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Pontryagin’s maximum principle for the Roesser model
with a fractional Caputo derivative

Shakir Sh. YUSUBOV @ and Elimhan N. MAHMUDOV

In this paper, we study the modern mathematical theory of the optimal control problem
associated with the fractional Roesser model and described by Caputo partial derivatives, where
the functional is given by the Riemann-Liouville fractional integral. In the formulated problem,
a new version of the increment method is applied, which uses the concept of an adjoint integral
equation. Using the Banach fixed point principle, we prove the existence and uniqueness of a
solution to the adjoint problem. Then the necessary and sufficient optimality condition is derived
in the form of the Pontryagin’s maximum principle. Finally, the result obtained is illustrated by
a concrete example.
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1. Introduction

Modern optimal control theory is an important branch of mathematics that
optimizes some objective functions and has many applications in science, en-
gineering, and operations research. The scope of its application is constantly
expanding, starting from the study of economic models and ending with math-
ematical models in physics. The rapid development of the theory of control of
systems with lumped parameters is largely associated with the use of Pontryagin’s
maximum principle [32]. Further, various necessary conditions for optimality of
the first and higher order are obtained for various systems [11,24,26,27,38,39].
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Interest in the study of the problem of optimal control does not fade away
and is reinforced by new applied problems. Opportunities in the study of systems
described by equations with fractional derivatives have opened a new layer of
unexplored problems in the management of such systems.

It is known that materials with memory and hereditary effects are better
modeled by fractional order models than by integer ones [8, 19,31, 34]. Optimal
control theory is a field of mathematics that has been developed for many years,
but fractional optimal control theory is a completely new field of mathemat-
ics. Fractional optimal control problem can be defined with respect to various
definitions of fractional derivatives. But the most important types of fractional
derivatives are the Riemann-Liouville and Caputo fractional derivatives.

In the modern theory of optimal control, there are already many works contain-
ing the formulation and results of the study of various optimal control problems
for systems of fractional order. Main directions of research here are related to
necessary optimality conditions (see, e.g. [2, 17] and the references therein) and
numerical methods for constructing optimal controls (see e.g., [33] and the ref-
erences therein). Pontryain’s maximum principle for fractional optimal control
problems proved in [6, 16,44—46].

For effective control of many systems, real control objects must be con-
sidered as objects with distributed parameters, i.e. objects whose state at each
moment of time is characterized by functions. Optimal control problems arise
for systems whose state is described by differential equations in partial deriva-
tives, functional-differential or integral equations-distributed or, in other words,
infinite-dimensional systems. Optimal control problems described by hyperbolic
equations considered in various papers and various necessary optimality condi-
tions were obtained [13,40-42].

In the analysis of many physical phenomena, researchers consider partial dif-
ferential equations in two dimensions using fractional (noninteger) order partial
differential operators. The most interesting areas where this approach has found
application are two-dimensional models describing the dynamics of atomic dis-
location in crystals [9], anomalous diffusion processes [28], and nonlinear ca-
ble equations used in electrophysiology [7]. Recently, fractional order partial
differential equations with local and nonlocal conditions have been intensively
studied [1,25,43].

The control of distributed systems described by fractional-order equations is
a promising direction in the development of control theory, including from the
point of view of mathematical modelling and applied problems, but there are still
few works on this topic, see, for example, [14, 18]. The paper [18] investigates the
optimal control problem associated with the fractional Roesser model described
by Riemann-Liouville partial derivatives. The existence theorem for optimal
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solutions and the maximum principle for such a problem with inhomogeneous
boundary conditions are proved.

The works [5,10,12,15,20-23,30,36,37,47], focuses on different order time-
invariant and time-varying finite-dimensional systems, covering both continuous
and discrete-time topics.

In [10] the class of nonlinear neutral fractional-integro-differential inclusions
with infinite delay in Banach spaces is of interest. On the basis of Martelli’s fixed
point theorem, a theorem on the existence of mild solutions of fractional-integro-
differential inclusions is obtained. The paper [15] studies two types of problems
(the initial problem and the nonlocal Cauchy problem) for differential equations
of fractional order with Hilfer’s -derivative in the multidimensional case. On
the basis of the equivalence relation, new and general results are established for
the existence of differential equations of fractional order with Hilfer y-operators
of several variables in the space of weighted continuous functions for the non-
local Cauchy problem. The work [37] considers such qualitative properties as
uniform stability, asymptotic stability, and Mittag-Lefller stability of a trivial so-
lution and boundedness of nonzero solutions of a system of nonlinear fractional
integrodelay differential equations with Caputo fractional derivative, multiple
kernels, and multiple delays are investigated. The paper [30] considers a semilin-
ear functional-differential equation of fractional order in a Banach space under
the assumption that its linear part is a generator of a noncompact semigroup. It
is assumed that the nonlinearity satisfies the regularity condition expressed in
terms of noncompactness measures. The theory of condensing mappings is used
to obtain results about local and global existence. The same approach is applied
to a neutral functional differential equation. The paper [4] discusses a new class
of singular fractional systems in a multidimensional state space described by the
Roesser continuous-time models. Necessary and sufficient conditions for asymp-
totic stability and feasibility are established using linear matrix inequalities. The
article [3] is devoted to the global practical problem of stabilization with Mittag-
Leffler feedback for a class of uncertain systems of fractional order, which is a
wider class of nonlinearities than the Lipschitz ones. The article [47] consid-
ers an optimal control problem in which the dynamic system is controlled by a
nonlinear Caputo fractional state equation. First, a linearized maximum principle
is obtained, then the concept of a quasi-singular control is introduced, and on
this basis an analogue of the Legendre-Clebsch conditions is obtained. When the
analogue of the Legendre-Clebsch condition degenerates, a high-order necessary
optimality condition is obtained. The article [29] discusses the problem of linear-
quadratic (LQ) optimization for irregular singular systems of fractional order.
The purpose of this article is to find pairs of control states that satisfy the dy-
namic constraint in the form of irregular singular systems of fractional order, such
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that the objective functional LQ is minimized. In [35], positive linear-fractional
systems with continuous time are considered. Positive fractional systems without
delays and positive fractional systems with a single control delay are studied.

