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A force/position controller free of velocity
measurement for robot manipulators

with bounded torque input

César A. CHÁVEZ-OLIVARESo , Marco O. MENDOZA-GUTIÉRREZo ,
Isela BONILLA-GUTIÉRREZo and Emilio J. GONZÁLEZ-GALVÁNo

Robot manipulators play a crucial role in various industrial and research settings, requiring
precise and controlled interactions with their surroundings. Achieving this goal with fewer
sensors offers advantages not only in terms of cost and decreased risk of failure but also
enhances accuracy and long-term reliability. In this paper, we introduce a nonlinear force/position
controller that eliminates the requirement for velocity measurements. This controller provides
versatility by facilitating the generation of bounded control actions during robot-environment
interactions, ensuring a higher level of safety for both the robot and its environment during
the execution of tasks necessitating physical contact between them. The proposed approach is
underpinned by a stability analysis in the Lyapunov sense and has been validated through a
series of simulation and experimental tests.
Key words: force/position control, Lyapunov stability, robot manipulator, saturation function

1. Introduction

Robot manipulators play a vital role in numerous industrial and research
applications, where precise and delicate interactions with the environment are
necessary [1–3]. Over recent years, there has been a burgeoning interest in ex-
panding the capacities of robots beyond conventional position control [4–6]. The
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development of force and impedance control techniques has unveiled novel op-
portunities to achieve interactions with the surrounding world that are not only
safer and more efficient but also adaptive [7–9].

Force control embodies the capacity of a robot to regulate the forces it applies
to or detects from its environment. Unlike traditional position control, which
concentrates on achieving precise joint positions, force control empowers robots
to execute tasks using a specific force, enabling them to handle delicate objects,
conduct intricate assembly tasks, and even engage safely in human-robot collab-
oration [8, 10–12]. Conversely, impedance control is a complementary concept
that delineates the robot’s capability to adjust its behavior in response to external
forces. By simulating compliance and elasticity, the robot can naturally react to
alterations in its surroundings, thereby averting damage to itself, the environment,
or any humans with whom it interacts. Impedance control proves especially valu-
able in applications such as physical human-robot interaction, where rigid and
inflexible movements could potentially pose risks [9,13,14]. These two techniques
encompass the primary categories used to classify various robot-environment in-
teraction control algorithms. The first directly regulates force, while the second
achieves this indirectly.

Given the substantial rise in automated tasks necessitating interaction be-
tween robots and their environment, interaction control stands as an advanced
and crucial research area in robotics and automation. This technology seeks to
empower robots to exert and manage interaction (contact) forces. It hinges on
a fusion of sensor data, incorporating joint position/velocity sensors and force/-
torque sensors, to oversee force interactions with the environment [15, 16]. Ow-
ing to the multitude of approaches explored by various researchers, the solutions
offered for resolving interaction control can be categorized into the following
groups:

• Adaptive control: These strategies are commonly employed to adjust con-
trol parameters in real-time based on sensor feedback. This enhances the
accuracy of force control, particularly in situations involving dynamic and
uncertain environments [13, 17].

• Machine learning: These techniques, such as neural networks and rein-
forcement learning, are increasingly applied to enhance model-less force
control. These algorithms can learn complex force-control policies from
data, improving adaptability [18–20].

• Impedance/admittance control: These techniques are widely used for sen-
sorless force control. They define the relationship between force and dis-
placement, allowing robots to exhibit compliant behavior when interacting
with objects and humans, or performing tasks like assembly [14, 21].
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• Force sensing in end-effector: Some approaches integrate force sensors
directly into the robot’s end-effector, allowing for direct force measurements
at the point of contact. These sensors are critical for accurate force control
[22–24].

• Vision-based force control: Vision systems, such as cameras and depth
sensors, are incorporated into sensorless force control algorithms. They
provide visual feedback to estimate contact forces during tasks like grasping
and manipulation [25, 26].

• