Spit bar deposits from the Upper Cretaceous (Cenomanian) transgressive sequence in NE Bohemia (Czechia)

ALINA CHRZĄSTEK1 and JURAND WOJEWODA2

1 Institute of Geological Sciences, University of Wrocław, Maksa Borna 9, 50-204 Wrocław, Poland; e-mail: alina.chrzastek@uwr.edu.pl
2 Faculty of Geoengineering, Mining and Geology, Wrocław University of Science and Technology, Na Grobli 15, 50-421 Wrocław, Poland; e-mail: jurand.wojewoda@pwr.edu.pl

ABSTRACT:

We propose a spit bar setting as the possible palaeoenvironment of the basal Late Cretaceous transgressive sequence in NW Bohemia. A new Cenomanian transgression model for the Bohemian Basin is also proposed. The uppermost Devět Křížů Sandstone, which has been conventionally referred to the Bohdašín Formation, probably represents the middle or lower upper Cenomanian (Upper Cretaceous), not the Triassic as previously supposed. We assume that this controversial unit was deposited before the main latest Cenomanian–early Turonian transgression. The spit bars were likely overgrown by vascular plants during their emergence in the late Cenomanian, and then inundated during the latest Cenomanian and early Turonian transgressive phases. The studied deposits had been intensively bioturbated, and the cf. Taenidium suite was recognized for the first time in them alongside the Thalassinoides assemblage (T. paradoxicus, T. suevicus, Thalassinoides isp., cf. Thalassinoides), which are characteristic of the Scoyenia and Glossifungites ichnofacies, respectively. The bioturbated, rhizolith-bearing horizon was presumably a paleosol.

Key words: Spit bar system; Ichnology; Rhizoliths; Cretaceous transgression; Palaeoenvironment; Palaeogeography; Geodynamic control.

INTRODUCTION

Spit bar systems are significant modern coastal features that are seldom recognized in the geological record (e.g., Merletti et al. 2018; Nehyba and Roetzel 2021). There are some difficulties in recognizing ancient spit bars, partly due to the lack of widely accepted depositional models describing their facies characteristics (see Johannessen and Nielsen 2009; Pancrazzi et al. 2022; Pellerin Le Bas et al. 2022 for discussion). They are documented mostly from the Quaternary (Nehyba and Roetzel 2021), with only a few examples known from older marine deposits: Upper Jurassic (Dreyer et al. 2005), Cretaceous (Merletti et al. 2018) and Palaeogene–Neogene (Rasmussen and Dybkjær 2005; Nehyba and Roetzel 2021).

Evans (1942, p. 846) defined a spit bar as “a ridge or embankment of sediment, attached to the land mass at one end and terminating in open water at the other. The crest of the spit from the land outward for some distance rises above the water.” Nielsen and Johannessen (2009, p. 965) expanded Evans’s (1942) definition by “the platform underlying the spit”, which usually has a larger preservation potential that the subaerial spit (see also Meistrell 1972). A model of a complex recurved (“hacked”) spit was postulated by King and Mc Cullagh (1971), as well as Ashton et al. (2007, p. 352), who suggested that spits also recurve or trend “back towards the shore, experiencing waves from a variety of directions.”

Spit bar initiation and growth is mainly controlled by wave-induced longshore currents and cross-shore
Nevertheless, the formation of a spit system “resulted from complex interactions between wave and tide dynamics, fluctuations in sea level, predominantly in a sea level rising regime, the impact of storms, the high sediment supply and geological and morphological inheritance” (cf. Fruergaard et al. 2020, p. 502; see also Nehyba and Roetzel 2021). Spit systems are associated with retreating deltas or river mouths, estuary mouths, bedrock ridges or fault escarpments, or an abrupt change in orientation of shoreline, etc. (compare Leszczyński and Nemec 2015; Nehyba and Roetzel 2021; Spaggiari and Bordy 2023). They often grow in length in the direction of the current and can form lagoons or salt marshes behind them (cf. Hiroki and Masuda 2000; Beni et al. 2013; Shan et al. 2015).

Deposits of spit systems are interpreted as part of transgressive system tracts (Hiroki and Masuda 2000; Nehyba and Roetzel 2021). The formation of spits is favoured by a transgression, though spits may form at all stages of eustatic sea level. For the formation of spit deposits relatively stable depositional conditions are assumed, which are characterized by strong unidirectional currents, high sand supply, and sufficient accommodation space (Nehyba and Roetzel 2021).

In this study, we examine and reinterpret the quartz-kaolinitic sandstones in the Krákorka Quarry near Červený Kostelec (northeastern Bohemia, Czechia; Text-fig. 1). While the uppermost Devět Křížů Sandstone, which is highly bioturbated with trace fossils and root casts, is traditionally included in the Triassic Bohdašín Formation, it is much more similar to the overlying marine upper Cenomanian Peruc-Koryčany Formation (Tables 1 and 2). The association of biogenic structures produced by marine invertebrate tracemakers and continental plants (rhizoliths, root casts) made this locality unique in the fossil record, and has been widely cited as such (e.g., Bengtson et al. 2021; Knaust 2021a; Bertling et al. 2022). We propose and document a spit bar setting as a possible depositional environment for the uppermost Devět Křížů Sandstone based on sedimentological and ichnological records, and suggest that it was deposited in the middle/late Cenomanian rather than in the Triassic. The burrowing styles in the yellowish quartz-kaolinite sandstones, and the palaeogeographic and tectonic context, are briefly discussed. A new model of Late Cretaceous transgression that affected NW Bohemia is also proposed.
GEOLOGICAL SETTING

The Krátkorka Quarry is located in the northern Czech Republic on a morphological elevation that subdivides the late Palaeozoic Náchod and Trutnov subbasins (Text-fig. 2). The area between Červený Kostelec and Úpice is commonly referred to as the ‘U Devěti Křížů’ (Wo"wiejoda et al., 2016). It represents a local structural depression – the Červený Kostelec Trough – that is customarily included into the Trutnov Subbasin (Holub 1972; Uličný 2004). The lower Permian Trutnov and Bohuslavice Formations, which consist of (1) red and brown conglomerates and (2) dolomitic arkosic sandstones and mudstones with dolomite intercalations, and the Triassic Bohdašín Formation are all present in the Trutnov, Náchod and Intra-Sudetic Basins (Vejlúpek 1990; Tášler 1995; Opuluštil et al., 2016; Šimůnek 2019 and references therein; Table 1). The studied sandstones are referred to as the Barchoviní Member, or informally as the Devět Křížů Sandstone after their type locality (Holub 1966; Uličný 2004), which belongs to the uppermost Bohdašín Formation (Prouza et al., 1985; Mikuláš and Prouza 1999). Mikuláš and Prouza (1999) and Čech et al. (2018) suggested an Early to Middle/Late Triassic age for the studied deposits based on the discovery of a dinosaur footprint by Zajíč (1998), which is still regarded as the best chronostratigraphic constraint on the Devět Křížů Sandstone (cf. Mikuláš 2019). Zajíč (1998) reported a theropod footprint belonging to the Coelurosauria, which might suggest a younger depositional age than the Early Triassic, potentially ranging...
Text-fig. 2. Location of the Krákorka Quarry on the Devět Křížů morphological elevation (A), within the Červeny Kostelec structural depression (CKT) between the Trutnov (TB) and Náchod (NB) subbasins, after Opluštil et al. (2022 and references therein), slightly modified. Faults based on Prouza (1988). B – Cenomanian outcrop within the quarry. Explanation of symbols: HG – Hronov Graben, IS – Intra-Sudetic Basin.
into the Jurassic. However, Madzia (2014) suggested that this is an indeterminate dinosauromorph footprint and cannot be used as a stratigraphic marker to date the Bohdašín Formation. Indeed, a diverse assemblage of dinosauromorphs existed as early as in the Middle Triassic (Mikuláš 2019; Marchetti et al. 2021).

Permian, Triassic, and Cretaceous strata are exposed in close vicinity to Krákorka Quarry (Text-fig. 2; Tables 1 and 2). The basement, which lies more than 60 m beneath the quarry mining level, is composed of the youngest (uppermost lower Permian–Saxonian) continental deposits in the Central Sudetes, referred to the Bohuslavice Formation (Śliwiński 1984; Aleksandrowski et al. 1986; Wojewoda 2008).

The Triassic Bohdašín Formation is composed of three main lithofacies: (1) polymictic sandstones and conglomerates, (2) feldspathic sandstones, and (3) kaolinitic quartzose sandstones and conglomerates with abundant monocristalline quartz (cf. Prouza et al. 1985). The first two lithofacies are intermingled, whereas the third is only present in the topmost Bohdašín Formation and is exploited in the Krákovka Quarry. The lower (1) and middle (2) Bohdašín Formation is 60 m thick, and comprises medium-grained arkosic sandstones deposited in braided river and alluvial plain environments (Mroczkowski and Mader 1985; Prouza et al. 1985; Prouza and Tasler 1985; Wojewoda et al. 2016). The upper Bohdašín Formation (3), referred to as the Devět Křížů Sandstone, is 7.5–9.5 m thick and composed of quartz-kaolinite sandstones with a distinct, regular platy parting. These deposits have been re-
garded as alluvial, lacustrine, or aeolian in origin (Váln 1964; Prouza et al. 1985; Mader 1990, 1992; Mikuláš et al. 1991; Uličný 2004), but some workers interpreted them as shallow-marine (Holub 1972; Vejrlupek 1983). The Devět Křížů Sandstone is usually white-grey, passing into yellow in the uppermost portion. Additionally, these yellowish sandstones and conglomerates host abundant monocrystalline quartz and glauconite (cf. Prouza et al. 1985; Mikuláš and Prouza 1999; Uličný 2004). They are also heavily bioturbated. Root traces and trace fossils were recognized in these deposits by Mikuláš and Prouza (1999).

The Triassic deposits are overlain by the lower–upper Cenomanian Peruc–Koryčany Formation (cf. Nádaskáy et al. 2019; Nádaskáy 2021; Table 2), which consists of marine clastic deposits (“glauconitic conglomerates of the Korycany Member”, cf. Mikuláš and Prouza 1999, p. 336). During the Late Cretaceous, the study area was at the periphery of the Mid-European Island, within the Saxo-Bohemian Basin (cf. Voigt 2009; Wilmsen et al. 2014; Voigt et al. 2021; Text-fig. 3).

