator and the image, showing an animated process of
generating a given panel or effects of transforming a
ready panel (e.g., by adding seed and re-generating the
final result).

• Generative transformation effects based on a seed created
from the panel, a multi-version panel that changes (to
varying degrees, in different ways).

VIII. CONCLUSION

This paper delved into the complex realm of composite
visual media generation with a focus on augmenting audio
contexts through the integration of visual elements. Utiliz-
ing advanced AI-driven techniques, the paper discussed the
potential for enhancing traditional audio experiences with
procedurally generated visuals and proposed methods for fur-
ther refinement and exploration. The combination of auditory

and visual elements through AI-driven procedural generation
offers a promising avenue for enriching the sensory depth and
emotional impact of artistic works. As these methods continue
to evolve, the boundaries between technological feasibility
and artistic significance will likely continue to blur, thereby
expanding the possibilities in the field of composite media
procedural generation.

A. Possible Future Research Directions

It is worth mentioning that the scope of visual layer
generation is not confined solely to auditory stimuli with
textual components. Semantic representation can extend to
musical elements, encompassing harmonic and melodic pro-
gressions. LLMs possess the capability to process abstract
musical concepts, such as harmonization or genre classifica-
tions [1]. These networks can analyze and interpret melodic-
harmonic sequences, offering avenues for abstract-level visual
interpretations akin to human musical perception. Emotional
responses and reception patterns associated with specific mu-
sical structures can be analyzed, replicated, and processed
[27], [28]. Such interpretation may not be straightforward and
deterministic, reflecting the diverse ways in which music is
perceived by individuals. This represents a further exploration
into deriving visual contexts based on musical semantics,
moving beyond wave analysis and sound spectrum to focus
on the interpretation of musical language’s semantic patterns.

https://youtu.be/Ier6ROLrF4w
https://youtu.be/a1oYdO6oRIc
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B. Accelerated Advancements in Technology

The preponderance of recent citations in this article, from
the current and previous year, underscores the rapid pace of in-
novation in this domain. This surge in technological expansion
indicates a fertile ground for future research and development.
As technology continues to evolve at an accelerated pace,
there is a significant opportunity for groundbreaking findings
that could revolutionize the creation of even more immersive
compound media.

IX. ACKNOWLEDGEMENTS

This research draws its main inspiration and leitmotif
from an author’s engineering thesis conducted at the Polish-
Japanese Academy of Information Technology, under the
guidance of Konrad Maciborski MEng. As the supervisor,
his insights and approach to scientific inquiry have been the
cornerstone upon which this further exploration was built.

Furthermore, heartfelt thanks are extended to the Feliks
Nowowiejski Academy of Music in Bydgoszcz for pro-
viding an enriching academic atmosphere that encourages
scholarly growth and interdisciplinary collaboration. A special
note of gratitude is directed towards Rector Prof Elżbieta
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[14] J. Zakraoui, M. Saleh, S. Al-Máadeed, and J. M. Alja’am, “A pipeline
for story visualization from natural language,” Applied Sciences, 2023.
[Online]. Available: https://doi.org/10.3390/app13085107

[15] H. Chen, R. Han, T.-L. Wu, H. Nakayama, and N. Peng,
“Character-centric story visualization via visual planning and token
alignment,” Cornell University - arXiv, 2022. [Online]. Available:
https://doi.org/10.48550/arxiv.2210.08465

[16] Y. Z. Song, Y.-Z. Song, Y.-Z. Song, Z. R. Tam, Z. R. Tam,
H.-J. Chen, H.-J. Chen, H.-H. Lu, H.-H. Shuai, and H.-H.
Shuai, “Character-preserving coherent story visualization,” European
Conference on Computer Vision, 2020. [Online]. Available: https:
//doi.org/10.1007/978-3-030-58520-4 2

[17] S. Chen, B. Liu, B. Liu, B. Liu, B. Liu, B. Liu, J. Fu,
R. Song, Q. Jin, P. Lin, P. Lin, X. Qi, C. Wang, and J. Zhou,
“Neural storyboard artist: Visualizing stories with coherent image
sequences,” arXiv: Artificial Intelligence, 2019. [Online]. Available:
https://doi.org/10.1145/3343031.3350571