As far as we know, the necessary optimality condition of the Pontryagin’s
maximum principle type for Roesser processes described by Caputo-fractional
partial derivatives has not yet been studied. Therefore, this paper is devoted to the
derivation of a necessary and sufficient optimality condition of the Pontryagin
maximum principle type for an optimal control problem with distributed param-
eters. In this paper, we study the optimal control problem in which the state of the
controlled object is described by Caputo fractional partial derivatives. First, the
investigated problem is reduced to an equivalent integral equation and, using the
Banach principle, the existence and uniqueness of a solution to the problem for
each fixed admissible control is proved. The posed problem of optimal control is
investigated using a new version of the increment method, in which the concept of
a conjugate equation of an integral form is essentially used. The adjoint equation
is the sum of partial operators of fractional integration with weight. Using com-
mutation of fractional integrals with power functions, one can go directly from
weighted fractional integrals to nonweighted fractional integrals. Then, using the
fixed point of the Banach principle, we prove the existence and uniqueness of a
solution to the adjoint problem, after which a necessary and sufficient optimality
condition is derived in the form of the Pontryagin’s maximum principle.

The rest of the paper is organized as follows. In Section 2, the definitions and
basic properties of partial fractional order integrals and derivatives are recalled,
and also some preliminary results are proved. Section 3 gives a formulation of
the optimal control problem related to the fractional Roesser model described by
partial Caputo derivatives. Section 4 is devoted to the proof of the theorem on the
existence and uniqueness of the trajectory. Section 5 calculates the increment of
the functional, proves the existence and uniqueness of a solution to the conjugate
equation, and proves the Pontryagin’s maximum principle. An example is given
to illustrate the result.

2. Notations, definitions, and preliminary results

In this section, we give some definitions and basic concepts of partial fractional
integrals and derivatives (for details, see [1, 19,34]).

Let numbers r, n;, i = 1, 2, n € N be fixed. Let R” and R™" be the spaces
of n-dimensional vectors and (n X n)-matrices. By || - ||, we denote a norm in R”
and the corresponding norm in R, Let numbers x?, X; € R, x? < X;,i =1, 2
be fixed, G; = (x?, X;),i=1,2,G =G| XGjy,and let X be one of the spaces R”
or R™",
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Let L' (G, X) the Lebesgue space of summable functions defined on G with

values in X, endowd with its usual norm || - ||;1. L*(G, X) the Lebesgue space
of essentially bounded functions defined on G with values in X, endowed with its
usual norm [l Mo ey = esssup flg(an, )|l C(G. X)

(r1x2)€[x], X11x[x, X2]
the space of continuous functions on G with values in X, endowed with the
uniform norm || - ||g.

Definition 1. Let a1 € (0, 1), and u(-) € L'(G). The left-sided and right-sided
partial Riemann-Liouville fractional integrals of the order a| of u(-) with respect
to x| are defined by the expressions

1

X

(I;Y?lﬂ) (X1, X2) = m/ (x1 = s u (51, x2) dsi
0

*1

X
1
(1;2—“) (x1, x2) = m/ (s1—x1)" " u (51, x2) dsy
X1

for almost all x € G, where I'(+) is the (Euler’s) Gamma function defined as

(o)

r(g):/tf—le—fdt, £>0.

0

Analogously, we define the integrals

X2
1
(0%) _ _ (),'2—1
(ng+”) (x1, x2) = @) 0/ (x2 = 52)"7 u (x1, 52) dsa,
*2

Xa
1
(I;z—”) (x1, x2) = m/ (52— x2)™ u (x1, s52) dsa,
X2

for almost all x € G.
The Beta function is defined by the Euler integral of the first kind:

1

B(a,B) = / 111 - 1P ldy, a, B> 0.

0
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The function is connected with the Gamma functions by the relation B(«a, ) =

I'(a)T(B)
F(a+p)

Definition 2. The left-sided partial Riemann-Liouville fractional derivative of
order ay € (0, 1) of u(-) with respect to x| is defined by the expression

0 (-
(Df:?lﬂ) (x1, x2) = ox1 (Ix?fl“) (x1, x2),

for almost all x € G.

Similarly, we define the derivative

0 (.-
(D:gzﬂ) (x1, x2) = 9x7 (ngfz”) (x1, x2),

for almost all x € G.

Definition 3. The left-sided partial Caputo fractional derivative (regularized
derivative)of order ay € (0, 1) of u(-) with respect to x| is defined by expression

(D(f‘u) (x1, x2) = (CD:§+M) (x1, x2)
3?61 (I;lfl (u(-, X)) —u (x?, xz))) (x1, x2)

m o / (x1 —s1)"" (M (51, x2) —u(x), Xz)) dsy .
Similarly, we define the derivative
(D52u) (1, x2) = (D) (x1, x2)

= aixz (I;(;lz (u (x1, -) —u(xy, xg))) (x1, Xx2)

X2

— ﬁ 6%2/ (X2 —52)™" (u (x1, 52) — u(xy, xg)) ds, .