Uličný (2004) conducted a structural and facies analysis of the sediments exposed in Krákorka Quarry, and reported an aeolian depositional environment. Additionally, Uličný (2004) described two interbedded and laterally transitional facies—dune facies and interdune facies—in the Devět Křížů Sandstone. The dune facies comprises cross-stratified sandstones, while the interdune facies consists of horizontally stratified sandstones with common mud intercalations and a variety of sedimentary and post-depositional structures, i.e., wave and ripple raindrop impressions, adhesion ripples, polygonal desiccation and synersis cracks, and spectacular sand volcanoes (Uličný 2004; Wojewoda et al. 2016). Uličný (2004) interpreted the upward disappearance of interdune facies as resulting from progressive increase in sand availability, leading to the deposition of compound dunes. It is worth emphasizing that an aeolian-fluvial depositional pattern occurs throughout wide swaths of Europe in the Triassic (Mader 1982, 1983). Uličný (2004) explained the presence of trace fossils in the Devět Křížů Sandstone as resulting from Cenomanian marine bioturbation, which penetrated into the root shafts that extended through the Bohdašín and Peruc–Koryčany Formation discontinuity surface. However, he reported no plant fossils within these deposits, which is striking because vegetation should be anticipated in seasonally flooded settings.

Previously, Mikuláš and Prouza (1999) reported the occurrence of *Thalassinoides* [cf. *Thalassinoides paradoxicus* (Woodward, 1830) and *Thalassinoides suevicus* (Rieth, 1932)] and *Arenicolites* isp. in the c. 2 m thick rhizolith-bearing horizon from the uppermost Krákorka Quarry. They postulated that bioturbation intensity increases towards the top of formation, which ranges to the base of the weakly lithified, oligomic, glauconitic conglomerates of the lower Peruc–Koryčany Formation. The formation boundary surface is covered by *Thalassinoides* and root traces (Mikuláš and Prouza 1999, pl. 1, fig. 2). Trace fossils assigned to *Thalassinoides paradoxicus* Kennedy, 1967 were also reported by Knaust (2021a, fig. 5F) from this erosional surface. Mikuláš and Prouza (1999) postulated that the burrows in the studied yellowish quartz-kaolinitic sandstones are Cretaceous in age. The burrowing organisms may have penetrated the yellowish sandstones up to 2 m below the discontinuity surface.

PALAEOGEOGRAPHIC BACKGROUND

In the northern Bohemian Massif, basin development and deposition occurred during the early Permian, the late Permian to Early Triassic, the Middle Jurassic to Early Cretaceous, and the Late Cretaceous (middle/late Cenomanian to early Turonian) (cf. Nádaskáy et al. 2019). However, Valečka (2019) excluded potential deposition during the Early Cretaceous. Conversely, peneplanation and erosion took place during the Middle Triassic to Middle Jurassic and in the Early Cretaceous. During the Triassic, fluvial and lacustrine sedimentation was restricted to the western Bohemian Massif, while the Vindelice-Bohemian mainland was emergent further east (Hejl et al. 2023).

On the Bohemian Massif, the Late Cretaceous transgression began in the middle Cenomanian (see e.g., Wilmsen et al. 2014). The multi-phase sea-level rise from the middle Cenomanian to the early Turonian was responsible for the formation and preservation of thick, valley-filling strata. Recently, Wilmsen et al. (2019) revised the stratigraphy of the northwestern Saxonian Cretaceous Basin based on integrated palaeontological and facies analyses. The transgression was postulated to begin in the early middle Cenomanian instead of the late early Cenomanian, as assumed previously. Wilmsen et al. (2019) proposed that transgressive phases occurred in the early middle Cenomanian, the early late Cenomanian, and the latest Cenomanian–early Turonian, with regressive phases in the middle middle Cenomanian and middle late Cenomanian, respectively. The Saxonian and Bohemian Cretaceous Basins were first connected during the late Cenomanian, when the West Sudetic Island was separated from the mainland by a shal-
low seaway (Wilmsen et al. 2019; Text-fig. 3). During the Late Cretaceous, the Bohemian Cretaceous Basin formed a narrow seaway connecting the North Sea Basin and the Tethys Ocean (Voigt 2009; Čech 2011; Voigt et al. 2021). Several hundred metres of Upper Cretaceous marine sediments accumulated in central and northern Bohemia (Uličný et al. 2009). However, Špičaková et al. (2014) argued that due to the lack of precise bio- or chemostratigraphic criteria, individual phases of the relative sea-level record in the Bohemian Cretaceous Basin cannot be precisely correlated to other Late Cretaceous basins. Recently, Nadaskaý (2021) postulated that the main transgressive pulse at the Cenomanian–Turonian boundary is recorded in both Saxonian and Bohemian basins.

The Late Cretaceous transgression resulted in various diachronous deposits, ranging from the middle/late Cenomanian to the early Turonian, across the Sudetes. Depending on the timing of flooding, and the local topographic and geological characteristics (for instance, weathering, local palaeoslope inclination), different sedimentary styles resulted. For example, in the Cenomanian, areas with the older sedimentary substrate (Intra-Sudetic Synclinorium, Náchod and Trutnov Basins), were generally characterized by fining-upwards deposition. Elsewhere, in localities that were submerged only in the early Turonian (e.g., Orlicka Island, Nove Mesto), the Cretaceous succession begins with a 10–15 cm thick gravel cover on the crystalline substrate, passing into fine-grained calcareous and siliceous deposits. Only after the maximum Cretaceous transgression in the early Turonian, and subsequent regressive-progradational episodes, did the palaeotopographic conditions become uniform across the entire basin, as documented by Cretaceous deposits in the Saxonian facies on the northern and northwestern peripheries of the Bohemian Massif.

According to Valečka (2019), the remnant Jurassic deposits on the West Sudetic Island supplied debris to the Bohemian Cretaceous Basin, and diagnostically Jurassic clasts are found in Upper Cretaceous to Neogene deposits, for instance, in the Coniacian sandstones of north Bohemia. In the Jurassic, fluvial, deltaic, and nearshore clastic sedimentation in the Bohemian Massif began on its southeastern slopes in the Bajocian to Bathonian, and extended to north Bohemia and Saxony in the latest Callovian (Valečka 2019). Subsequently, the early Kimmeridgian and Oxfordian transgressive phase from the northern Tethys led to the development of a Jurassic seaway across much of the Bohemian Massif, and the connection of its southeastern margin with north Bohemia and Saxony (cf. Valečka 2019).

METHODS

Sedimentary structures, burrows, and root traces were described, measured and photographed in the field. Laboratory descriptions of collected trace fossil specimens were supplemented by detailed photographs. Bioturbation indices (BI) or the bedding-plane horizontal index (BPHI after Dorador and Rodríguez-Tovar 2014), which reflect the extent of bioturbation on originally horizontal bedding-planes, were quantified in situ on exposed horizontal surfaces in 0.5×0.5 m grids, following Miller and Smail (1997). This scheme resembles closely the method of Droser and Bottjer (1986) for evaluating ichnofabric as represented on vertical surfaces and facilitate comparison between horizontal and vertical exposures (cf. Dorador and Rodriguez-Tovar 2014; Tables 3 and 4).

Horizontal bedding-plane bioturbation indices range from BI = 0 (without bioturbation) to 5 (homogenized sediment with no primary sedimentary

<table>
<thead>
<tr>
<th>Bedding-plane bioturbation indices (BI)</th>
<th>Disruption of bedding planes by the activity of organisms (%)</th>
<th>Bioturbation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>No bioturbation.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0–10</td>
<td>sparse bioturbation</td>
<td>Bioturbation may be represented by zones of generalized disruption or by discrete trace fossils. Most discrete structures are isolated, but some intersect.</td>
</tr>
<tr>
<td>3</td>
<td>10–40</td>
<td>low bioturbation</td>
<td>Bioturbation represented by discrete traces, zones of generalized disruption, or by both.</td>
</tr>
<tr>
<td>4</td>
<td>40–60</td>
<td>moderate bioturbation</td>
<td>Bioturbation represented by discrete traces, zones of generalized disruption, or by both. Interpenetration of discrete structures is more common than in less bioturbated surfaces.</td>
</tr>
<tr>
<td>5</td>
<td>60–100</td>
<td>high bioturbation</td>
<td>This includes bedding planes in which up to 100% of the bedding plane Surface has been disrupted by the activity of animals.</td>
</tr>
</tbody>
</table>

Table 3. Diagram of bedding-plane bioturbation indices according to Miller and Smail (1997).
structures, interpreted as complete bioturbation; see Table 3). While the bioturbation index is commonly measured in marine sequences, it has been adapted for continental deposits, for instance paleosols with insect burrows (Genise et al. 2004; Hsieh and Uchman 2023; Nascimento et al. 2023). Ichnofabric indices (ii after Droser and Bottjer 1986; see also Taylor and Goldring 1993; Taylor et al. 2003), based on the percentage of ichnofabric disturbance by trace fossils, were measured on vertical surfaces in 0.5×0.5 m grids. In this scheme, ii = 1 means no bioturbation (0%), whereas ii = 5 means completely disturbed bedding with still occasionally discrete burrows (60–100%). In this scheme, burrows can locally overlap at ii = 3, and cross-cutting (burrow overlap) is common at ii = 4 (see Table 4).

Rhizoliths mainly occur as root casts. Their characteristics, i.e., length, thickness, branching angle and colour, were described following Klappa (1980), Retallack (1988), and Kraus and Hasiotis (2006).

LITHOLOGY OF THE UPPERMOST DEVĚT KŘÍŽŮ SANDSTONE

The sandstones and conglomerates of the uppermost Devět Křížů Sandstone reach a total thickness of up to 2.2 m (Text-fig. 4). In Krákorka Quarry, it is possible to distinguish 3 distinct, compound units forming a characteristic sequence: (1) a lower (basal) conglomerate, (2) a lower compound conglomeratic sandstone layer, and (3) an upper compound sandstone-to-conglomerate layer.

Section 1 – Lower (basal) conglomerate – residual lag (6–7 cm)

The sequence begins with a quartz gravel conglomerate, with a maximum clast size of <2 cm and a kaolinitic cement (Text-fig. 5A). The grains are matrix supported, very well rounded and not oriented. The normal grading of the gravel fraction is weakly marked, and the transition to the overlying sediments is gradual. Rhizocretions continue throughout the conglomerate layer, and probably extend up to the top of the Lower Triassic deposits.