[18] A. Maharana, D. Hannan, and M. Bansal, “Storydall-e: Adapting
pretrained text-to-image transformers for story continuation,” European
Conference on Computer Vision, 2022. [Online]. Available: https:
//doi.org/10.48550/arxiv.2209.06192

[19] P. Dhariwal and A. Nichol, “Diffusion models beat gans on image
synthesis,” Neural Information Processing Systems, 2021. [Online].
Available: https://doi.org/10.48550/arXiv.2105.05233

[20] J. Zhou, X. Shen, J. Wang, J. Zhang, W. Sun, J. Zhang,
S. Birchfield, D. Guo, L. Kong, M. Wang, and Y. Zhong, “Audio-visual
segmentation with semantics,” arXiv.org, 2023. [Online]. Available:
https://doi.org/10.48550/arxiv.2301.13190

[21] G. Irie, M. Ostrek, H. Wang, H. Kameoka, A. Kimura, T. Kawanishi,
and K. Kashino, “Seeing through sounds: Predicting visual
semantic segmentation results from multichannel audio signals,” IEEE
International Conference on Acoustics, Speech, and Signal Processing,
2019. [Online]. Available: https://doi.org/10.1109/icassp.2019.8683142

[22] C. Liu, P. Li, X. Qi, H. Zhang, L. Li, D. Wang, and X. Yu, “Audio-visual
segmentation by exploring cross-modal mutual semantics,” null, 2023.
[Online]. Available: https://doi.org/10.48550/arXiv.2307.16620

[23] G. Yariv, I. Gat, L. Wolf, Y. Adi, and I. Schwartz, “Audiotoken:
Adaptation of text-conditioned diffusion models for audio-to-image
generation,” arXiv.org, 2023. [Online]. Available: https://doi.org/10.
48550/arxiv.2305.13050

[24] W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min,
B. Zhang, J. Zhang, Z. Dong, Y. Du, C. Yang, Y. Chen, Z. Chen,
J. Jiang, R. Ren, Y. Li, X. Tang, Z. Liu, P. Liu, J. Nie, and J. rong
Wen, “A survey of large language models,” arXiv.org, 2023. [Online].
Available: https://doi.org/10.48550/arxiv.2303.18223

[25] T. Görne, “The emotional impact of sound: A short theory of film sound
design,” null, 2019. [Online]. Available: https://doi.org/10.29007/jk8h

[26] J. Z. Wang, S. Zhao, C. Wu, R. B. Adams, M. Newman, T. Shafir,
and R. Tsachor, “Unlocking the emotional world of visual media:
An overview of the science, research, and impact of understanding
emotion,” Proceedings of the IEEE, 2023. [Online]. Available:
https://doi.org/10.1109/jproc.2023.3273517

[27] X. Wang, X. Li, Z. Yin, Y. Wu, L. J. D. O. P. L. O.
Brain, Intelligence, T. University, D. Psychology, and R. University,
“Emotional intelligence of large language models,” arXiv.org, 2023.
[Online]. Available: https://doi.org/10.48550/arxiv.2307.09042

[28] S. C. Patel and J. Fan, “Identification and description of emotions
by current large language models,” bioRxiv, 2023. [Online]. Available:
https://doi.org/10.1101/2023.07.17.549421

[29] Z. Akhtar and T. H. Falk, “Audio-visual multimedia quality assessment:
A comprehensive survey,” IEEE Access, 2017. [Online]. Available:
https://doi.org/10.1109/access.2017.2750918