0
X

where ap € (0, 1).
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By AC% (G, RM*™) = ACS (G, R™M) x AC32(G, R™) we denote the set of
all functions z = (z1, z2): G — R™ X R™ such that

X1
1
21(x) = Ya(x2) + —/(m — )" (1, x2)d11, x€G ae,
I'(ar) /

X

X2
1 _
22(x) =¢1()61)+m/()62—T2)a2 'or(x1, m)d1y, x€G ae,
X9

where Y3() € L¥(G2, RM), ¢1(-) € L¥(G1, R™), ¢1(1) € L¥(G,R"),
¢2(-) € L*(G, R™).

Proposition 1. For any ;(-) € L*(G;,R"Y),i, j=1,2,i # j, and
@i(1) € L*(G, R"), i = 1, 2 the functions z;(-) € ACZ (G, R"), i = 1,2 are
correctly defined for almost all x € G. The inequalities

2
2 1 2 he
|21 (67, x2) = 21 (x}, x2) || < Fa+]) o1 (220 ) (67 =X, x2 € Gaae,,
” 2 1 ” < 2 2 o G
(1.5 ~ 22| < Frgs lea(on Mg (03— 3 € Grae.,
are validforx} < x%, x; < x%, x%, x% € Gy, x;, x% € Go.

In particular
a) z1(-, x) € C(Gy, R") and zl(x(l), x2) = Ya(xy) for almost all x, € G,
b) 75(x1, -) € C(Ga, R™) and z5(x1, xg) =y (x1) for almost all x| € G.

Proposition 2. For any z(-) = (z1(-), z2(1)) € ACL(G, R"*™), the val-
ues (CD“OI+Z1)(x1,x2), (CD“§+z2)(x1,x2) are correctly defined for almost
X X2
all (x1, x2) € G. Moreover, the inclusions (CDangzl)(») € L=(G,R"),
X
(CD;x(erzg)(-) € L*(G, R™) holds and

2

(1$+(CD;’&+Z1)) (x1, %2) = z1(x1, 22) — 21(x0, x2), %2 € G ae,
1 1

(I;)Z+(CD;I§+ZZ)) (x1, X2) = 22(x1, x2) — 22(x1,x3), x1 € G| ae..
2 2
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3. Problem statement

The investigation object of the present paper is optimal control problem where
system is driven by the linear Roesser equation with a fractional Caputo derivative
of the order @ = (a1, az), @; € (0, 1),i=1, 2:

(D(l”zl) x)=a1(x)z1(x) +ax(x)z2(x) + f1 (x, u(x)), x€G a.e.,

(D
(D§22) (1) = 121 (x) + ba(x)22(x) + 2 (. w(x)). x€ G ae.
The boundary conditions for (1) are given in the following form
71 (x(l), xz) =¢10(x2), x2 € G,
2)

0
&) (xl, Xz) =o1(x1), x1€G ae,

where D;.’i, i = 1, 2 are the partial @;-order Caputo derivatives, z1(x1, x2) € R,

22(x1, x2) € R™ are state vectors, the functions a; : G — R"*" p;: G — R">*"i,
i =1, 2 ¢10: Gy = R", po1: G; — R™ are essentially bounded, u(-) is
r-dimensional measurable and bounded vector function of controlling effects on
the G, fi(x, u) (fa(x, u)) is n; (ny)-dimensional vector function defined on
G X R" and satisfying conditions:

1) measurable and bounded by x in G for all u € R’,

2) fi(x, u),i =1, 2 are continuous by « in R” for almost all x € G.

It is assumed that almost everywhere on G the controlling effects satisfy the
boundedness of the type of the inclusion:

u(x) eV, 3)

V is a nonempty bounded set in R".

As a solution of the problem (1)-(2) corresponding to the fixed control func-
tion u(-), we consider the function z(-) = (z1(:), z2(+)) € ACL(G, R™) X
AC2 (G, R™) satisfies differential equations (1) and condition (2) for almost
every x € G, x; € G, xo € Gy, respectively.
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The goal of the optimal control problem is the minimization of the functional

1 X2
_ 1 IR T DRy N
J(u) = T (BT (B) [ [(Xl x1)”7 (X2 - x2)

X [¢] (x)zl(x) +ch(x)z2(x) + folx, u(x))] dx

/ (X1 =P d (x1)22 (1, X2) dix

F(ﬁl)

F(ﬁ) / (X2 — x2)P7 1 d(x2)z1 (X1, x2) dxa (4)

determined in the solutions of problem (1)—(2) for admissible control satisfying
the condition (3).

Here ¢ () € LOO(G, Rnl), Cz(-) € LOO(G, an), dy () € Loo(Gl, an),

dy(+) € L¥(G,, R™), scalar function ¢o(x, u) defined on G X V and satisfying
conditions 1) measurable and bounded by x in G for all u € V, 2) ¢o(x, u) is
continuous by u# in V for almostallx € G, a; < B < 1 +;,i =1, 2.
The admissible control together with corresponding solutions of the problem
(1)—(2) is called an admissible process. The admissible process (u(-), z(-)) being
the solution of problem (1)—(4), i.e. minimizing the functional (4) at constraints
(1)—(3) is said to be an optimal process, while u(-) — an optimal control.