Section 2 – Lower compound conglomeratic sandstone layer (1.35 m)

Directly above occurs a compound conglomeratic sandstone layer, with a composition varying from quartz arenite to lithic subarkose with clay cements composed mostly of illit (Text-figs 4, 5B). The pebbles are less than 1.5 cm in diameter. In the lower part, this layer shows only relics of primary bedding, with abundant plant (rhizoliths) and invertebrate (trace fossils) bioturbation. There are abundant clayey intraclasts with vermiculite locally showing clear (pseudo?) imbrication fitting to the bedding relics (Text-fig. 5E). Above, the sediment is clearly stratified, with the dominant inclination of low-angle bedding surfaces (<15º) ranging between ~300º and 20º (Text-fig. 5C). There are numerous clay intraclasts that show clear current imbrication on slightly inclined reactivation surfaces, suggesting northwards intraclast transport (Text-figs 5E, 6C, D). In some places, clay material is so abundant that the sediment gives the impression of a uniform, lenticular clay level – only bedding surface observations reveal the presence of numerous intraclasts. The upper part of the layer is clearly cross-bedded. In sets, up to 0.5 m thick, cross tangential bedding dominates and dips at approximately 270º to 320º (Text-fig. 5B–D). Differently oriented erosional surfaces are common in this part of the profile, over which sedimentation evidently reactives. Littic shaped surfaces incline in the same direction as the co-set cross-bedding, as well as low-amplitude trough surfaces with transverse axes of predominate layering. Reactivation

<table>
<thead>
<tr>
<th>Ichnofabric indices (ii)</th>
<th>Disruption of ichnofabric by the activity of organisms</th>
<th>Bioturbation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0%</td>
<td>sparse bioturbation</td>
<td>No bioturbation recorded; all original sedimentary structures preserved.</td>
</tr>
<tr>
<td>2</td>
<td>up to 10%</td>
<td>low bioturbation</td>
<td>Approximately 10 to 40% of original bedding disturbed. Burrows generally isolated, locally overlapping.</td>
</tr>
<tr>
<td>3</td>
<td>10–40%</td>
<td>moderate bioturbation</td>
<td>Last vestiges of bedding discernible; approximately 40 to 60% disturbed. Burrows overlap and are not always well defined.</td>
</tr>
<tr>
<td>4</td>
<td>40–60%</td>
<td>high bioturbation</td>
<td>Bedding completely disturbed, but burrows are still discrete in places and the fabric is not mixed.</td>
</tr>
<tr>
<td>5</td>
<td>60–up to 100%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Diagram of ichnofabric indices after Droser and Bottjer (1986).
Text-fig. 4. Generalized lithostratigraphic profile in the Krátkorka Quarry, with lithologic characteristics, approximate thickness, and generalized sedimentological and/or environmental interpretations. Lithostratigraphy of the Cretaceous is applicable only to the near vicinity of the quarry. Numbers 1–4 refer to individual sections, for details see text; Bohdašín Formation: section 1 – lower basic conglomerate – residual lag; section 2 – lower compound conglomeratic sandstone layer; section 3 – upper compound sandstone-and-conglomerate layer; section 4 – marine transgressive sequence of the Peruc-Koryčany Formation. Abbreviations: tc – trunk casts, rc – root casts; ic – clay intraclasts, Th – Thalassinoides.
surfaces are often covered with continuous clay covers (not intraclast accumulation), up to 3 cm thick (Text-fig. 6C, D). The whole layer is intersected by root casts accompanied by invertebrate bioturbations
Section 3 – Upper compound sandstone-and-conglomerate layer (65 cm)

Above occurs another compound layer, composed mostly of coarse-grained to conglomeratic lithic arenite, with illite and/or silica cement (Text-fig. 4). The maximum clast size is up to 2 cm. This layer shows inverse grading in both the sandy and gravelly fractions. Primary bedding relics are very poorly preserved; in the Krákorka Quarry, they create irregular, wavy surfaces that are dominantly inclined towards the north (Text-fig. 5G). Within the layer, there are vertically-oriented cylindrical structures, most likely traces of buried woody plant trunks, filled with coarser-grained, mostly gravelly clasts. The layer is topped by a polymictic conglomerate member, and the boundary between the conglomeratic sandstone and the capping conglomerate is not erosive. Thus, it is difficult to unambiguously determine if this constitutes a separate unit of distinct origin. The material in the conglomerate is the same as that filling the trunk-related voids, but due to the lack of a basal erosive surface it does not represent a typical residual lag. Instead, it rather resembles proximal tempestite deposits that formed at the base of nearshore bars (see Einsele et al. 1991; Myrow and Southard 1996; Tiffany et al. 2013). It may be associated with conglomerates of the overlying marine Peruc-Koryčany Formation, but does not contain glauconite and was probably deposited under different conditions. Therefore, they may be a record of the initial, high-energy stage of transgressive sediment developments as the erosional base (i.e., wave base) gradually rose.

Section 4 – Marine transgressional sequence of the Peruc-Koryčany Formation

The Krákorka Quarry profile is capped by a similar polymictic sandstone layer, up to over 5 cm thick, to that ending the initial transgressive sequence, except that it contains abundant glauconite and chamosite (cf. Text-figs 4, 5H). Moreover, the boundary between the previous conglomerate and this conglomerate is very distinct and presumably erosive. This conglomerate has been commonly referred to as the “glauc oncitic conglomerate” of the upper Cenomanian Peruc-Koryčany Formation (cf. Mikuláš and Prouza 1999, p. 336). In Krákorka Quarry, the conglomerate reaches a maximum thickness of approximately 25 cm, transitioning upwards into a very strongly bioturbated, medium-grained lithic greywacke. About 25 m from the quarry, conglomerates of the upper Cenomanian Peruc-Koryčany Formation pass up into mudstones, fine-grained sandstones, spongoliolites, and finally argillaceous glauconitic sandstones (Lower Quadersandstein megafacies) of the lower Turonian Bílá Hora Formation (Text-figs 2, 3; Table 2).

Sediment architecture

The lower structural assemblage (‘base to inner bar’; ‘number 1’ in Text-fig. 6A, C, D) consists of coarse-grained sandstone co-sets, with cross-stratification resembling apparent hummocky cross-stratification (HCS), cut with low-angle erosional surfaces, and covered with clay or mud. The central assemblage (‘number 2’ in Text-fig. 6A, C, D) consists of multiple planar or trough cross-beded sets that represent current ripple and dune deposits (Text-fig. 5F). The sets are arranged in a climbing system and the set boundaries incline opposite to the bedding direction, which generally shows a northwards palaeotransport – i.e., nearly opposite to the regional palaeoslope inclination (Text-fig. 5F). In places, at the base of the sets, there are numerous accumulations of sharp-edged clay-and-mud intraclasts that are characteristically parallel to the bedding planes (pseudoimbrication) (Text-figs 5D, 6C). All of these structures are cut by reactivation surfaces, which commonly feature irregular (rimmed) intraclasts showing locally characteristic current imbrication (Text-fig. 6A). Some reactivation surfaces are covered with a <3 cm thick continuous clay-mud layer (Text-fig. 6C). Moreover, the greatest concentrations of biogenic structures occur in the vicinity of reactivation surfaces. The topmost bar deposits (‘number 3’ in Text-fig. 6A), predominantly developed as structureless sandstones and conglomerates, are preserved only in the highest third of the succession. They most probably represent residual pavements that initiate the overlying transgressional sequence. However, they also include well-preserved buried trunk traces (Text-figs 5G, 6B), which continue downwards as rhizocreations to the top of the older, kaolinitic Triassic sandstones.

DESCRIPTION OF PLANT TRACES

In the studied deposits, rhizoliths are the main organic structures and usually occur as root casts with or without branching (Text-figs 7–11). Buried trunk...
casts also appear, as well as horizontal networks of bifurcated root traces and unrecognizable ovoid structures. Following Klappa (1980), and Kraus and Hasiotis (2006 and references therein), rhizoliths are defined as organo-sedimentary structures that preserved plant root activity (see also Sarjeant 1975). While they were previously recognized as trace fossils, root traces are not presently considered as such (see Bertling et al. 2006, 2022).

Vertical root casts
(Text-figs 7, I, J, 8A–K, 10D, F–H, 11A–H)

MATERIAL: 30–40 specimens, including 3 fossil trunks.

DESCRIPTION: Simple cylindrical to subcylindrical, downward tapering structures, which are mostly vertically oriented, up to 1.5–1.6 m in length and usually 1–2 cm in width (Text-fig. 8D–G). The majority are unbranched, but some possess finer horizontal branches. These off-branches that radiate from the central axis also show a decreasing diameter. The main roots are predominantly vertical, while the off-shoots are mostly horizontal. They are filled with a grey-greenish, fine-grained sand. Some fossil trunks, 90 cm long and 8–9 cm wide, also appear in the top portion of these sandstones (Text-fig. 8A–C).

REMARKS: The studied simple, cylindrical, predominantly vertically oriented structures that taper downward are identified as root casts (cf. Klappa 1980). Similar structures were reported by Mikuláš and Prouza (1999, pl. I, fig. 1, pl. IV, fig. 1) from the studied deposits and described as ‘root canals.’ Earlier, Mader (1990) interpreted the root traces from the Krákorka Quarry as conical lycopod plant stems.

Rhizocretions
(Text-fig. 7A–H)

MATERIAL: 10–20 specimens mainly observed in the first conglomerate bed (Text-figs 5A, 7A–H). They are vertically oriented in relation to the bedding-plane.

DESCRIPTION: Circular to elliptical cross-sections visible on the bedding plane. Concentric (Text-fig. 7A, B), conical, downward tapering structures (Text-fig. 7D, E). Their upper surfaces are usually flat and slightly concave with rounded edges (Text-fig. 7D, F). In the middle of each specimen, there is a root canal up to 1 cm in width (Text-fig. 7D, F–H). However, in the specimen figured in Text-fig. 7C, two circular root canals are visible. Their diameter ranges from 3 to 6 cm, usually 4 cm, while the visible length ranges up to 5 cm. These structures are beige or rusty brownish.

REMARKS: The presence of circular to elliptical transverse outlines, and in lateral view conical-shaped concentric structures with preserved centric or eccentric axial tunnels suggests an assignment to rhizocretions (cf. Knaust 2015; Bojanowski et al. 2016; Uchman et al. 2023, fig. 15). These structures are interpreted as having formed around plant roots (cf. Klappa 1980, 2006) due to the precipitation of calcium carbonate, iron oxyhydroxides, and/or other iron minerals in the soil (cf. Uchman et al. 2023). According to Uchman et al. (2023), ferruginous concentrations around the central tunnel are typical of pedogenic processes (Text-fig. 7A). Previously, Mikuláš and Prouza (1999, pl. IV, figs 2–5) interpreted such structures as “complexly filled or thick-lined ?root canals.” In Chrząstek and Wojewoda (2022) and Wojewoda et al. (2022), some root traces (here identified as rhizocretions) from Krákorka Quarry were incorrectly assigned to the Rosselichnidae. Similar rhizocretions were reported by Nascimento et al. (2023, pl. 5B) and Uchman et al. (2023, figs 6A–E, 7, 12C) from ancient and modern paleosol settings, including loesses and other fine-grained deposits. Uchman et al. (2023) described enigmatic structures (‘rhizoclasts’) from shallow-marine Miocene deposits of Hungary, which were interpreted as rhizocretions redeposited from another terrestrial environment. Nascimento et al. (2023) reported rhizocretion levels with stacking patterns that occur between different depositional crevasse splay deposits within a paleosol. The ferruginous rhizocretions usually developed on living roots in a moderate climate with both oceanic and continental influences, under fluctuating water table and oxygen conditions (cf. Uchman et al. 2023 and references therein).