https://doi.org/10.48550/arxiv.2303.12712
https://doi.org/10.1109/cvpr52688.2022.01042
https://doi.org/10.48550/arxiv.2205.11487
https://doi.org/10.1093/cercor/bhac443
https://doi.org/10.1145/3461835
https://doi.org/10.3389/fpsyg.2017.01218
https://doi.org/10.1007/978-3-319-21945-5
https://doi.org/10.1007/978-3-319-21945-5
https://doi.org/10.1007/s10462-022-10224-2
https://doi.org/10.1007/s10462-022-10224-2
https://doi.org/10.48550/arxiv.2212.09748
https://doi.org/10.48550/arxiv.2212.09748
https://doi.org/10.48550/arXiv.2106.04108
https://doi.org/10.48550/arxiv.2209.00796
https://doi.org/10.48550/arxiv.2210.09292
https://doi.org/10.48550/arxiv.2211.10950
https://doi.org/10.3390/app13085107
https://doi.org/10.48550/arxiv.2210.08465
https://doi.org/10.1007/978-3-030-58520-4_2
https://doi.org/10.1007/978-3-030-58520-4_2
https://doi.org/10.1145/3343031.3350571
https://doi.org/10.48550/arxiv.2209.06192
https://doi.org/10.48550/arxiv.2209.06192
https://doi.org/10.48550/arXiv.2105.05233
https://doi.org/10.48550/arxiv.2301.13190
https://doi.org/10.1109/icassp.2019.8683142
https://doi.org/10.48550/arXiv.2307.16620
https://doi.org/10.48550/arxiv.2305.13050
https://doi.org/10.48550/arxiv.2305.13050
https://doi.org/10.48550/arxiv.2303.18223
https://doi.org/10.29007/jk8h
https://doi.org/10.1109/jproc.2023.3273517
https://doi.org/10.48550/arxiv.2307.09042
https://doi.org/10.1101/2023.07.17.549421
https://doi.org/10.1109/access.2017.2750918


348 GRZEGORZ SAMSON

[30] A. Mehrish, N. Majumder, R. Bharadwaj, R. Mihalcea, and S. Poria,
“A review of deep learning techniques for speech processing,”
Information Fusion, vol. 99, p. 101869, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1566253523001859

[31] J. Li, X. Zhang, X. Zhang, X. Zhang, X. Zhang, X. Zhang, C. Jia,
J. Xu, X. Jizheng, L. Zhang, L. Zhang, L. Zhang, Z. Li, L. Zhang,
Y. Wang, Y. Wang, W. Yue, Y. Wang, S. Ma, W. Gao, and
W. Gao, “Direct speech-to-image translation,” arXiv: Multimedia, 2020.
[Online]. Available: https://doi.org/10.1109/jstsp.2020.2987417

[32] G. Samson, “Multimodal media generation: Exploring pipeline
of procedural visual context-dependent media layer creation,”
Warsaw, p. 67, 2023, thesis (Engineering) - Polish-Japanese
Academy of Information Technology, 2023. [Online]. Available:
https://system-biblioteka.pja.edu.pl/Opac5/faces/Opis.jsp?ido=40788#

[33] J. Edwards, A. Perrone, and P. R. Doyle, “Transparency in language
generation: Levels of automation,” CIU, 2020. [Online]. Available:
https://doi.org/10.48550/arXiv.2006.06295

[34] R. Adaval, G. Saluja, and Y. Jiang, “Seeing and thinking in pictures:
A review of visual information processing,” Consumer Psychology
Review, 2018. [Online]. Available: https://doi.org/10.1002/arcp.1049

[35] P. Gholami and R. Xiao, “Diffusion brush: A latent diffusion model-
based editing tool for ai-generated images,” arXiv.org, 2023. [Online].
Available: https://doi.org/10.48550/arxiv.2306.00219

[36] P. Li, Q. Huang, Y. Ding, and Z. Li, “Layerdiffusion: Layered
controlled image editing with diffusion models,” arXiv.org, 2023.
[Online]. Available: https://doi.org/10.48550/arxiv.2305.18676

[37] X. Zhang, W. Zhao, X. Lu, and J. Chien, “Text2layer: Layered image
generation using latent diffusion model,” arXiv.org, 2023. [Online].
Available: https://doi.org/10.48550/arxiv.2307.09781