4. Existence and uniqueness of the solution of the problem (1)—(4)

Solutions of system (1)—(2) on admissible controls we will consider a vector
of functions of the form

z1(x) = ¢10(x2) +

X1
/ (x1 =) Loy (11, xp) d1y

0
X

1
['(ay)
(5)
1
22(x) = ¢o1(x1) + —/ (x2 = 1) 1 (x1, 1) A2,
['(a2) /

for which equations (1) and initial conditions (2) are satisfied almost every-
where on G, where ¢(-) € L*(G, R™), ¢2(-) € L*(G, R™). It is obvi-
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ous that this solution z(-) = (z1(+), z2(-)) belongs to the set ACY (G, R"*"2)
= ACY (G, R"M) x AC2(G,R™). It is easy to see that the existence of a solution
to system (1)—(2) in the set AC%(G,R"*"2), corresponding to a control u, is
equivalent to the existence of a solution to system

p1(x) = ?EC(Z)) /(Xl —1)" gy (11,x2) d7y
Iilif::)) /(x2 — 7'2)“2_1 ¢ (x1, 7)) dmo + my(x, u(x)), x€G ae.,
N ©)
bi(x) ar—1
@a(x) = M(ar) (x1 =) @1 (11,x2) d7y
by(x) [
FEC(:;)) /(xz — )] 02 (x1, 1) dy + ma(x, u(x)), x€G a.e.,

X

in the set ¢(-) = (¢1(:), ¢2()) € L=®(G,R™*"2) where mi(x, u(x)) =
filx, u(x)) — ar(x)pro(x2) — az(x)po1(x1), ma(x, u(x)) = falx, u(x)) -
b1(x)@10(x2) — ba(x) o1 (x1).

Applying the Banach contraction principle, we shall prove a theorem on the
existence and uniqueness of a solution z(-) = (z1(+), z2(+)) of system (1)—(2) for
any control u(-) € L* (G,R").

Theorem 1. Let the above conditions are met for given tasks (1)—(4). Then prob-
lem (1)—(2) possesses a unique solution z(-) = (z1(-), z2(+)) € ACE(G, R™"*"2)
corresponding to any control u(-) € L* (G, R").

Proof. Let us consider the Banach space L>¢(G, R"*") of essential bounded
functions ®(-) = (P (-), D,(-)) with the Bielecki norm

_ 40 _ 40
1) oo = 191l + 102 les,e = esssup (|1 (x)]] e~ M= ket
xeG

+ esssup (||<I)2(x)|| e_(xl_x?)ke_(xz_xg)k) ,
xeG
where k > 0 is a fixed constant.
It is easy to see that this norm is equivalent to the classical one and conse-
quently, L*¢(G, R"*"2) with the Bielecki norm is complete. To prove this theo-
rem it suffices to show that for any control u(-) € L*¢(G,R") there exists a unique
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fixed point of the operator A = (A, Ap) : L™ (G, RM*2) — L€ (G, R"*™2) |

(A1) (x) = ?zéxl)) [(xl — )" i (11, x2)d 1y
+ ?ig;)) O/(xz - Tz)az_lgoz(xl, m)dm +mi(x, u(x)), x€ G a.e.,
2 (7)
(Aag) () = 2L

x|
T(ay) O/(xl — 1) g (11,x2) d7y
X

by (x)
¥ ['(a2)

X2
/(Xz - 1) oy (x1, T2)dT + ma(x, u(x)), x €G ae.
0

X

Under the conditions imposed on the tasks it follows that (Ag)(-) €
L*>¢(G, R™M*™). Hence, the operator A is correctly defined. Let us show that
this operator is a contraction. Let us fixed ¢(-) = (¢1(-), ¥2()), ¥(-) =
W1(+), ¥a(+)) € L=¢ (G, R™*2), For almost all x € G, we derive

1(A19) (x) = (A1) (x)] < %l) / (x1 =) g1 (11.22) = Y1 (11, x2) || Ay

P /(Xz—Tz)az_l lpa (x1,72) = ¥2 (x1, 72) || d72,
I'(a2) /
by T
1(A2¢0) (x)— (Agg) ()] < =—— (x1 = 1) @1 (11, %2) = ¢1 (11, x2) || d 7y
['(ay) /
b2 r ay—1
+ /(Xz—Tz) lo2 (x1,72) = ¥2 (x1, 12)[[ d 72,
I'(a2) /

2

where a; = esssup ||a;(x)||, b; = esssup ||b;(x)|, i =1, 2.
xeG xeG
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Since

(E NV (o
o1 (€1, x2) =1 (&1, x| < Nl@1(&1, x2) =1 (€1, x2)|l e (é1-x))k p=(2=29)k
% e(M=xDk ,(x2=x)k
<Nl1() = Y1 ()|l €DK 212k,

0 0
X, <61 <1< X1, x;<xp<Xp,

and

0\, (g0
o2 (x1, &2) = a(x1, E)I < ll@2(x1, €2) —wa(x1, &)|| e Tk (E2m)k
X e(xl—x?)ke(Tz—xg)k

0 0
<l2() = ¥2( )l o 1D eRRE,
x(l)<x1 < Xi, X(2)<§2<T2<X2,
then for a.e., x € G we obtain

1(Arg) (x) = (A1) (D)l

X
aj _ _.0 .0

/(xl — 1) DR g7y o2 RR 10y () = gy (D]]eoe
[(ay) /

X

1

az
I'a

X2
_ _,0 40
2) /(XZ — 1) 27 (k1 TR 100 () — 2 (D [loore
0

X

[[(A2¢) (x) = (A2y) ()|

X1
bl _ _,0 .0
() / (r1 =)™ e A e g () = g1 (e
0
X

1

X
b2 - 40 _,0
['(az) /(XZ — 1) ek A e IR oo () = Yo () lleoe -
2 x()
Taking the inequality
Xi
1 -1 (1i-x0)k (xi—xk 7 —a; :
(e (x; =) e A < TN i =1, 2
@;
0

xl
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into account, we have

az
ko

1(A2¢) (-) = (A2¢) (lleoe < %II%(-) — 1)l + % lo2() = ¥2()lleoe -

(A1) (1) = (A1) (lleoe < %”‘Pl(‘) —Y1O)lle + 755 ll2() =2l

Denoting @ = max {a;, as, by, b}, @ = min {ay, ay}, from these inequalities we
obtain