Horizontal rhizoliths
(Text-figs 7I, 8L, M, 9B, C, E, F)

MATERIAL: Observed usually on sandstone bedding-planes, where they occur in abundance.

DESCRIPTION: The specimens show numerous Y-shaped branching patterns. In some cases, a terminal tapering of rhizoliths was observed (Text-fig. 9E, F). The rhizolith diameters range from 0.5–1 cm to 2–8 cm, and lengths from 50–70 cm to 150–160 cm.
REMARKS: Sedorko et al. (2020, fig. 5G) and Knaust (2017, fig. 5.182a) reported similar horizontal rhizolith network systems, with bifurcations at bedding planes. Mikuláš and Prouza (1999, pl. III, figs 1, 2) reported horizontal root canals from the studied deposits.

Unrecognized ovoid structures
(Text-fig. 8L, M)

MATERIAL: 4 specimens; cross-sections of ovoid unrecognizable structures on bedding planes in close association with horizontal rhizoliths.

DESCRIPTION: These structures, in some cases elliptical, are up to 8 cm diameter. It seems that they contain rhizoliths (Text-fig. 8L).

REMARKS: Knaust (2015, fig. 7E) reported similar caliche nodule structures that contain rhizolith root traces from Triassic fluvial deposits in Bornholm, Denmark. D’Alessandro et al. (1993) also reported ovoid bodies and interpreted them as possible plant components, parasites, or termite nests. According to Genise et al. (2010) and Genise (2016, 2019), ovoid structures referred to as ‘rhizolith balls’ are subspherical carbonate balls composed of a dense rhizolith mass, and possibly represent evidence of insect agriculture, the first described from Lower Cretaceous deposits. Chakraborty et al. (2013) postulated that their common association with carbonate nodules may be indicative of rhizoliths.

SYSTEMATIC ICHNOLOGY

A low diversity trace fossil assemblage was recognized, comprising Thalassinoides paradoxicus, T. suevicus, Thalassinoides isp., cf. Thalassinoides isp. and cf. Taenidium. Some indeterminate trace fossils resembling Arenicolites and Beaconites were also observed. However, due to their poor state of preservation, they are left in open nomenclature at the present time. The ?Taenidium ichnofabric was reported for the first time from these deposits.

Taenidium Heer, 1877

cf. Taenidium isp.
(Text-figs 8E, 10A–D, F–I, 11E, G)

MATERIAL: Several specimens in close vicinity to root traces, but also at some distance from rhizoliths.

DESCRIPTION: Unwalled, unbranched cylindrical straight to curved burrows with poorly defined menisci. Cross-sections of these backfilled structures are circular. Burrow courses mostly vertical and inclined, especially in association with rhizoliths, less commonly horizontal. True branching was not observed, but rare secondary branching and/or false branching caused by cross-cutting relationships of individual specimens were observed (Text-fig. 10A, G). In some cases, especially in close association with roots, burrows form dense networks. The diameter of the studied specimens is usually about 1 cm, while length varies from a few to several centimeters. The burrows are rusty-dark brown.

REMARKS: The burrow morphology is consistent with ichnotaxobases of Taenidium, especially T. barretti Bradshaw, 1981 (cf. Keighley and Pickerill 1994). They are similar to the T. barretti burrows described by Nascimento et al. (2023, figs 3G, H, 6G). However, in the majority of specimens that resemble Taenidium, the menisci are poorly visible and/or the presence of menisci is doubtful. False branchings due to overlapping trace fossils, which are characteristic of Taenidium specimens, are also common (compare Nascimento et al. 2023). Due to the poor state of preservation and subtly marked menisci, the studied burrows are left in open nomenclature as cf. Taenidium.

This meniscate backfilled burrow is regarded as fodinicchnion or paschicnion (D’Alessandro and Bromley 1987; Fürsich et al. 2018). A combination of different behaviours, such as detritus-feeding, locomotion and dwelling, is proposed for the Taenidium tracemakers (cf. Rodriguez-Tovar et al. 2016). It characterizes the marine Cruziana ichnofacies (MacEachern et al. 2007, 2012) and the freshwater Scoyenia ichnofacies (Nascimento et al. 2023). Trace markers are postulated to be oligochaetes, myllipeds, myriapods, crustaceans, cicada nymphs, earthworms and beetle larvae (Verde et al. 2007; Nascimento et al. 2023 and references therein). Taenidium is a widespread ichnogenus in both marine and terrestrial deposits (Bengtson et al. 2021). An association between Taenidium and root casts was recognized previously by D’Alessandro et al. (1993), who described the close association of Taenidium and vertical roots, in which burrows were clustered tightly around the plant traces, in some cases up to more than 1 m below the sediment-water interface. In continental settings, Taenidium is known from crevasse splay deposits, floodplain deposits, lakes, fluvial channels and eolian deposits (Keighley and Pickerill 1994; Knaust 2015; Sedorko et al. 2020; Nascimento et al. 2023). It ranges from the Cambrian to the Recent (Mángano and Buatois 2016).
Text-fig. 11. *Thalassinoides* penetration along bedding surfaces. Abbreviations as in Text-figs 7 and 8. A–H – Trace fossil suites arranged along bedding boundaries. Trace fossils penetrated from the top beds (cf. *Thalassinoides* isp.). Some burrows assigned as cf. *Taenidium* isp. are associated with rhizoliths, which occur mostly as root casts.
Thalassinoides Ehrenberg, 1944
Thalassinoides paradoxicus Kennedy, 1967

MATERIAL: Several specimens that occur at the discontinuity surface and sometimes within the yellowish sandstones. Thalassinoides (cf. T. paradoxicus) was previously reported in Krákorka Quarry by Mikuláš and Prouza (1999, pl. II/1-3), and Thalassinoides paradoxicus by Knaust (2021a, fig. 5F).

DESCRIPTION: Burrows appearing as interconnected, irregular cylindrical tunnels of slightly varying diameter, which represent T-shaped branching pattern and circular to elliptical cross-sections. Tunnel enlargements at the branching points are rare. The studied specimens are mostly irregularly shaped, unlined, sharp-walled, and rarely branched. Their surface is mainly smooth, without ornamentation. They are not flattened. Some blind tunnel-terminations were also present. They appear in abundance at the erosional surface, the upper boundary of the Bohdašín Formation is overlain by transgressive conglomerates of the Peruc-Koryčany Formation. Horizontal tunnels that form a burrow network prevail, though common vertical tunnels (‘finger-like branches’) that penetrated from this surface were also visible (Text-fig. 9A; cf. Mikuláš et al. 2002). The observed burrows show a constant diameter, from 1.5 to 2.5 cm, and their length varies from 10 to almost 100 cm. The dark brown – rusty color of the burrow is different from the host rock, so they are quite visible on sandstone surfaces. Some poorly preserved specimens did not show all ichnotaxobases needed for taxonomic assignment were described as cf. Thalassinoides (Text-figs 7I, 9D–F, 10A, K, 11A–D, F, H) or ?Thalassinoides (Text-fig. 9G).

REMARKS: The presence of an irregular horizontal burrow network on bedding planes connected by vertical shafts, and the occurrence of blind tunnels suggests assignment to Thalassinoides paradoxicus (cf. Knaust 2021b and references therein). The presence of finger-like branches pointing downwards from the discontinuity surface makes these burrows similar to the specimens described by Mikuláš et al. (2002), who reported Thalassinoides from Czech metavolcanic rocks that penetrated up to 30 cm depth (see Text-fig. 9A). The majority of studied specimens did not exhibit swellings at junctions, and so were described as cf. Thalassinoides (Text-fig. 9D) or ?Thalassinoides isp. (Text-fig. 9G). Mikuláš and Prouza (1999) recognized Thalassinoides (cf. T. paradoxicus, cf. T. suevicus) in Krákorka Quarry that penetrated up to 2 m below the discontinuity surface between the Bohdašín and Peruc-Koryčany Formations. However, in the present study Thalassinoides penetration is clearly about 30–50 cm. Thalassinoides might occur in the deeper part of the studied sandstones (Text-figs 7I, 10A, E, 11A–D, F, H), but the possible specimens are rare and did not show all ichnotaxobases needed for taxonomic assignment, such as swellings at junctions. They are fragmentarily preserved and represent similar branching pattern to commonly preserved rhizoliths, so discriminating these trace fossils from rhizoliths is difficult. These specimens were mostly described as cf. Thalassinoides. On the other hand, several authors reported the absence of swellings at Thalassinoides tunnel junctions (see Pervesler and Uchman 2009; Zhang et al. 2017; Bengtson et al. 2021). The morphology of some horizontal specimens that have – chevron-like menisci and walls – also slightly resembles Beaconites (Howard and Frey 1984; Boyd and McIlroy 2017, compare Keighley and Pickrell 1994; Text-fig. 9E). However, these diagnostic features are poorly marked, so they were also assigned as cf. Thalassinoides.

Thalassinoides paradoxicus is regarded as domichnia, fodonichnia, or even agrichnia (see Myrow 1995; Bromley 1996; Ekdale and Bromley 2003, respectively). It mainly characterizes the Glossifungites and Cruziana ichnofacies in firm and soft grounds (Knaust 2017, 2021b). The Cruziana ichnofacies is typical of shallow-marine environments, but occurs in a wide range of settings, including lagoons, bays, estuaries, and tidal flats (MacEachern et al. 2007; Bhattacharyya et al. 2016; Pemberton et al. 2012; MacEachern and Bann 2020).

The Thalassinoides specimens found in the uppermost part of Krákorka Quarry are irregularly shaped, unlined, sharp-walled, and passively-filled. These features indicate excavation in a semi-consolidated, firmground substrate (cf. MacEachern et al. 2012). The degree of flattening in the studied Thalassinoides is very low, typical of the Glossifungites ichnofacies (MacEachern et al. 2007, 2012). In this substrate-controlled ichnofacies, a low diversity trace fossil assemblage is typical, but individual burrows may be abundant (Pemberton and Gingras 2005). The associated firmground usually results from erosional exhumation of muddy or sandy compacted, dewatered, and/or early cemented substrates (Abdel-Fattah et al. 2016) in terrestrial, shallow-water and deep-marine settings. These firmground substrates are colonized by opportunistic trace-makers during a transgression phase, which coincides with a depositional hiatus and the
formation of discontinuity surfaces. *Glossifungites* ichnofacies suites occur in a wide range of environments, including intertidal, bay margin, brackish, estuarine, shallow marine, and deep marine settings. They are dominated by vertical and subvertical dwelling burrows of suspension-feeding organisms (*Arenicolites*) and dwelling structures of deposit feeders (*Thalassinoides, Taenidium*) (cf. Abdel-Fattah et al. 2016 and references therein). *Thalassinoides paradoxicus* is known from the Cambrian to the Recent (Mángano and Buatois 2016 and references therein).

Thalassinoides suevicus (Rieth, 1932) (Text-fig. 9B, C, E)

MATERIAL: Several specimens preserved at the discontinuity together with numerous rhizoliths on bedding planes. *Thalassinoides* (cf. *T. suevicus*) was reported by Mikuláš and Prouza (1999, pl. II/4-4, III/1-2).

DESCRIPTION: Horizontal burrow network that consists of cylindrical horizontal tunnels with Y-shaped branching patterns. Tunnel enlargements at bifurcation points are very rare, but in some cases visible (Text-fig. 9B). The tunnel diameters vary from 1.5 cm up to 2.5 cm and the visible length is up to 40 cm.

REMARKS: The presence of horizontal specimens that mostly represent Y-shaped branching-patterns suggests assignment to *Thalassinoides suevicus* (cf. Knaust 2021a, b and references therein). However, in many cases, the studied specimens do not show the necessary ichnotaxobases for recognition and interpretation, such as enlargements of Y-shaped branchings. The invariant width at branching points makes this assignment difficult. Mikuláš and Prouza (1999, p. 336), who studied *Thalassinoides* from Krákorka Quarry, also observed that “prominent enlargements of the system at bifurcation points are rare.” The *Thalassinoides suevicus* network is morphologically very similar to the rhizoliths. The similarity of the Y-shaped branching pattern produced by rhizoliths and crustaceans can be confusing (see Uchman et al. 2012). However, while the plant traces have similar Y-shaped branching patterns to *Thalassinoides*, they differ in having decreasing diameters.

Unrecognized trace fossils (Text-fig. 10J)

MATERIAL: Several double openings at sandstone bedding planes. One specimen (*Arenicolites isp.*) was reported by Mikuláš and Prouza (1999, pl. I/3), 30 cm below the discontinuity surface between the Bohdašín and Peruc-Koryčany Formations.

DESCRIPTION: Some paired openings at the yellowish sandstone bedding planes. A simple U-shaped tube that is vertical or inclined to the bedding plane without spreiten is not visible. Tube diameters vary from 0.5 to 1.0 cm.

REMARKS: The presence of paired, circular traces might suggest assignment to the ichnogenus *Arenicolites* Salter, 1857. In some cases, the ichnogenus *Arenicolites* was differentiated on the basis of vertical to slightly inclined paired burrows (see Gillette et al. 2003), instead of the presence of U-shaped structures. However, for precise assignment polished samples of the traces are needed. Further research may be useful for precise taxonomic affiliation. At the present time, the studied specimens are left in open nomenclature.

DISCUSSION

Sedimentology of the uppermost Devět Křížů Sandstone

The sediments described here form a characteristic facies structure characterized by: (a) the repetition of three assemblages of sedimentary structures representing the lower, central and top parts of the described sediments, (b) highly bio-disturbed sediments, (c) and gravel covered levels (Text-fig. 4, sections 1–3).

We suggest that the studied quartz-kaolinitic sandstones were deposited in shallow-marine environments during the initial phase of the transgression. The presence of chamosite and glauconite confirms this interpretation (cf. Porrenga 1967; Rubio and López-Pérez 2024; Text-fig. 4, section 4). On the basis of the directions of sedimentary structures (e.g., ripple and dunes bedding, irregular wavy layering, Text-fig. 5F, G), which are directed landwards we speculate that the studied sand body represents a positive accumulation form. Furthermore, a unimodal palaeotransport direction dominates (Text-fig. 5C, E–H).

These deposits certainly cannot be considered as typical terrestrial deposits, which disregards their aeolian origin (due to the presence of common clay intralclasts) as proposed by some authors (cf. Mikuláš et al. 1991; Uličný 2004). Likewise, a fluviatil interpretation (compare Valín 1964; Prouza et al. 1985; Mader 1990) is also excluded for several
reasons. First, these sediments represent an elongated (linear) morphological bedform, as opposed to a valley or river channel mesoform. If interpreted as fluvial, the presence of intraclasts and coarse material should be related with the presence of clear palaeochannels, which are not observed here (see Hiroki and Masuda 2000). Secondly, transport directions should be approximately consistent with the local palaeoslope inclination (i.e., towards the south), whereas an opposite transport direction is observed here. Third, relics of river flood plains are not preserved here; however, it is not excluded that some of the clay intraclasts might have originated from the nearby penecontemporaneous floodplain, estuarine deposits or a lagoon setting (compare Spaggiari and Bordy 2023). According to the latter authors, clasts probably were ripped up during floods and transported into the coastal setting. However, the intraclasts might be also derived from the clay covers observed in the described sediments. Beach relics are not preserved, though reactivation surfaces or storm runnel observed in the studied deposits might appear also in a beach setting (Text-fig. 6A). However, beach and coastal environments (see Holub 1972; Vejlupek 1983) seems to be completely excluded, based on the sediment transport directed to the land. Additionally, no typical tempestites are preserved (only sedimentary structures which might resemble HCS were observed; Text-fig. 6) and there is a low probability of fine-grained intraclast preservation in these high-energy environments.

The co-occurrence of gravel in the sediment, both dispersed and as residual lags, alternating with clay covers typical of suspension deposition, indicates the multi-stage, even cyclic nature of sedimentation and multi-stage sediment reworking. The studied sandstones and conglomerates are recognized herein as deposited in a spit bar setting.

Deposits from Krákorka Quarry combine sedimentary features observed in recent spit bar depositional environments, e.g., a climbing trend — a succession of several overlying cross-beds with pebble covered bases (Nielsen and Johannessen 2009; Nehyba and Roetzel 2021), reactivation surfaces with clay intraclasts, showing pseudoimbrication (Frergaard et al. 2020), the presence of clay covers (up to a few centimetres) suggesting deposition from suspension during calm periods (Johannessen and Nielsen 2006; Nielsen and Johannessen 2009; Leszczyński and Nemec 2015), as well as the presence of trough cross-stratification and ripple cross lamination in the sand beds, which indicates unidirectional palaeocurrents (compare Hiroki and Masuda 2000; Table 5). The inclination of strata is low, suggesting sedimentation in shallow water (cf. Nielsens and Johannessen 2009; Leszczyński and Nemec 2015).

Therefore, the sediment structure (current ripples, wave ripples, trough cross-stratification), the hydrodynamic regime (unimodal current direction), and the depositional processes (progradation and erosion) indicate a spit bar setting (Text-figs 12, 13; Table 5).

Additionally, these controls are supported by the occurrence of clay-muddy material within the analyzed deposits. The presence of (i) sharp-edged intraclasts on the bedding surfaces (pseudoimbrication) and (ii) well-rounded, sometimes armored intraclasts, suggests there were probably two sources of the clay-muddy material. The first, ‘hardened’ ones were most probably derived from external sources, maybe from an adjacent lagoon area, while the second, ‘fresh’ intraclasts were derived directly from spit bar complex deposits. Further investigations of these differences require studies on the mineralogy of the fine-grained material from Krákorka Quarry. In this study, we have only performed pilot analyses to determine the dominant clay mineralogies, rather than a detailed, full-scale investigation.

Generally, the observed recurrent climbing associations reflect alternating accumulation and erosional conditions that are characteristic of cyclic environmental changes — from shallow to deeper water (a few to several metres) as a result of transgression, calm to high energy, and terrestrial-transitional to marine. Repeated major erosional surfaces (Text-fig. 12A) covered with gravely sediments demonstrate that, despite the pervasive destruction of spit bars during recurrent storm events, the erosional base progressively rose and the accumulation potential was restored, resulting in spit bar development over time. Such sediment structures can only be formed in environments where progradation prevails as the dominant accumulation mechanism, and must have been accompanied by a gradual rise of the erosional base. At Krákorka Quarry, these processes are accompanied by the zonation of sediment settlement and penetration by both invertebrate trace fossils (Thalassinoides, cf. Taenidium) and vegetation, including trees (rhizoliths; see trace fossils suites arranged along bedding boundaries in Text-figs 6C, 11, 12). However, it seems that penetration by both marine invertebrate trace makers of Thalassinoides isp. and terrestrial producers of Taenidium isp. along the bedding surfaces, took place after exposure of the described sediments rather than contemporaneously with deposition (see above, Text-fig. 14). Collectively,
<table>
<thead>
<tr>
<th>Physical sedimentary features</th>
<th>Processes and environments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical textures (grain size)</td>
<td></td>
</tr>
<tr>
<td>Lithology (primary sedimentary structures)</td>
<td></td>
</tr>
<tr>
<td>Deformations</td>
<td>Biogenic processes transport</td>
</tr>
<tr>
<td>Environments</td>
<td></td>
</tr>
</tbody>
</table>

Table 5. Characteristic features of spit bar systems, based on Nielsen et al. (1988), Rasmussen and Dybkjær (2005), Lindhorst et al. (2008), Shukla et al. (2008), Rasmussen et al. (2010), Tillmann and Wunderlich (2011, 2013), Reimann et al. (2012), Billy et al. (2014), Clemmensen et al. (2014), Nehyba and Roetzel (2021), Pellerin Le Bas et al. (2022), Shawler et al. (2021), Spaggiari and Bordy (2023), Chrząstek and Wojewoda (this paper).

these controls point to a transitional palaeoenvironment during progressive sea level rise and associated transgression.

Thus, we suggest that these sediments are (i) distinct from the underlying portions of the Bohdašin Formation, and (ii) link them with the regional Late Cretaceous transgression. The topographic conditions preceding the transgression could conceivably stimulate the formation of local accumulation zones within the inherited bathymetric relief— that is, a palimpsest. In this framework, progressive relative sea level rise successively removed individual localities from the direct local impact of coastal abrasion and accumulation, thus unifying the facies assemblages within the marine basin.

In summary, only a spit bar depositional environment can feasibly explain all of the phenomena in Krákorka Quarry, including the cuspatate shape of a spit bar, which usually arises in the final phase of spit bar development, explaining the clearly-recorded progradation of the accumulation form ‘up the palaeoslope’ (cf. Text-fig. 13). We postulate a model of a
re curved (‘hacked’) spit after King and McCullagh (1971) and Ashton et al. (2007), in which “spits also recuve, or trend back towards the shore-even the high-energy, seaward-facing side of a spit faces many directions, experiencing waves from a variety of deep-water directions” (cf. Ashton et al. 2007, p. 352).