[38] X. Ma, Y. Zhou, X. Xu, B. Sun, V. Filev, N. Orlov, Y. Fu,
and H. Shi, “Towards layer-wise image vectorization,” Computer
Vision and Pattern Recognition, 2022. [Online]. Available: https:
//doi.org/10.1109/cvpr52688.2022.01583

[39] M. Dorkenwald, T. Milbich, A. Blattmann, R. Rombach, K. Derpanis,
and B. Ommer, “Stochastic image-to-video synthesis using cinns,”
Computer Vision and Pattern Recognition, 2021. [Online]. Available:
https://doi.org/10.1109/cvpr46437.2021.00374

[40] Y. Hu, C. Luo, and Z. Chen, “Make it move: Controllable image-
to-video generation with text descriptions,” Computer Vision and
Pattern Recognition, 2021. [Online]. Available: https://doi.org/10.1109/
cvpr52688.2022.01768

[41] M. Stypulkowski, K. Vougioukas, S. He, M. Ziba, S. Petridis,
and M. Pantic, “Diffused heads: Diffusion models beat gans
on talking-face generation,” arXiv.org, 2023. [Online]. Available:
https://doi.org/10.48550/arxiv.2301.03396

[42] L. Shen, X. Li, H. Sun, J. Peng, K. Xian, Z. Cao, and G.-S.
Lin, “Make-it-4d: Synthesizing a consistent long-term dynamic scene
video from a single image,” arXiv.org, 2023. [Online]. Available:
https://doi.org/10.1145/3581783.3612033

[43] J. Wu, J. J. Y. Chung, and E. Adar, “Viz2viz: Prompt-driven stylized
visualization generation using a diffusion model,” arXiv.org, 2023.
[Online]. Available: https://doi.org/10.48550/arxiv.2304.01919

[44] C. K. Praveen and K. Srinivasan, “Psychological impact and influence
of animation on viewer’s visual attention and cognition: A systematic
literature review, open challenges, and future research directions.”
Computational and Mathematical Methods in Medicine, 2022. [Online].
Available: https://doi.org/10.1155/2022/8802542

https://www.sciencedirect.com/science/article/pii/S1566253523001859
https://doi.org/10.1109/jstsp.2020.2987417
https://system-biblioteka.pja.edu.pl/Opac5/faces/Opis.jsp?ido=40788#
https://doi.org/10.48550/arXiv.2006.06295
https://doi.org/10.1002/arcp.1049
https://doi.org/10.48550/arxiv.2306.00219
https://doi.org/10.48550/arxiv.2305.18676
https://doi.org/10.48550/arxiv.2307.09781
https://doi.org/10.1109/cvpr52688.2022.01583
https://doi.org/10.1109/cvpr52688.2022.01583
https://doi.org/10.1109/cvpr46437.2021.00374
https://doi.org/10.1109/cvpr52688.2022.01768
https://doi.org/10.1109/cvpr52688.2022.01768
https://doi.org/10.48550/arxiv.2301.03396
https://doi.org/10.1145/3581783.3612033
https://doi.org/10.48550/arxiv.2304.01919
https://doi.org/10.1155/2022/8802542

	Introduction
	Historical Context
	Algorithmic Generation
	Current Possibilities

	Related Work
	Theory
	Main Assumptions
	Mapping Semantic Context
	Mapping Aura
	Proposed Methods
	Abstract-Oriented Component Media Perception
	Semantic-Oriented Component Media Perception

	Automated Pipeline Concept
	Retrieving Semantic Context
	Using Intermediary Semantic Source

	Pipeline Implementation
	Automation and Codebase
	Overview

	Pipeline Analisys
	Autonomous and Automated Generation
	Human Involvement
	Types of Coherence
	Levels of Coherence in Proposed Approaches
	Visual Elements as Component Collections
	Strategies for Visual Component Generation

	Fine-Tuning Suggestions
	Role of Creators
	Current Technologies
	Panel Succession
	Panel Styling
	Introducing Motion
	Intraframe Movement
	Generative Transformations

	Conclusion
	Possible Future Research Directions
	Accelerated Advancements in Technology

	Acknowledgements
	References