1(A@) () = (AY) () llo e < i—j le() =¥ lleoe -

Thus due to the choice of the number &, the operator A is a contraction. By the
Banach contraction principle, this operator has a unique fixed point, which is
a unique solution ¢(-) = (¢1(-), ¢2(:)) € L®¢(G, R™M*™) of the system (6).
Hence, problem (1)—(2) has a unique solution. ]

5. Necessary and sufficient conditions for optimality

The aim of this section is to derive the necessary optimality conditions
for problem (1)—(4). To obtain the necessary and sufficient conditions for op-
timality, first we find increment of the functional (4). Let (u(-), z(-)) be a fixed
admissible process in problem (1)-(4). Along with this process, consider another
admissible process (u(-) = u(-) + Au(-), z(-) = z(:) + Az(-)). Then the increment
Az(-) of the state z(-) is a solution to the system of linear partial differential equa-
tion with a fractional Caputo derivative of the order @ = (a1, a2), @; € (0, 1),
i=1, 2:

(D'821) (1) = @1 (0)A21 () + @ ()Az2(x) + Afi (x, u(x)), ¥ € Gae.,

(Dngzz) (x) = b1 (x)Az1 (x) + b2(x)Az2 (x) + Ao (x, u(x)), x € G ae.,
with the following conditions
Azq (x?, xz) =0, x2€G, ae.,
Az (xl, xg) =0, x1€G; ae.,

where Af; (x, u(x)) = f; (x, u(x) + Au(x)) — f; (x, u(x)),i =1, 2.
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We introduce some nontrivial vector functions ¢;: G — R™ and y»: G —
R, Then the increment of objective functional (4) may be represented as

X1 X
__ )P (X — xp)fe!
MW = Fms / Joxi-npioe-x

0
)

x [c'l (X)Az1 (x) + () Aza (x) + Afo(x, u(x))|dx

/ (X1 =P d () Az (1, Xa)dny

1

F(,Bl)

/(Xz — x2)P 7 d (x2) Az1 (X, x2)dxa

x2

X1 X»
1 a1—-1 _ a—1
* FEoTE / /(Xl—xo (X - x2)

0
X

F(,Bz)

x {wi () |(D5'821) () - a1 (021 () = @2(x)Aza )
- Afix. u(x)| + 9300 | (D52A22) ()

— b1 (x)Aza(x) = ba(x)Aza(x) — Afa(x, M(X))]}dx

Using relation
T
Azi(x) = Ty /(x1 —7)®! (D‘flAz]) (t1,x2)d Ty,
)CO

X2
1 -
M) = s [t =) (D5 4z) () ds,

0
X
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we get
1 X2
_ 1 _ pi1—-1 _ Ba—1
AJ(M)_F(,Bl)F(ﬁz)O/ / (X )7 06 — )

X C’l(x)ﬁ/(xl - ) (D‘{“Am)(n,xz)dn+c’2(x)

0
X1

F( )/( 2 —T2)" I(DazAzz) (x1, 2)d72 + Afo(x, u(x))| dx

x2

Xl X2

1
(X1 -x1)"7d} (x1) (X2 —x2)™ 7 (D522 (x1, x2) dado

T

F()

xl 2

X, X
1 1
_ X — BZ_I / /X _ a—1 D(l/lA
+F(,32)[( 2=%2) dZ(XZ)F(al) 0( 1—x1) ( | Zl)(xl,xz)dxldxz
X xl

X1 X

1 a1—1 _ ar—1
+ —F(al)r(az)[/(XI_XI) (X2 — x2)

0
RIS

X Y1 (x) (D?‘Am)(x) - al(x)ﬁ /()q — 1)@t (DCI”Azl) (11,x2)dT

X

- a2V /( =) (D Az) (51,72 - A (5, u(x))

2

+ 90 | (D542 () = br(w) / I(xl )7 (D) Az ) (71, 0) dy

0
X

1
['(a1)

-2 o [ = 2 (DPaz) (e - Af (. uo) | dx

0
X
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Using the Dirichlet formulas for permutation, the order of integration and
after simple transformations we have

X X

AJ(u) = m//(xl —x1)" N (X —x2) 7 AL H (x1, x2) dxy dxa
1 X1 X2 (X )l—a
=10, — )@ [y oy = LX) T

*FanFias | [00=" 0 {l"’“’” Fan)

X/(Xl—Tl)al_l(TI—xl)al_l(‘//;(TI,XZ)GI(TI,XZ)

_ l-a; _ Ba—an
+ Y5 (T1,x2)b1 (11, x2) ) d 7y + Ma) (X F)E,gl)l“(,(;z()z x2)

></(Xl—Tl)ﬁl_l(ﬁ—xl)m_lcll(ﬁ,xz)dﬁ
[(a2)(Xp — x2)P2®
['(B2)

d;(xQ)] (D'821) (x1.x2)

1-a»
+ %Z’Q(X)——(X2 *2) /(Xz ) (1 —xp) ™!

X (¢ (x1, 12)az(x1, 1) + lﬁz(xl, 7)bs(x1,72)) dTa

X2
— v, )B1—a s )1ma2
F(Cl’l)(Xl F)Elﬁ)l)r(ﬂ(j)(z x2) /(X2—Tz)ﬁz_l(TZ—X2)02_1C,2(X1,Tz)dTZ

[(a1)(X) —xp)Prmo

T(B1) di(x)

ey (xl,xz)}dxldxz, )

where
H(x) = ¢ (x) fi (x,u(x)) + 5 (x) f2 (x, u(x))

_ T(anT(an) (X1 =x)P™" (X —xp) 7™

T(B1)C(Ba) Jo (%, u(x)).
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In order to simplify this expression, we will use the arbitrariness of vector-
functions 1 () and i, (-) to define the conjugate system. For this let

_ I-ay
Y1(x) = (Xlr(XI)) /(Xl ) (1 =) @] (r1, x2)¥ (71, x2)

[(a2) (X; —x1)17% (Xp = xp)P2
C(B)T(B2)

+ D] (Tl,XQ)l,llz(Tl,XQ)] dr -

X1

x / (X1 = 1P (11 —x)™ e (71, 30)d
X1

(@) (Xy —xp)Pr ™

F(,Bz) d2()€2), xeGqG a.c., (9)

X2
(Xp —xp) 17

Ya(x) = M(ay) /(Xz — )" (12 = x2) 7 [ay (x1, )Y (1, 72)

() (X) = x1)Pra (X, — xp) !~
C(B)T(B2)

+ b, (x1, )Y (x1, 12) | d7o —

X /(Xz — )P (1) — x2)  ep(x1, 1) d 7o
_T(a) (X —x)h ™™
'(B1)

Taking into account these equalities in (8), for the functional increment we obtain
the formula

d](xl), xeG ae. (10)

1
A = e
x / /(Xl—xl)‘“*(Xz—xz)az-lAuHul,xz)dxzdxl. (1

0 .0
RIS

The problem (9), (10) is said to be a conjugated problem.
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Lemma 1. For any a(-) € L (G, R") the function
D) (X1 —x)"™™ (X —xp)P7 @

hi) T(B1)T(B2)
X
X /(Xl —)P 7 (o —x)" a(rx)dn, xe G (12)
(l ) = C(ay) (X7 —x1)P7" (Xp —xp) ' 72
? T(B1)(B2)

Xo
X /(Xz ~0)P N (- x)™ a(x1, m)d, x€G
X2
essentially bounded and continuous with respect to variable x| (x3).

Proof. We first prove the essentially boundedness of the function /;(-). Passing
to the norm R” in (12), we obtain

T(@2) (X1 —x1)'7 (X5 — xp)P2®
L'(B)I(B2)

1L ()] <
X

X /(Xl — )P (o = x)® Ny la()|l e, x €G.

X1
Now we change the variables of the right-hand side of inequality
T(ay) (X1 —x)' ™ (X —xp)7®
LB (B2)

()1 <
|
X /Zal_l(l -7 G = x) P dz fla () e

0

I'(a)I (22) RY: VB2
<t ra X) (e =a2) T O, xeo

By the scheme from [34, Lemma 3.2], we can prove the equality

T'(a)T(@2) (X —x)P' ™" (X5 — xp)P2~ ™
L(B)I(B2)

L (x) =

1
['(a1)

X

X
[ =m0 (atmo + (25 a () (o x) dai.
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where

(I =pBp)sina; «
Vs

(Ra' P, Xz)) (x1, x2) =
X
X /Kaq,ﬂl (X1 —x1, X1 —11) a(ty,x0)d1y,

X1

1

Koy 5, (€)= P11 /zf“(l —) ™M (m+z(E-n)Prdz, £>n>0.

0
The following estimate holds for (Ra‘ Prag, xz)) (x1, x2) :

—ﬁll Sina/] T
(X1 —x1)Pin

H(R‘“ Pra, xz)) (x1, m)”
Xi 1
x / X1 = 7P a5l dr / B (1 = ) dz
X1 0
|1 —Bq|sinam

< b B(ay-pi+1, 1-a1)lla()ll . (13)

Now We prove the continuous function /;(-) with respect to variable x;. Let
xl, xl [x Xl] andxi < x%. Then

Hll (x}, xz) -1 (xf, x2)H < F(az)(Xz—xz)ﬁz—azlg(éll;ljcg[)gj;—al —(X _x%)ﬁl—(ll)
X

X /(Tl _x})m—l (a(Tl,xz) +( R ﬂla( Xz)) (71, xz)) dr

1
X

(@) (X2 — x2)P7% (X, = 22)P1 7
L(BOT(B2)

X
X /(Tl —x})al_l (a (11,x2) +( RS ﬁ'a( xz)) (11, X2)) dr

1
X
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) /(Tl _X%)QH (a(T1,x2) - (Rill’fgla (C Xz)) (11, X2)) dr
pi-ar I'(@2) (X2 _ xg)ﬂz—a2
r'(BHr(p2)

r Xy — 00\ (x, _ 2\ X
+ (Q’Z)( 2 If;;l)r(ﬁ(z)l xl) ( /((Tl _x%)wl—l _ (Tl —X%)al_l)

0" 2 1
< (X X ]\4&1,,5’1”61”LDo X1 =X

2

1

(a(t1,x2) + (Rg?l’_ﬁla(',xz))(Tl,xz))dﬁ

2
1

+ /(T1 _-xi)al—l (a (T1,x2) + (R;?l’_ﬁla(-, xz)) (11, x2)) dr

1
1

X

X

)ﬁz—az

<

@) (XZ B xg 1 0\
2 1
F(ﬁZ) {F(ﬁl) (Xl _xl) MC"I’ﬁl'laHL"o (xl —Xl

+ (X1 = )P | (] = 2™ = (X =)™ = (X = x) ™)+ (e = x)™]

X Mal,ﬁl ||a||L°°}

)ﬁl—al

0 Pz
M(a2) (X2 = x9) | O .
Y [r(ﬁo (X1 =) Moy lall (o = )27
Br—as
2 2\ llall 2 1\ I'(a2) (Xz _xg)

+ (Xl - X ) M , allLe (x - X ) ] =

1 w b [(B2)

1 “ Bi—a1—y Bi—an ar—y
* [F(ﬁo (X1 =) " (57 ) +2 (=) o - 4) ]
X Ma, g llall L (x1 _xl) < M(xl —xl) ,
1 |1 — Bi|sina; «

Yy =min{p —ai, a1},
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3T (ap) (X2 — xg)ﬁra2

['(B2)

Using Lemma 1 we can prove the following Lemma.

M = (X1 = xXNP 7Y My, g, llall e - O

Lemma 2. For any ®(-), Ci(-) € L*(G, R™), (D1(-), C2(+) € L*(G, R™))
and dr () € L*(Go, R™), (di(:) € L* (G, R™)) the function

wn () = & 1;(’”))1 - /(Xl—n) 1 (1 =)™ @ (11, x) d
e (X, —Faégll)—;zg)z ) / (Xi—1)P! (1 2™ Ci (11,0 dy
- (- x)d()
Yo (x) = (}QF_(—Z))M / (X2 = 1) (12 = x2) 27 Dy (x1, 72) d T2
_ e })E,IB)lﬁ) lr‘f(“ﬁ(z’)(rxz)l_” /}?Xz—Tz)ﬁz_l(Tz—xZ)az_1C2(x1,Tz)de
_ F(al)(?lfl(ﬁ—jl)ﬁl_m dl(xl)), xz

essentially bounded and continuous with respect to variable x| (x;).

Lemma 3. System of integral equations (9), (10) has a unique solution in the
space L*¢(G, R™*"2),

Proof. Denote by L>¢ (G, R"*"2) = [*¢ (G, R™) x L*° (G, R™) the space
of essentially bounded functions ¢(-) = (¢1(+), ¢2(+)), defined on the G with the
Bielecki norm

le(lleo,e = l@1(Mllooe + 102 llooe
= esssup (||‘101(x)|| e_(Xl_Xl)ke—(Xz—xz)k)

xeG

+ esssup (||<p2(x)|| e_(xl_xl)ke—(xz—xz)k) _
xeG
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Obviously, L*=¢ (G, R"*"2) is a Banach space. Using the right-hand sides of the
system of integral equations (9), (10) we introduce the following operators

(X1 —x1)

1-a Xi
(K1) (x) = (e /(Xl — ) 1y = xp) !

X [a) (11, x2) Y1 (11, x2) + B (11, x2) Y2 (11, X2) | Ay

D) (X1 =x1) 7 (Xp —xp) P27
(B (B2)

X1
/(Xl —m)P (o =) ey (1y, x0) d
xq

_T(a)
I'(B2)

(X, — XQ)’BZ_az dr(xp), x€G, a.e.

X3
_ I-as
—(XZF(Z)) /(Xz — 1) (1) — xp) ™!

X2

X [ay (x1, ©2) Y1 (x1, T2) + B (x1, T2) Y2 (x1, 2)| d 2

(Kayp) (x) =

B (1) (X, —xl)ﬁl—al (X» —xz)l_wz
C(B)(B2)

X
/ (=122 (13— x2) ™ e (x1, 72) d 2
X2

_ I(ay)

X, — Bi1—a; e.
F(ﬁl)( 1 —X1) di(x1), x€G, ae,

where ¢ (+) = (Y1 (+), ¥2()) € L= (G, R"™).

Lemma 2 implies that (Ky)(:) = ((Kiy)(+), (Kay)(+)) € L (G, R"*2)
Hence, the operator K is correctly defined. Let us show that this operator

is a contraction. Let us fix ¢(-) = (p1(), ¢2(1)), ¥ (1) = (Y1(), ¥2()) €
L€ (G, R™M*™)  For almost all x € G, we derive

a(Xy —x1)
['(a1)

1-a; X
I(Kie) (x) - (Kig) ()] < / (X1 — 7)™ (11 — )

X1

X |1 (t1,x2) =¥ (T, x2)|l + llo2(71,x2) — lﬁz(ﬁ,xz)ll]dﬁ,
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a(Xy —xp)' ™

[(a2)

X [lle1(x1,m2) w1 (x1, )|l = lle2(x1,72) Y2 (x1, )| ] d 72,
where a = max {a;, a, by, ba}.
By the scheme from [34, Lemma 3.2] we can prove the inequality

(K1) (x) = (K1) ()|

X1

[(K29) (x) = (Kay) (0)]] <

/(Xz — 1) (g — xp) 27!
X2

< F(c:u) (11 =x)* " (g1 (71, x2) = ¢1 (71, 2|

+llga(r1,02) = pa(rr 1) + (R (i (5x2) = ()
+ le2(-, x2) = Y2 (-, x2) ) (71, x2)d71, x € G, a.e.

Using estimates (13) we have

(K1) (x) = (K1) (x)[| <

F( )/( 1= 2D (ller Gox2) = 1 Cox) g

+ ||902(' x2) = Y2 (-, x2) |l [7.x,1) d 71
“L(lle1() = 1 (oo + 1192() = 2 () lcoe)

F()

X /(Tl — x) MKk g7 o (Kom2)K

X1

Moy (xi-xi)k (o) (o1 () =1 lloe

X

ke
+ le2() =920 )le) » X €G, ace.,

sin a’17T

where M, =1+

am
Similarly, we obtam the following inequality

1(K2¢) (x) = (Kay) ()]
< %e“‘l‘“ke(’(fw (lo1() =1l + 1192() = 2(Mlowe)

X

sin a7

where M,, =1+
LT



294 SH. SH. YUSUBOV, EXN. MAHMUDOV

We write the last two inequalities in the form

1(K1¢) () = (K1) (llco e

My,
< akm (le1() =1 e + lle2() = ¥2()llesre) »
1(K2¢) () = (K2p) (o,
aM,,
< (o1 () =¥1lloe + lle2() = ¥2()lles,e) -

k®
Summing these inequalities, we have
aM,,
k1
Thus due to the choice of the number k, the operator K is a contraction. By
the Banach contraction principle, this operator has a unique fixed point, which
is a unique solution ¥ () = (Y1(-), ¥2(:)) € L™ (G, R"*™2) of the system
9), (10).

Now, for a fixed (6, 62) € G we consider the following needle variation of
the admissible control u(-) :

1K) €)= (K) Ol = (G + B o) =0 Ol

v—u(x), xe€Gg,

AE = 9
u(x) {0, x € G\G,,

where v € V is an arbitrary fixed point, € > 0is a sufficiently small parameter and
G: = (01,01 +¢&) X (6, 02+¢&) C G. The control u.(-) defined by the equality
ug() = u(-) + Agu(-) is an admissible control for all sufficiently small £ > 0 and
all v € V called a needle perturbation given by the control u(-). Obviously,

O1+& Or+¢e
1
AJ =J e —-J - —_ X — ar-1 X, — ar—1
() = J () ~Jw) =~ [ [ C=x) =)
0 o
X [H (x1,x2, ¥ (x1,%2) ,v) = H (x1,x2, ¥ (x1,%2) , u (x1,x2))] dxodxy.  (14)
Then the following theorem is true. 0

Theorem 2. Let u(-) be a fixed admissible control, and z(-) = (z1(+), z2(-)) and
U(o) = (1,//(1)(~), w(z)(-)) the solutions of problems (1), (2) and (9), (10) corre-
sponding to this control, respectively. Then for the optimality of the admissible

control u(-) in problem (1)—(4) it is necessary and sufficient that for almost all
x € G the maximum condition is satisfied:

IunggH(x, Y(x), v) = H(x, ¥ (x), u(x)). (15)
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Proof. Suppose that admissible control u(-) gives the minimum value of the
functional (4). Then by (14), we have

01+ Or+e

1
— —F(al)r(ﬂz) , é/(Xl —X1)01—1(X2 —xz)az—l(H (x1,x2, ¥(x1,x2), V)
— H (x1,x2, ¥ (x1,x2), u(xl,xz)))dxde1 > 0. (16)

Dividing both sides of (16) by & and passing to the limit as £ — 0 we get
H (01,02, Y (01,02) , v) — H (61,02, ¢ (61,02), u(61,62)) <O. (17)

Thus, for optimal control u(-), it is necessary to satisfy the condition (15).
The equality (14) shows that this condition is sufficient for the optimality of the
control u(-).

This completes the proof. U

Example
Let us consider the problem
1
DV =z -u, 2P0, x)=0, (v, x)e[0, 1]x[0, 1],

1
Dp:Z?P =y, 270, 1) =0, (x1.x2) € [0, 1] x [0, 1],
|
_;1 s
2

1 1 1
J(u) = / / u(x)dx+2/ Zil)(l, X2)d)€2 — min.
0 0 0

For this problem, the Hamiltonian is

D’z = u, 2(x1, 0) =0, V=[-1; 0]U

H =0 (o =) + 0P =[5 Pl VT (1=
and the solution of the adjoint problem has the form
vy () = =20 (@) (1 - x2)' ™2,
% (x) = —2vaT (e2) V1 - x1(1 - x2)' 72, yo(x) =0,
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According to the principle of maximum
max | " (a2) (1 =)'~ (2= 3y7T = x1 ) v
- 20 () (1-22)' ™ 2P ()]
= T(@2) (1= 22)' ™ (2= 3¥ayT=x1 Ju(x) = 20(a2) (1= 1) ™ 2 ().

Hence it follows that the control that satisfies the Pontryagin’s maximum principle
has the form

4
_1» (.XI, x2) € |:O’ - — X [09 l]a
On

u(xy,x2) = (18)

4
1, (xl,XQ)E [1——, 1 X[O, 1]
Or

Then, by Theorem 2, the function u(-) defined by equality (18) is an optimal
control, and the corresponding optimal trajectory has the form

x [0, 1],

4
('xl’ x2) € |:O’ 1 - <
o

Dy =41 ( _2 —1+i)+2( —1+i)— T
e e

3 3
2 2
4
(xl9 -XZ) € 1 ) 1 X [09 l]a
O
VX 4
S (xl,m)GlO,l—— x [0, 1],
0 -
@y _ 2
4 (x) = 1 4 4
2 14 —- , , ell—-——, 1 0, 1],
F(i) l \/X1 on VX ] (x1, x2) [ o 1 %10 1]
2
x5? 4
2
- 1-— 1
Tt D)’ (x1, x2) € [0, on | X [0, 1],
ZZ(X) =9 e 4
2
S — , 1-——, 1 0, 1],
FaTy e e [ . 1| %[0, 1

and the minimum value of the functional
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6. Conclusion

In this paper we consider the optimal control problem associated with the frac-
tional Roesser model described by Caputo partial derivatives. Using the Banach
contraction principle, we prove the existence and uniqueness of a solution to the
corresponding boundary problem for a fixed admissible control. The formulated
problem of optimal control is studied using a new version of the incremental
method, in which the concept of an adjoint integral equation is essential. In turn,
the adjoint equation is the sum of partial operators of fractional integration with
weight. Using commutation of fractional integrals with power functions, one can
go directly from weighted fractional integrals to nonweighted fractional integrals.
We prove the existence and uniqueness of a solution to the adjoint problem. Then
a necessary and sufficient optimality condition is derived in the form of the Pon-
tryagin’s maximum principle.The approach presented here can be applied to the
derivation of various necessary optimality conditions for an optimal control prob-
lem in which the system is controlled by a nonlinear fractional Roesser model.
It is commendable that the described technique can be useful from the point of
view of calculating the gradient of the functional. In this case, the functional
gradient formula can be applied to find an approximate solution to the problem
posed using the gradient method.
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