We suggest that the uppermost Devět Křížů Sandstone was deposited during the middle or early late Cenomanian transgressive phases, before the main latest Cenomanian–early Turonian transgression. This insight may be useful for slightly altering the northern Bohemian Late Cretaceous palaeogeography, with the seashore located c. 30 km north of the study area and NWW to SEE-oriented (cf. Jerzykiewicz and Wojewoda 1986).

It cannot be excluded that the Krákorka deposits were initially deposited in the Jurassic; Valečka (2019), however, reported that erosion and peneplanation removed Jurassic deposits from the northwestern and central Bohemian Massif during the Early Cretaceous, leaving only small relic deposits in northern Bohemia, Saxony, and Brno area. The unique nature of the study area, which was already a morphological elevation at the junction of the Trutnov and Náchod subbasins in the Triassic, suggests that Jurassic deposition was unlikely.

The Náchod and Trutnov subbasins, together with the Mnichovo-Hradišče and Kudowa subbasins that collectively form the Intra-Sudetic Basin Suite, show many features typical of pull-apart basins and collectively form one of the most significant, long-lived (Carboniferous to Recent?) tectonic zones in the northern periphery of the Bohemian Massif — the Intra-Sudetic Shear Zone (Wojewoda 2007a).
The northern boundary of this zone is the Poříčí-Hronov Fault Zone, which bounds the Intra-Sudetic Synclinorium from the south (Mencl et al. 2013; Wojewoda et al. 2016). It is worth emphasizing that the northern frame faults of the Poříčí-Hronov Zone were repeatedly reactivated and played a significant role in shaping the regional palaeogeography during the Permian, Triassic, and Cretaceous (cf. Teisseyre 1968, 1973, 1975; Teisseyre and Teisseyre 1969; Jerzykiewicz and Wojewoda 1986; Uličný 2001, 2004; Uličný et al. 2003, 2009, Text-figs 2A, 3–5). The geodynamic and palaeogeographic context has been previously extensively discussed (cf. Wojewoda 1986, 2007a, b, c, 2009; Wojewoda and Kowalski 2016; Wojewoda et al. 2016, 2022), and we refer the reader to those publications for further details. For our purposes, it suffices to note that the boundary faults of the Náchod and Trutnov subbasins probably played a particularly important role in shaping the palaeotopography of this area. The fossil pit bar system clearly relates to the course of one such fault (Text-fig. 2A).

The fossil spit bar deposit described in Krákorka is unique, if only because it was preserved in a place that was already a morphological elevation in the Triassic (cf. Wojewoda et al. 2016, 2022). Transgression most
often results in the levelling of the underlying terrain, enabling the deposition of a classic transgressive sequence, but in this situation the spit system development was uniquely associated with the inherited relief. 142 Myr earlier, a series of aeolian deposits had been formed and preserved in this locality (Text-figs 2A, 4). The presence of anomalously abundant tectonic phenomena, including syn-sedimentary features, in both Triassic and Cretaceous sediments (Wojewoda et al. 2016) is also unique in the context of the Intra-Sudetic basins (cf. Text-figs 2, 3).

In summary, it is worth observing that the uppermost Devět Křižů Sandstone does not correspond to the palaeoenvironmental and palaeogeographical realities of the Early/Middle Triassic in Central Europe, excluding the possibility of associating the studied deposits with either the majority of the Devět Křižů Sandstones in Krákorka or with the broader Bohdašín Formation. Instead, we find it more useful to compare these deposits with a transgressional Upper Cretaceous sequence.

Spit bar systems

Spit bars actively develop in a diversity of fresh-, transitional-, and marine environments (e.g., Krist and Schaetzl 2001; Jewell 2007; Schaetzl et al. 2016; Lopez 2022). They most often appear where there is excess sediment influx: for example, (1) close to river mouths, (2) where both along-shore drift and waves are influential depositional controls, and (3) in association with gradual water level, all conditions favourable for transgressional deposition. Sometimes shoreline peculiarities, such as headlands or clearly indented bays, drive the development of spit bars.

It is difficult to directly examine the internal structure of Recent spit bar systems, due to sediment waterlogging and/or subaqueous retention. Localities in which these systems can be directly described are unique. Some sub-fossil spit bars have revealed internal structures in natural outcrops, in basins where locally or regionally sea-level evolution has transitioned from transgressive to regressive (e.g., Lopez 2022; Spaggiari and Bordy 2023).

Scientific understanding of the internal structure and architecture of spit bar sediments dramatically benefited from the introduction of high-resolution seismic methods (e.g., Novak and Pedersen 2000; Lobo et al. 2003, 2005), and ground penetration radar (GPR) in geophysical prospecting, defining ‘GPR structural facies’ and associated sedimentological interpretations (e.g., Daly et al. 2002; Jol et al. 2002; Neal 2004; Shukla et al. 2008; Craig et al. 2012).

Remote mapping methods have also proved important for recognizing the contemporary development of spit bars, in particular high-resolution LIDAR digital terrain models (e.g., Taveneau et al. 2021; Pancrazzi 2022) and photogrammetry (e.g., Simeoni et al. 2007; Rodriguez-Santalla and Somoza 2018, Robin et al. 2020; Rodriguez-Santalla et al. 2021). Additional information about the bathymetry of spit bar systems has been revealed through the use of multi-beam sonars (cf. Shaw et al. 2019). However, older maps have provided equally insightful understanding into the historic dynamics of spit bars, especially once processed by topological calibration (H-GIS) (e.g., Boer and Carr 1969; Panin and Overmars 2012; Somoza and Rodriguez-Santalla 2014; Gupta and Rajani 2020).

Recent spit systems may constitute very large elongated and mostly sandy-gravel bodies. For example, the best known Holocene-to-Recent spit system, the Danish Skagen, is 22 km long, 3–7 km wide, and up to 32 m thick, and dominantly consists of cross-bedded sand deposited under c. 0.3–9.5 m water depths (Johannessen and Nielsen 2006).

However, within the recognized contemporary or sub-fossil coastal systems, spit bar formations are relatively thin, from 2 to c. 10 m, and occur within a predictable Waltherian position — that is directly above terrestrial environments (e.g., alluvial, deltaic), in association with marine sediments (initial transgressive deposits), and below the main transgressive marine sediments, which usually form a transgressive sequence that almost always begins with a transgressive boulder lag (e.g., Lindhorst et al. 2008, 2010; Reimann et al. 2012; Flemming and Martin 2021).

Contemporary spit bar sediments are texturally very diverse. Sediment grain sizes and petrography are determined by the type of supplied material, which in turn is determined primarily by the geological structure, size, and geomorphology of the associated river catchment. Of course, the material deposited on upper spit bar surfaces largely acquires features dependent on the dominant marine processes — that is, the coastal current and wave system. The distance from the sediment source to the depositional site also has influence on the sediment texture.

As such, spit bar sediments may form heterolytic systems, which are prevalent in modern mid-latitudes. But they can also be sandy or gravelly systems, which tend to be more common in sub-polar zones. Sedimentary analyses of contemporary spit bar sediments are easier to perform than fossil spit bars, because they do not require intact sediment structures, so they can be taken from depth by drilling (e.g., Ollerhead and Davidson-Arnott 1995; Costas

Modern active or sub-fossil spit bars have very well understood internal structures. To date, palaeo-
hydrodynamic indicators suggest that spit bars capture almost all possible sediment transport directions
relative to shoreline orientations. There are several potential reasons for this unusual situation. First, the
frontal growth (progradation) of individual spit bars is not linear, but often changes in direction. Secondly,
a spit bar is usually not a single bedform, but instead often composes a compound system resulting in the
formation of a spit bar complex (cf. Clemmensen et al. 2014). Third, during transgression, the relative loca-
tion and shape of the shoreline is constantly modified, resulting in forced evolution of the spit bar system.

At the same time, spit bars are the only known modern coastal system in which both the macroform
and current forms (ripples and dunes) migrate towards land, leading to a long-lived, consistent aggradation
of the spit bar system. Periodic transverse cutting of the spit bar system during storms, periodic ascent,
and/or vegetative overgrowth of the spit bar does not change this tendency until the spit bar is ultimately
buried and fossilized (for instance, by being covered by transgressive sediments; e.g., Nielsen et al. 1988;
Allard et al. 2008; Pancrazzi et al. 2022; Spaggiari and Bordy 2023). Almost all workers of contempo-
rary and/or subfossil spit bar systems emphasize that the appearance, development and/or preservation of
sediments in these systems is contingent upon constant sea level rise, that is, in a regional transgressive

While modern or sub-fossil spit bar systems are quite common, descriptions of geologic structures
with features analogous to Recent spit bars are relatively infrequent. It is difficult to assess whether this
is due to the low frequency and dissemination of actualistic research among sedimentary geologists, or
because of the unusual environmental and basin conditions that can lead to the fossilization of such sys-
tems. After all, a spit environment is not as ephemeral as, for example, an aeolian dune environment.
That being said, the lifetime of a spit bar is several orders of magnitude shorter than that of an equivalent
transgressive sediment complex. Perhaps, therefore, this discrepancy may result from the rate of marine
transgression, which may be difficult to determine in older formations due to difficulties in temporally
resolving these distinct environmental systems.

The oldest interpreted fossil spit bar deposits are from the Upper Jurassic Sognefjord Formation (Troll
West Field, Norwegian shelf; Dreyer et al. 2005; Nehyba and Roetzel 2021). Several spit bar forma-
tions have been documented in Cretaceous strata. Johannessen and Nielsen (2009) presented the possibil-
ity of using the spit bar model for the Upper Cretaceous Shannon Sandstone (Western Interior Seaway, USA).
Subsequently, Merletti et al. (2018) interpreted 15 rock bodies as ‘Bar Spit Units’ within the upper Campanian
to Maastrichtian Almond Formation (Wyoming, USA), which had average sizes of 6–12 m estimated
lifetimes of 20 kyrs. Rasmussen and Dybkjær (2005) similarly interpreted selected sandstone bodies from
the upper Oligocene and lower Miocene of Eastern Jylland (Denmark). Finally, a very detailed sedi-
mentological analysis of the Miocene Burgschleinitz Formation (Austria) suggested that it is most parsi-
moniously interpreted as a spit bar system deposit (Nehyba and Roetzel 2021). It is worth mentioning that
these sediments reach a maximum thickness of about 6 m, and are over lain by clearly transgressive sediments.

Paleosol characteristics

The existence of rhizoliths in the studied sandstones may suggest that they should be regarded as paleosols (cf. Rettalack 2001). The preservation of root traces in the deposit should have induced physical and chemical changes in the host rock (Badawy 2018). However, initial soil development was only noticed in the studied rhizolith-bearing horizon. Genise et al. (2004) postulated that some paleosols show well-developed pedofabrics without preserved trace fossils, while others may be intensely bioturbated but without changes in soil character. Esperante et al. (2021) reported the occurrence of rhizoliths from a variety of depositional settings, including loess, and sandy
colian, lake margin, coastal plain, marginal marine, and alluvial deposits. Buynevich et al. (2007) sug-
gested that four paleosol horizons were present in a 30–40 m deep sequence, resulting from a barrier-slip facies. Moreover, well-developed paleosols may contain a higher density of long root casts (up to 2 m in length), indicating a seasonally dry environment (cf. Nascimento et al. 2019), as in the studied depos-
its. There are numerous examples of root penetration in weakly lithified or even hard substrates (Uchman
et al. 2012). Deep roots could penetrate deposits up to 3.5 m deep (cf. D’Alessandro et al. 1993); similar
depths of penetration, ranging from 1 m up to 4–5 m, although most commonly from 1–2 m were postu-
lated by other authors (Plaziat and Mahmoudi 1990; Uchman et al. 2012; Esperante et al. 2021; Hsieh and
Uchman 2023; Nascimento et al. 2023).
Mikuláš and Prouza (1999), who first described root traces in the Krákorka Quarry, suggested that they may result from a marginal marine mangrove swamp. Mangrove forests are very common along tropical and subtropical shores (Srikanth et al. 2015). Importantly, living or fossil mangrove roots are characteristically associated with marine bioturbation, such as the ichnofossils Ophiomorpha, Thalassinoides, Palaeophycus, Skolithos, and Taenidium (Gregory et al. 2004; Abdel-Fattah and Gingras 2020). Additionally, bivalves, gastropods, scaphopods, arthropods, and vertebrate body fossils commonly occur in such deposits (cf. Abdel-Fattah and Gingras 2020). The latter authors reported the predominance of Thalassinoides suevicus in an upper middle Eocene shallow-marine lagoon that shoaled into a bay margin environment with mangroves. The earliest fossil-mangrove ecosystem is known from the Late Cretaceous, but mangroves became globally abundant in the Eocene to Miocene (Srivastava and Prasad 2019). Badawy (2018) reported mangrove rhizoliths from Oligocene fluvo-marine deposits, which were assigned to a tropical and/or subtropical rain forest environment. A mangrove origin of the rhizoliths in Krákorka Quarry associated with bay-margin or lagoon settings under brackish to marine salinity seems to be possible (compare Basyuni et al. 2017). Importantly, living or fossil mangrove roots are characteristically associated with marine bioturbation, such as the ichnofossils Ophiomorpha, Thalassinoides, Palaeophycus, Skolithos, and Taenidium (Gregory et al. 2004; Abdel-Fattah and Gingras 2020). The latter authors reported the predominance of Thalassinoides suevicus in an upper middle Eocene shallow-marine lagoon that shoaled into a bay margin environment with mangroves. The earliest fossil-mangrove ecosystem is known from the Late Cretaceous, but mangroves became globally abundant in the Eocene to Miocene (Srivastava and Prasad 2019). Badawy (2018) reported mangrove rhizoliths from Oligocene fluvo-marine deposits, which were assigned to a tropical and/or subtropical rain forest environment. A mangrove origin of the rhizoliths in Krákorka Quarry associated with bay-margin or lagoon settings under brackish to marine salinity seems to be possible (compare Basyuni et al. 2017), although the existence of other vascular plants cannot be excluded. On the other hand, body fossils are absent from Krákorka Quarry aside from a single internal mold of an indeterminate bivalve found during fieldwork, despite the usual abundance of body fossils in mangrove swamps. Moreover, it is very difficult to distinguish between bioturbation by marine and terrestrial invertebrates in paleosol settings due to their morphological similarity (cf. Berry and Staub 1993; D’Alessandro et al. 1993; Gregory et al. 2004; King et al. 2021). However, the Taenidium ichnofabric, which appears in the study deposits, is common in ancient paleosols (see above; Nascimento et al. 2019, 2023). Taenidium barretti and T. serpentinum are the most abundant ichnotaxa in such settings. The close relationship between the invertebrate traces and rhizoliths may suggest that the Taenidium trace maker was a non-marine animal, for instance an insect or insect larvae that colonized subaerially exposed surfaces (cf. D’Alessandro et al. 1993; Gowlan et al. 2018). Moreover, Thalassinoides bioturbation might have occurred during the late Cenomanian transgression, after prolonged emergence. In the model of the recurved spit bar presented here (Text-fig. 13), the formation of a lagoonal setting with mangrove vegetation seems to be possible. Therefore, the mangrove swamp origin of the rhizoliths, which were observed in the studied deposits, cannot be excluded.

Ichnological analysis

In Krákorka Quarry, a low diversity trace fossil assemblage comprising Thalassinoides paradoxicus, T. suevicus, Thalassinoides isp., cf. Thalassinoides and cf. Taenidium was observed (Text-figs 7I, J, 8E, G, 9–11). Ichnological analysis suggests that two discrete trace fossil assemblages are present: the cf. Taenidium suite and the Thalassinoides suite (Text-fig. 14). The Thalassinoides suite dominates at the erosional surface between the Bohdašín Formation and the overlying Peruc-Koryčany Formation (Text-figs 4, 5H, 14). The Taenidium suite is usually associated with rhizoliths, which are the most common biogenic structures within the studied sandstones. The percentage of substrate (bedding planes; BI) after Miller and Smail (1997) affected by burrowing was mainly measured for Thalassinoides assemblages, while the vertical disturbance of original bedding (ii) after Droser and Bottjer (1986) was quantified for both the cf. Taenidium and Thalassinoides assemblages.

cf. Taenidium suite

The cf. Taenidium burrows are arranged along both horizontal and vertical rhizoliths (Text-fig. 10B–D, F–I). They are mostly vertical or inclined in relation to bedding planes. The burrows are mainly similar to Taenidium barretti Bradshaw, 1981, and in some cases to T. serpentinum Heer, 1887. Trace fossils (cf. Taenidium) appear in abundance in close vicinity to roots, while they are less numerous at a distance from the root casts (compare Hsieh and Uchman 2023; Text-fig. 10A–D, G, H). A cross-cutting pattern caused by overlap is commonly observed in the cf. Taenidium suite (Text-fig. 10A, G). Approximately 30–50 burrows were observed per 0.5 m² in the vicinity of root casts and horizontal rhizoliths. The ichnofabric indices (cf. Droser and Bottjer 1986) in the Taenidium-bearing sandstone were ii = 3–4, indicative of moderately to highly bioturbated deposits.

The current deposits show some affinities in burrowing style to other rhizolith-bearing horizons from ancient paleosols reported by D’Alessandro et al. (1993), Knaust (2015), Mineiro et al. (2017), Mineiro and Santucci (2018), Hsieh and Uchman (2023) and Nascimento et al. (2023). These authors
reported a *Taenidium* ichnofabrace produced by insects and associated with rhizoliths, with burrows that might overlap the roots or clustered tightly around the plant traces (see D'Alessandro et al. 1993; Hsieh and Uchman 2023). Nascimento et al. (2023) postulated that extant beetle larvae populations could generate up to 70 burrows per 1 m^2 of soil and extend down to over 1 m. More burrows were observed in the uppermost studied paleosol. This phenomenon may be linked with the rapid exploration of the sediment by insects during 'intrusion time', as suggested by Gingras et al. (2008) and Hsieh et al. (2023). When insect tracemakers settle in a deposit, locomotion rates subsequently slow ('subsequent time', cf. Gingras et al. 2008). The moderate-to-highly bioturbated deposits might indicate the presence of opportunistic trace-makers bioturbating during episodically favourable conditions. It might suggest colonization by terrestrial trace-makers during the 'short-colonization window', an interval during which organisms are able to colonize a trace fossil-preserving substrate (cf. Nascimento et al. 2023 and references therein), perhaps during subaerial exposure. Gregory et al. (2004) also postulated that a moist root-protected environment was a desirable microhabitat for a number of invertebrates that occupy the vadose zone (see Smith et al. 2008, fig. 7), a point reiterated by numerous authors, including Retallack (1976, 1988), D'Alessandro et al. (1993), Gregory et al. (2004), Hsieh et al. (2023) and Nascimento et al. (2023).

Roots provide food and shelter for many invertebrates (Hsieh and Uchman 2023). On the basis of ichnological studies, many authors described insect traces in close vicinity to roots, suggesting commensalism, parasitism, mutualism, symbiosis, or other interactions (see discussion in Hsieh and Uchman 2023). Insects, such as beetles or cicada nymphs, eating or colonizing roots in the geologic record were postulated by Krause et al. (2008), Knaust (2015), Genise (2016, 2019), and Nascimento et al. (2019). Commensalism was proposed by D'Alessandro et al. (1993), who suggested bacterial presence around roots. However, in many cases insects consume roots, which is suggestive of parasitism (see Gregory et al. 2004; Krause et al. 2008; Genise 2016). Trace fossil occurrence adjacent to roots may be associated with less resistant deposits, which could facilitate burrowing (cf. Hsieh et al. 2023). Furthermore, Hsieh et al. (2023) postulated that after the roots are dead, other inhabitants may feed on the residual organic matter and utilize empty spaces. In summary, the abundance of possible insect traces (cf. *Taenidium*) in close vicinity to roots or arranged along horizontal rhizoliths is evidence of invertebrate-plant interactions (Text-fig. 10A, B, D, G, H). Furthermore, Mikulâš and Prouza (1999) suggested that the root canals might be later colonized by other squatters.

The studied *Taenidium* assemblage is characteristic of the *Scoyenia* ichnofacies, which occurs in low-energy, periodically exposed subaqueous deposits or periodically flooded subaerial sediments, both indicative of a transitional aquatic and terrestrial environment (cf. MacEachern et al. 2012; Sedorko et al. 2020). The low ichnodiversity but high abundance of individual trace fossils is indeed supportive of this premise. In the *Coprinisphaera* ichnofacies, by contrast, ichnodiversity is usually moderate to high and bioturbated deposits are permanently subaerially exposed (cf. MacEachern et al. 2012).

Monotypic *Taenidium* ichnofabaces have been commonly described from abandoned channels or floodplains in Cretaceous paleosols (cf. Nascimento et al. 2023). The *Taenidium barreti* ichnofabric and rhizoliths occur on the top of bars, channels, and crevasse splayes under more moist conditions, allowing vegetation to persist. A marginal marine setting with a vegetal cover, periodically submerged and bioturbated by terrestrial tracemakers, seems to be the most likely palaeoenvironment for the Krâkorka Quarry. Bioturbation of the cf. *Taenidium* suite might have occurred during episodic subaerial exposure of the spit bar deposit. During emergence, the spit bar was presumably overgrown by vascular plants (?mangrove roots) and later burrowed by terrestrial insects.

Thalassinoides suite

In Krâkorka Quarry, *Thalassinoides suevicus* was mainly recognized on horizontal bedding planes (Text-fig. 9B, C, E), such as the discontinuity surface between the Bohdašín and Peruc-Koryčany Formations, whereas *Thalassinoides paradoxicus* or cf. *Thalassinoides* isp. prevailed on the vertical surfaces (Text-fig. 9A, D). However, the latter ichnotaxon also occurs on horizontal bedding planes (Text-fig. 9E, F). Clear vertical occurrences of *Thalassinoides* extend up to 30–50 cm below the discontinuity surface (Text-figs 6C, 9A, D). While it cannot be excluded that *Thalassinoides* might occur deeper in the studied sandstones, for instance up to 1.5–2 m deep as suggested by Mikulâš and Prouza (1999) (Text-figs 7I, 10E, 11A–D, F, H), these specimens are fragmentarily preserved, did not show the ichnotaxobases needed for their assignment,
and so were mostly described as cf. *Thalassinoides*. However, Mikuláš and Prouza (1999) reported that “bioturbation intensity increases towards the top of the formation, reaching the base of the weakly lithified oligomictic glauconitic conglomerates of the lowermost Peruc-Koryčany Formation” (cf. Mikuláš and Prouza 1999, p. 336, pl. I, fig. 2).

Bedding-plane surfaces were moderately to highly affected by *Thalassinoides*. As in the *Taenidium* suite, the ichnofabric indices (ii = 3–4) were indicative of moderate to high bioturbation in the *Thalassinoides* suite. The presence of abundant *Thalassinoides paradoxicus* and *T. suevicus* at the erosional surface between the Bohdašín and Peruc-Koryčany Formations (Text-figs 4, 5G, 9A–E) may suggest the *Glossifungites* ichnofacies, which is characteristic of firm, un lithified substrates and often demarcates discontinuity surfaces along a depositional hiatus (cf. Gingras et al. 2002; Abdel-Fattah et al. 2010, 2016; Knaust 2021a, b). The colonization of discontinuity surfaces usually requires marine conditions and corresponds to transgressive intervals (Abdel-Fattah et al. 2016), however, an example from fluvial deposits was also reported (see Fürsich and Mayr 1981). In general, well-developed *Glossifungites* ichnofacies suites (cf. MacEachern et al. 1992) show high bioturbation intensities, a low to moderate trace fossil diversity, and large burrow penetration up to 2 m deep in muddy and sandy deposits.

There are numerous examples of *Thalassinoides* burrow penetration into semi-lithified or weathered substrates. Korneisel et al. (2015) and Bengtson et al. (2021) described a complete burrow system of Eocene *Thalassinoides* and *Taenidium* that penetrated the uppermost 5 cm of Prerorozoic metaquartzites (1.7 Ga), which were loosened by weathering. Bengtson et al. (2021) compared this penetration with the invasion of Cretaceous *Thalassinoides* tracemakers into the weakly lithified Devět Křížů Sandstone and weathered metavolcanic rock in northern Bohemia (see Mikuláš and Prouza 1999 and Mikuláš et al. 2002, respectively). Gingras et al. (2002) reported that *Thalassinoides* descended up to 80 cm below the erosional surface, Abdel-Fattah et al. (2016) – up to 2 m below, Foster et al. (2020) – up to 60 cm below, and Mikuláš et al. (2002) – up to 30 cm below.

The firmground in the topmost yellowish quartz sandstones and conglomerates seems to be allogenic (cf. Abdel-Fattah et al. 2016 and references therein). Allogenic expressions of the *Glossifungites* ichnofacies are strongly related to eustasy and associated with transgressive surfaces, maximum flooding surfaces and/or flooding surfaces. They are characterized by low ichnodiversity and moderate to high bioturbation intensity (BI = 3–5). The current *Thalassinoides* assemblage shows little or no compaction and deep burrow penetration up to 50 cm, and in some cases even to 1–2 m (compare Abdel-Fattah et al. 2016, fig. 10C). The current deposits capture moderate to high bioturbation, with a dominance of deposit feeders (*Thalassinoides*) with subordinate domichnia, e.g., *Arenicolites* (cf. Mikuláš and Prouza 1999). The burrow penetration suggests an allogenic expression of the *Glossifungites* ichnofacies (compare Abdel-Fattah et al. 2016). Abdel-Fattah et al. (2016) reported flooding surfaces from Egyptian middle to upper Eocene deposits that were mainly characterized by large *Thalassinoides* up to 2–5 cm in diameter and subordinate *Arenicolites*. They suggested that the large diameter of *Thalassinoides* is consistent with low-moderate energy conditions in well-oxygenated, nutrient-rich sediments. Similarly, Vilegas-Martin et al. (2020) suggested that the presence of large burrows in association with allogenic surfaces is a potential firmground signature. The burrow tracemakers, mainly thalassinid crustaceans, were the primary colonizers and probably had sufficient time to explore the exhumed substrates.

Marine crustacean bioturbation took place during the main phase of the late Cenomanian transgression. It should be noted that the *Thalassinoides* tracemakers used the sedimentary bedding surfaces (layering surfaces) when penetrating into the studied deposits during the main phase of the late Cenomanian transgression (see Text-fig. 11A–D, F, H). Mikuláš and Prouza (1999) suggested that the Devět Křížů Sandstone might have formed the Cenomanian seafloor. They further noted that all *Thalassinoides* tunnels were opened on the erosional surface between the Bohdašín and Peruc-Koryčany Formations, and their fill contains glauconite. Uličný (2004) also suggested that bioturbation of the Devět Křížů Sandstone was undoubtedly attributable to Cenomanian marine organisms.

It is not possible to ascertain if syn-depositional burrowing occurred based on the studied trace fossil assemblages. However, some horizontal burrows assigned to cf. *Thalassinoides* (Text-fig. 10K) might suggest such a burrowing style. D’Alessandro et al. (1993) reported *Thalassinoides* in marine deposits, while *Taenidium* was associated with root traces in both marine and terrestrial settings. In their study, vertical or inclined *Taenidium* burrows were related to terrestrial bioturbation, while horizontal burrows could be produced by marine invertebrates during the evolution of a shallowing-upward sequence.
CONCLUSIONS

- We suggest that the uppermost Devět Křížů Sandstone was deposited in a shallow-marine environment during the middle or early late Cenomanian, before the main phase of the late Cenomanian–early Turonian transgression phase.
- The results of our study exclude the possibility of association these deposits with the continental Triassic Bohdašín Formation.
- Apart from the exceptional palaeo-topographic and basin conditions that enabled this system to appear and be preserved, these deposits can be treated as an ‘initial phase of transgression – precursor’ at the beginning of the Late Cretaceous transgression in this part of the Sudetes.
- The sedimentological and biogenic features of the oldest Upper Cretaceous deposits (middle/early late Cenomanian) preserved in the Devět Křížů Sandstone profile in Královec, in light of the current knowledge about Recent subfossil and fossil spit bar deposits, allows us to suggest that the Královec deposits are indeed a fossil spit bar deposit.
- On the basis of palaeotransport landward directions we postulate a model of a recurved (hacked) spit (after King and Mc Culagh 1971).
- The spatial arrangement of facies, including the presence of sharp-edged intraclasts distributed at bedding surfaces and/or reactivation surfaces showing pseudoimbrication, as well as the presence of clay covers suggesting deposition from suspension and sedimentary structures (e.g., wave current ripples, through cross-stratification) indicating unidirectional transport, clearly support this premise.
- Moreover, the cyclic nature of sedimentation, alternating accumulation and erosional conditions, and environmental changes from shallow to slightly deeper marine (up to several metres), lower to high energy, and terrestrial to marine are suggestive of a spit bar setting.
- The studied sandstones contain root casts and rhizocretions, and may be regarded as a paleosol (? mangrove in origin) with initial soil development.
- Ichnological analysis captures the presence of two fossil suites, the *Thalassinoides* suite constructed by marine invertebrates and the cf. *Taenidium* suite produced by terrestrial trace-makers.

- The cf. *Taenidium* ichnofabric typical of the *Scoyenia* ichnofacies was reported in this locality for the first time. Bioturbation by terrestrial trace-makers, such as beetle larvae or cicada nymphs, occurred during periodic emergence of the spit bar.
- The *Thalassinoides* assemblage is characteristic of the allogenic expression of the *Glossifungites* ichnofacies, which indicates transgressional surfaces (firmgrounds), demarcating a depositional hiatus and erosional discontinuities. *Thalassinoides* bioturbation might have occurred during the late Cenomanian transgression, after prolonged emergence.

Acknowledgements

The authors would like to thank Diego Luciano Nascimento from Unisinos University (São Leopoldo, Brazil) and Adriano Santos Mineiro from the University of Brasilia (Brasilia, Brazil) for insights and suggestions concerning the studied trace fossils. The authors are grateful to Hüriye Demircan (Ankara, Turkey) and an anonymous reviewer for their comments, which considerably improved the final version of this manuscript. The authors also greatly appreciate the editorial support of Anna Żylińska.

REFERENCES

Keighley, D.G. and Pickerill, R.K. 1994. The ichnogenus Beac-
Onites and its distinction from Ancorichnus and Taenidium. Palaeontology, 37, 305–337.
Knaust, D. 2021b. The paradoxical ichnotaxonomy of Thalassino-
ides paradoxicus: a name of different meanings. Paläontologische Zeitschrift, 95, 179–186.
Kraus, M.J. and Hasiotis, S.T. 2006. Significance of different modes of rhizolith preservation to interpreting paleoenviron-
Krause, D.M., Bown, T.M., Bellosi, E.S. and Genise, J.F. 2008. Trace fossils of cicadas in the Cenozoic of Central Patagon-
Krist, F. and Schaeztl, R.J. 2001. Paleowind (11,000 BP) direc-
tions derived from lake spits in Northern Michigan. Geo-
morphology, 38, 1–18.

spits from Lower Triassic sandstone at the locality Devět Krížů (NE Bohemia). Věstník Českého Geologického Ústava, 66, 247–249. [In Czech with English summary]

and tsunami (~A.D. 1700), Oregon, USA. Geoarchaeology, 26, 219–244.

Prouza, V. 1988. Geologická Mapa ÈSR. List 04-32 Broumov, 1:30 000. Ústredný Ústav Geologický; Praha.

Simůnek, T. 2019. Revision of the genus Cordaites UNGER from the Permian of the Intrasudetic Basin (Broumov Formation, Olivétin Member, Czech Republic). Geologica Croatica, 72, 163–172.

Manuscript submitted: 31st August 2023
Revised version accepted: 24th May 2024