
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2024, VOL. 70, NO. 2, PP. 429–436
Manuscript received November 8, 2023; revised June, 2024. doi: 10.24425/ijet.2024.149562

Performance evaluation of microservices
communication with REST, GraphQL, and gRPC

Muhammad Niswar, Reza Arisandy Safruddin, Anugrayani Bustamin, Iqra Aswad

Abstract—Microservice architecture has become the design
paradigm for creating scalable and maintainable software sys-
tems. Selecting the proper communication protocol in microser-
vices is critical to achieving optimal system performance. This
study compares the performance of three commonly used API
protocols: REST, GraphQL, and gRPC, in microservices ar-
chitecture. In this study, we established three microservices
implemented in three containers and each microservice contained
a Redis and MySQL database. We evaluated the performance of
these API protocols using two key performance metrics: response
time and CPU Utilization. This study performs two distinct
data retrieval: fetching flat data and fetching nested data, with
a number of requests ranging from 100 to 500 requests. The
experimental results indicate that gRPC has a faster response
time, followed by REST and GraphQL. Moreover, GraphQL
shows higher CPU Utilization compared to gRPC and REST. The
experimental results provide insight for developers and architects
seeking to optimize their microservices communication protocols
for specific use cases and workloads.

Keywords—Microservices, API, gRPC, REST, GraphQL.

I. INTRODUCTION

SOFTWARE development using microservices architecture
has changed the way we design applications. This archi-

tecture advocates breaking down complex applications into
smaller, self-contained microservices. Each microservice has
specific tasks and can be managed and changed without affect-
ing other components. It allows development teams to focus
on specific aspects of the application, improving scalability,
faster changes, and better fault isolation [1].

In microservice communication, two commonly used proto-
cols are Representational State Transfer (REST) and GraphQL.
REST has been one of the most widely used data exchange
methods, which relies on a number of endpoints to access and
manipulate data. Although REST remains popular, it comes
with certain drawbacks such as over-fetching or under-fetching
data, where the retrieved data may exceed or fall short of
actual needs. Addressing these drawbacks, GraphQL emerges
as an attractive alternative. GraphQL allows clients to specify
the data they needed [2] [3], overcoming REST’s inefficiency
problem and giving application developers more control.

In addition to REST and GraphQL, another data exchange
method gaining attention today is Remote Procedure Call

Muhammad Niswar, Reza Arisandy Safruddin, Anugrayani Bustamin,
Iqra Aswad are with Department of Informatics, Faculty of Engineer-
ing, Hasanuddin University, Gowa, South Sulawesi, Indonesia (e-mail:
niswar@unhas.ac.id, rezaarisandy2525@gmail.com, anugrayani@unhas.ac.id,
iqra@unhas.ac.id.)

(gRPC). gRPC offers an efficient and versatile approach to
communication among distributed services. Unlike the REST
and GraphQL methods that utilize the HTTP/1 protocol, gRPC
employs the HTTP/2 protocol and supports streaming data.
gRPC simplifies remote procedure calls (RPC) across various
programming languages, delivering enhanced performance and
speed in microservice communication [4].

In this research, we aim to evaluate and compare the
performance of REST, gRPC, and GraphQL for data exchange
within a microservice system under both fetching flat data
and nested data. Our study includes a performance analysis
with key performance metrics, including Response Time and
CPU Utilization. By evaluating these three communication
protocols, we aim to assist developers and organizations in
making informed decisions when designing and implementing
microservices-based systems.

II. RELATED WORK

There have been many studies that compare the performance
of REST and GraphQL. Reference [5] describes the perfor-
mance of the REST and GraphQL in using the Ocelot and
Hot Chocolate API gateways in the case of write data and get
data. Reference [6] discusses the advantages and disadvantages
of the REST and GraphQL. When dealing with data that
undergoes frequent changes and needs to be handled efficiently
with resource optimization in mind, GraphQL is the preferred
choice. Reference [7] describes the REST as the appropriate
selection for the data exchange method in situations where
data is consistently accessed. Reference [8] [9] focuses on
implementing GraphQL in a web application, which shifts
from REST to GraphQL. Reference [10] [11] compares REST
and GraphQL for API web design, focusing on response
times and data sizes. Two NodeJS apps performed CRUD
operations on MongoDB. There are no major differences for
a few queries or resource removal. GraphQL outperformed
REST when displaying data under heavy loads and for small
data portions, while REST performed better for large data
portions. Reference [12] compared the performance of REST
and GraphQL architectural models in three different applica-
tions based on metrics like response time and data transfer
rate. It found that GraphQL improved performance in most
cases, except for workloads above 3,000 requests, where REST
performed better. For smaller workloads (100 requests), both
REST and GraphQL showed similar performance. Reference

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,
https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/


430 MUHAMMAD NISWAR, ET AL.

[13] compares REST and GraphQL for data communication in
web applications. An experiment was conducted to assess the
performance of both approaches when requesting nested ob-
jects. The results indicate that GraphQL outperformed REST
in most scenarios. Reference [14] assesses these benefits in
practice by migrating seven systems from standard REST-
based APIs to GraphQL. The key finding is that GraphQL
can significantly reduce the size of JSON documents returned
by REST APIs, with a reduction of 94%.

In addition to studies on the performance of REST and
GraphQL, there are several studies that discuss the perfor-
mance of gRPC. Reference [15] explains microservices and
gRPC, covering their workings, implementations, limitations,
and applications. It relies on reliable online sources to demon-
strate a microservice with gRPC servers. Reference [16] delves
into microservices architecture and its communication meth-
ods, primarily REST API and gRPC. It evaluates the pros and
cons of both approaches and conducts a comparative analysis.
It presents a decision-making framework for organizations
to determine if adopting gRPC offers substantial benefits
over REST for their architecture. Reference [17] explores
the potential of gRPC for improving content delivery in
Kentico Kontent, a widely used Content Management System.
The study aims to evaluate gRPC using the Goal Question
Metric (GQM) methodology. The findings indicate that gRPC
performs exceptionally well in scenarios involving mobile or
IoT applications as clients. Reference [18] discusses load bal-
ancing challenges in gRPC microservices within Kubernetes
using Go. Reference [19] proposes a solution for building
gRPC services using NodeJS as independent modules or
components. Reference [20] focuses on analyzing emerging
technologies for cross-process communication between Linux
and Android-based platforms using the gRPC framework.
The study involves developing applications in various object-
oriented programming languages to perform remote procedure
calls between a single-board computer and a smartphone. The
performance of computational offloading for algorithms in
each platform is evaluated through data analysis. Our study
focuses on the performance comparison of REST, GraphQL,
and gRPC in microservice environments to provide valuable
insights into their respective advantages and drawbacks. We
aim to reveal which communication protocols operate effi-
ciently across various scenarios and workloads.

III. API PROTOCOLS

Application Programming Interface (API) protocols are sets
of rules, conventions, and standards that facilitate commu-
nication and interaction between diverse software programs
and systems. These protocols define the structure and format
of requests and responses, as well as the methods and rules
for communication. The API acts as a bridge that allows
developers to integrate functionality. The most commonly used
API protocols are REST, GraphQL, and gRPC.

A. Representational State Transfer (REST)

REST is an API development architecture that provides
client-server-based communication over the HTTP protocol.

REST was first introduced by Roy Fielding in 2000 as his
doctoral dissertation at the University of California [21]. REST
uses the HTTP/1.1 protocol to send data from clients to
servers. In systems that use REST, each service usually has a
certain endpoint so that it can interact between services and
exchange data. In REST, there are several methods that can be
used including GET, POST, PUT, and DELETE. The REST
supports several formats for presenting data, such as JSON
and XML. JSON is used more often because of its simplicity
and efficiency. Fig. 1 shows the REST communication model.

Fig. 1. REST Model

B. GraphQL

GraphQL, a query language for APIs, was created by
Facebook and used in communication between clients and
servers [22]. The client requests data as needed with a query
so the server can return a response according to the query
request from the client. GraphQL offers an alternative solution
to REST and allows developers to request specific data in
a more efficient and flexible format. The background of the
development of GraphQl was to meet Facebook’s needs in
handling complex data and to overcome the problems in the
REST, such as over-fetching or under-fetching data. One of the
main advantages of GraphQL is its flexibility. With GraphQL,
clients can request multiple data sources in a single request,
reducing the requests needed to retrieve the desired data. In
addition, clients can validate their query requests by using
clearly defined types before sending them to the server. Fig.
2 shows the GraphQL communication model.

Fig. 2. GraphQL Model



PERFORMANCE EVALUATION OF MICROSERVICES COMMUNICATION WITH REST, GRAPHQL, AND GRPC 431

C. gRPC

Google Remote Procedure Call (gRPC) [23] is an open-
source, high-performance framework for building efficient,
distributed systems and microservices. It was developed by
Google and designed to enable communication between appli-
cations and services in a way that is both language-agnostic
and platform-independent. The gRPC allows applications to
define their service methods and data structures using Protocol
Buffers (protobufs), a language-neutral interface definition
language. Based on these definitions, it generates client and
server code in multiple programming languages. Clients and
servers can then communicate using HTTP/2, benefiting from
features like bidirectional streaming, multiplexing, and effi-
cient serialization. It is a high-performance framework for
building efficient and language-agnostic distributed systems,
microservices, and APIs. Fig. 3 shows the gRPC communica-
tion model.

Fig. 3. gRPC Model

IV. SYSTEM DESIGN

In this study, we have developed microservices using Go
(golang), with the study case of Integrated Education In-
formation System in the Ministry of Education and Culture
Indonesia, known as SISTER. It is an integrated information
system used to manage and streamline various educational data
and processes, including student data, teacher/lecturer infor-
mation, school management, and other related aspects of the
education system in Indonesia. This system aims to improve
the efficiency and effectiveness of educational management
and administration.

Our study utilizes Hasanuddin University’s SISTER data,
specifically lecturer data and lecturer’s educational back-
ground. This research aims to assess the performance of
REST, gRPC, and GraphQL. Our proposed service architecture
consists of three services implemented in three containers
including authentication services, fetching lecturer profile ser-
vice (Flat Data), and fetching lecturer profile with educational
background service (Nested Data). Each service contained a
Redis and MySQL database. Fig. 4 shows the architecture of
our system.

The evaluation comprises two distinct data retrieval, i.e.,
fetching flat data and nested data. Fetching flat data refers
to JSON structures where all the data is organized at the
same level, typically using simple key-value pairs. On the
other hand, fetching nested data refers to JSON structures
where data is organized hierarchically, with one or more items
containing other items as properties or elements.

This study utilizes Redis and MySQL as Database Manage-
ment Systems (DBMS), with MySQL as the long-term storage
solution and Redis as the in-memory storage system. Being an

in-memory database, Redis excels in read-heavy operations
and is ideal for our use cases demanding low-latency data
access. Initially, we imported the SISTER data, available at
http://sister.unhas.ac.id/ws.php/1.0 into the MySQL database.
This imported data includes lecturer profile data totaling 2,221
entries and lecturer profiles with educational backgrounds,
which amounts to 6,197 entries. Subsequently, Redis exported
the SISTER data from the MySQL database. The service
fetches data from Redis rather than directly from the MySQL
database in the data retrieval process. In cases where Redis
lacks the required data, the service retrieves it from the
MySQL database and caches it within Redis. During testing,
data retrieval occurs from Redis. Fig. 5 illustrates the data
fetching process within the services.

Fig. 6 shows that JSON represents flat data. It includes a
single object within an array, with several key-value pairs. Fig.
7 shows that JSON represents nested data within the ”pen-
didikanformal” array to represent the lecturer’s educational
backgrounds.

V. PERFORMANCE EVALUATION AND RESULT

Performance evaluation has been conducted to assess the
impact of data fetching load on response time and CPU perfor-
mance. This evaluation aims to evaluate the data exchange with
REST, gRPC, and GraphQL to determine the most suitable
approach for both flat data and nested data cases. We used
Apache JMeter for API load testing. The Apache JMeter
application is open source software designed to conduct load
test on functional capabilities and assess performance [24].

A. Concurrent Requests Evaluation

In concurrent requests evaluation, multiple clients initiate
requests concurrently, ranging from 100 to 500 requests, to
assess response times and CPU utilization under these simul-
taneous load conditions. This approach allows us to gauge
how the system performs when subjected to varying levels of
concurrent user activity. Response time measurements were
conducted for both the fetching flat data and nested data. Each
evaluation was carried out over ten iterations. The average
response time (aveRT) can be calculated using Eq. 1 :

aveRT =
1

n

n∑
i=1

t(resp) − t(req) (1)

In Eq. 1, n represents the number of requests, i represents
the request number, t(req) is the timestamp when the request is
sent and t(resp) is the timestamp when the response is received.
The equation calculates the average time interval required for
the client to receive a response from the sent request.

Fig. 8 shows the average response time for fetching flat
data. For REST, the average response times increase as the
number of requests increases, ranging from 1,113.33 ms for
100 requests to 4,009.83 ms for 500 requests. gRPC offers
significantly lower response times, with averages ranging from
233.84 ms for 100 requests to 2,606.59 ms for 500 requests.
On the other hand, GraphQL shows the highest response times,
with averages increasing from 3,852.07 ms for 100 requests to



432 MUHAMMAD NISWAR, ET AL.

Fig. 4. System Architecture

Fig. 5. Data Fetching Process

Fig. 6. JSON for Fetching Flat Data

21,148.14 ms for 500 requests. In summary, gRPC provides
the fastest response times, followed by REST, while GraphQL

Fig. 7. JSON for Fetching Nested Data

lags with substantially higher response times, particularly as
the request volume increases.

Fig. 9 shows the average response time for fetching nested
data. For REST, as the number of requests increased from 100
to 500, the average response times grew from 5,201.39 ms to
16,646.55 ms. In the case of gRPC, the response times also
increased with more requests, ranging from 5,667.33 ms to



PERFORMANCE EVALUATION OF MICROSERVICES COMMUNICATION WITH REST, GRAPHQL, AND GRPC 433

Fig. 8. Average response time for Fetching Flat Data

Fig. 9. Average response time for Fetching Nested Data

14,962.61 ms. GraphQL showed the highest response times,
averaging 8510.84 ms to 29,734.59 ms as the number of
requests increased. Overall, REST had the lowest response
times, followed by gRPC, while GraphQL exhibited the
slowest response times, particularly with a larger number of
requests.

We also measured CPU utilization to assess the impact of
data fetching load on CPU performance. We aim to gauge
how the act of fetching data, whether it involves retrieving
flat or nested data, influences the CPU utilization. We examine
CPU performance across a range of scenarios, each involving
a varying number of data retrieval requests, spanning from 100
to 500 requests.

Fig. 10. Average CPU Utilization for Fetching Flat Data

Fig. 11. Average CPU Utilization for Fetching Nested Data

Fig. 10 shows the average CPU utilization for fetching flat
data. For REST requests, as the number of requests increased
from 100 to 500, CPU utilization gradually increased from
10.26% to 48.90%. With gRPC requests, CPU utilization also
increased with the number of requests, going from 10.95% to
36.11%. However, for GraphQL requests, CPU utilization ex-
hibited a different trend, starting remarkably high at 120.09%
for 100 requests and gradually increasing to 142.15% for 500
requests. These figures highlight the varying CPU resource
demands of different data request protocols. GraphQL was no-
tably more resource-intensive than REST and gRPC, showing
increased linear CPU utilization with increasing request loads.

Fig. 11 shows the average CPU utilization for fetching
nested data. For REST, CPU utilization increased from 38.23%
at 100 requests to 123.01% at 500 requests. gRPC had lower
CPU utilization, starting at 30.11% and reaching 84.04%
at 500 requests. In contrast, GraphQL showed significantly
higher CPU utilization, exceeding 100% even at 100 requests
and peaking at 177.41% at 500 requests, suggesting higher
processing demands for GraphQL queries than REST and
gRPC as the request load increased.

B. Consecutive Requests Evaluation

In the consecutive request evaluation, clients initiate re-
quests consecutively for five minutes with a varying number
of requests, from 100-500 requests, to measure response time
and CPU utilization during the test.

Fig. 12. Response time during five minutes for Fetching Flat
Data (100 requests)



434 MUHAMMAD NISWAR, ET AL.

Fig. 13. Response time during five minutes for Fetching Flat
Data (300 requests)

Fig. 14. Response time during five minutes for Fetching Flat
Data (500 requests)

Fig. 12, 13, and 14 show that the response time of gRPC is
faster than REST and GraphQL during five minute measure-
ments for fetching flat data. For 100 requests, gRPC has an
average response time of 79.9 ms, while REST and GraphQL
have higher averages of 152.56 ms and 196.9 ms, respectively.
As the number of requests increases to 300 and 500, gRPC
maintains its speed advantage with average response times of
66.42 ms and 67.75 ms, compared to REST’s averages of
154.45 ms and 149.68 ms and GraphQL’s averages of 205.04
ms and 204.35 ms, demonstrating its efficiency in handling
data retrieval operations.

Fig. 15. Response time during five minutes for Fetching Nested
Data (100 requests)

Fig. 15, 16, and 17 show that the response time of gRPC
is faster than REST and GraphQL during five- minute mea-
surements for fetching nested data. For 100 requests, gRPC
performed the fastest, with an average response time of 437.03
ms, followed by REST at 510.47 ms and GraphQL at 589.25

Fig. 16. Response time during five minutes for Fetching Nested
Data (300 requests)

Fig. 17. Response time during five minutes for Fetching Nested
Data (500 requests)

ms. When the number of requests increased to 300, gRPC re-
mained the fastest with 337.34 ms, while REST and GraphQL
showed slight increases in response times. However, when the
number of requests further increased to 500, GraphQL had the
highest average response time at 1,035.46 ms, while gRPC
and REST had response times of 748.22 ms and 798.41 ms,
respectively, with gRPC being the fastest. We also measured
the CPU utilization for five minutes for each data fetching
scenario with a different number of requests (100, 300, and
500 Requests).

Fig. 18. CPU Utilization during five minutes for Fetching Flat
Data (100 requests)

Fig. 18, 19, and 20 show the CPU utilization of three API
protocols during five minutes measurement for fetching flat
data. With 100 requests, REST had the lowest CPU utilization
at 3.87%, gRPC was slightly higher at 4.09%, and GraphQL
had the highest utilization at 17.63%. As the request count
increased to 300, REST’s CPU utilization increased to 4.13%,



PERFORMANCE EVALUATION OF MICROSERVICES COMMUNICATION WITH REST, GRAPHQL, AND GRPC 435

Fig. 19. CPU Utilization during five minutes for Fetching Flat
Data (300 requests)

Fig. 20. CPU Utilization during five minutes for Fetching Flat
Data (500 requests)

gRPC decreased to 3.70%, and GraphQL spiked to 21.62%.
At 500 requests, REST’s CPU utilization increased to 6.95%,
gRPC to 5.98%, and GraphQL had the highest CPU utilization
at 33.53%. These results suggest that GraphQL places a
heavier load on the CPU as the number of requests grows
compared to REST and gRPC.

Fig. 21. CPU Utilization during five minutes for Fetching
Nested Data (100 requests)

Fig. 21, 22, and 23 show the CPU utilization of three API
protocols during five minutes measurement for fetching nested
data. For 100 requests, REST had the lowest CPU utilization
at 3.87%, followed by gRPC at 4.09%, and GraphQL had
the highest at 17.63%. As the request load increased to 300
and 500 requests, the CPU utilization also increased across all
three protocols. REST maintained the lowest utilization, gRPC
in the middle, and GraphQL consistently had the highest CPU
utilization, peaking at 33.53% for 500 requests.

Fig. 22. CPU Utilization during five minutes for Fetching
Nested Data (300 requests)

Fig. 23. CPU Utilization during five minutes for Fetching
Nested Data (500 requests)

The performance evaluation shows that gRPC outperformed
REST and GraphQL in terms of response time and CPU uti-
lization. This superiority can be attributed to gRPC’s adoption
of the HTTP/2 protocol, a departure from REST and GraphQL,
which rely on the HTTP/1 protocol. The efficient handling of
data exchange provided by the HTTP/2 protocol is a signif-
icant factor contributing to gRPC’s enhanced performance in
comparison to its counterparts.

VI. CONCLUSION

Microservice architecture is now the prevailing framework
for developing software systems that are both scalable and
easy to maintain. The selection of the proper communication
protocol within microservices is essential for attaining the
best possible system performance. This research evaluates the
performance of API protocols: REST, gRPC, and GraphQL
in a microservices-based system using Redis and MySQL as
databases. Two distinct data retrieval were examined: fetching
flat data and nested data. Based on the evaluation of response
time and CPU utilization for fetching flat and nested data
scenarios, gRPC outperforms REST and GraphQL. This ad-
vantage can be attributed to gRPC’s utilization of the HTTP/2
protocol, which contrasts REST and GraphQL, relying on the
HTTP/1 protocol. The HTTP/2 protocol is the latest version of
the HTTP protocol designed for client-server communication.
One of its key features is multiplexing, which enables multiple
requests and responses to be efficiently managed over a single
connection. This feature proves especially beneficial in gRPC,
where numerous remote procedure call (RPC) requests can
be executed concurrently on a single gRPC channel. The



436 MUHAMMAD NISWAR, ET AL.

study offers valuable insights for selecting API protocols in
microservices architectures.

REFERENCES

[1] I. Karabey Aksakalli, T. Çelik, A. B. Can, and B. Tekinerdoğan,
“Deployment and communication patterns in microservice architectures:
A systematic literature review,” Journal of Systems and Software, vol.
180, p. 111014, 2021. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0164121221001114

[2] G. S. M. Diyasa, G. S. Budiwitjaksono, H. A. Ma’rufi, and
I. A. W. Sampurno, “Comparative analysis of rest and graphql
technology on nodejs-based api development,” Nusantara Science and
Technology Proceedings, pp. 43–52, Apr. 2021. [Online]. Available:
https://nstproceeding.com/index.php/nuscientech/article/view/322

[3] M. Vesić and N. Kojić, “N. comparative analysis of web application
performance in case of using rest versus graphql,” in Proceedings
of the Fourth International Scientific Conference on Recent Advances
in Information Technology, Tourism, Economics, Management and
Agriculture (ITEMA), Online-Virtual, 2020, pp. 17–24. [Online].
Available: https://doi.org/10.31410/ITEMA.2020.17

[4] Y. Lee and Y. Liu, “Using refactoring to migrate rest applications to
grpc,” in Proceedings of the 2022 ACM Southeast Conference, 2022, pp.
219–223. [Online]. Available: https://doi.org/10.1145/3476883.3520220

[5] N. Vohra and I. B. K. Manuaba, “Implementation of rest api vs graphql
in microservice architecture,” in 2022 International Conference on
Information Management and Technology (ICIMTech). IEEE, 2022,
pp. 45–50. [Online]. Available: https://doi.org/10.1109/ICIMTech55957.
2022.9915098

[6] S. L. Vadlamani, B. Emdon, J. Arts, and O. Baysal, “Can graphql
replace rest? a study of their efficiency and viability,” in 2021
IEEE/ACM 8th International Workshop on Software Engineering
Research and Industrial Practice (SER&IP). IEEE, 2021, pp. 10–17.
[Online]. Available: https://doi.org/10.1109/SER-IP52554.2021.00009

[7] A. Lawi, B. L. Panggabean, and T. Yoshida, “Evaluating graphql and
rest api services performance in a massive and intensive accessible
information system,” Computers, vol. 10, no. 11, p. 138, 2021. [Online].
Available: https://doi.org/10.3390/computers10110138

[8] B. Lama, “Implementing graphql in existing rest api,” B.S. thesis,
Universitat Politècnica de Catalunya, 2019.

[9] M. Vogel, S. Weber, and C. Zirpins, “Experiences on migrating
restful web services to graphql,” in Service-Oriented Computing–
ICSOC 2017 Workshops: ASOCA, ISyCC, WESOACS, and Satellite
Events, Málaga, Spain, November 13–16, 2017, Revised Selected
Papers. Springer, 2018, pp. 283–295. [Online]. Available: https:
//doi.org/10.1007/978-3-319-91764-1 23

[10] P. Margański and B. Pańczyk, “Rest and graphql comparative analysis,”
Journal of Computer Sciences Institute, vol. 19, pp. 89–94, 2021.

[11] M. Mikuła and M. Dzieńkowski, “Comparison of rest and graphql
web technology performance,” Journal of Computer Sciences Institute,
vol. 16, pp. 309–316, 2020. [Online]. Available: https://doi.org/10.
35784/jcsi.2077

[12] M. Seabra, M. F. Nazário, and G. Pinto, “Rest or graphql? a performance
comparative study,” in Proceedings of the XIII Brazilian Symposium on
Software Components, Architectures, and Reuse, 2019, pp. 123–132.
[Online]. Available: https://doi.org/10.1145/3357141.3357149

[13] M. D. C. França and E. da Silva, “Performance evaluation of rest
and graphql apis searching nested objects,” Anais do Computer on
the Beach, vol. 11, no. 1, pp. 237–244, 2020. [Online]. Available:
https://doi.org/10.14210/cotb.v11n1.p237-244

[14] G. Brito, T. Mombach, and M. T. Valente, “Migrating to graphql:
A practical assessment,” in 2019 IEEE 26th International Conference
on Software Analysis, Evolution and Reengineering (SANER). IEEE,
2019, pp. 140–150. [Online]. Available: https://doi.org/10.1109/SANER.
2019.8667986

[15] H. Vo, “Applying microservice architecture with modern grpc api to
scale up large and complex application,” 2021.

[16] M. Stefanic, “Developing the guidelines for migration from restful
microservices to grpc,” Masaryk University, Faculty of Informatics,
Brno, pp. 1–81, 2021.

[17] B. P. Rebrošová, “grpc layer for content delivery in kentico kontent.”
[18] K. Nieman and S. Sajal, “A comparative analysis on load balancing and

grpc microservices in kubernetes,” in 2023 Intermountain Engineering,
Technology and Computing (IETC). IEEE, 2023, pp. 322–327.
[Online]. Available: https://doi.org/10.1109/IETC57902.2023.10152023

[19] M. Vasiljević, A. Manasijević, A. Kupusinac, Ć. Sukić, and D. Ivetić,
“One solution of component based development in nodejs for modu-
larization of grpc services and rapid prototyping,” SAR J, vol. 2, pp.
181–185, 2019.

[20] M. Araújo, M. E. Maia, P. A. Rego, and J. N. De Souza, “Performance
analysis of computational offloading on embedded platforms using the
grpc framework,” in 8th International Workshop on ADVANCEs in ICT
Infrastructures and Services (ADVANCE 2020), 2020, pp. 1–8.

[21] R. T. Fielding, Architectural styles and the design of network-based
software architectures. University of California, Irvine, 2000.

[22] The GraphQL Foundation. (2015) Graphql. September 26, 2023.
[Online]. Available: https://graphql.org/

[23] Louis Ryan (Google). (2015) grpc. September 16, 2023. [Online].
Available: https://grpc.io

[24] The Apache Software Foundation. (Tahun Publikasi) Apache jmeter.
October 23, 2022. [Online]. Available: https://jmeter.apache.org/

https://www.sciencedirect.com/science/article/pii/S0164121221001114
https://www.sciencedirect.com/science/article/pii/S0164121221001114
https://nstproceeding.com/index.php/nuscientech/article/view/322
https://doi.org/10.31410/ITEMA.2020.17
https://doi.org/10.1145/3476883.3520220
https://doi.org/ 10.1109/ICIMTech55957.2022.9915098
https://doi.org/ 10.1109/ICIMTech55957.2022.9915098
https://doi.org/ 10.1109/SER-IP52554.2021.00009
https://doi.org/10.3390/computers10110138
https://doi.org/10.1007/978-3-319-91764-1_23
https://doi.org/10.1007/978-3-319-91764-1_23
https://doi.org/10.35784/jcsi.2077
https://doi.org/10.35784/jcsi.2077
https://doi.org/10.1145/3357141.3357149
https://doi.org/10.14210/cotb.v11n1.p237-244
https://doi.org/10.1109/SANER.2019.8667986
https://doi.org/10.1109/SANER.2019.8667986
https://doi.org/10.1109/IETC57902.2023.10152023
https://graphql.org/
https://grpc.io
https://jmeter.apache.org/

	Introduction
	Related Work
	Api Protocols
	Representational State Transfer (REST)
	GraphQL
	gRPC

	System Design
	Performance Evaluation and Result
	Concurrent Requests Evaluation
	Consecutive Requests Evaluation

	Conclusion
	References

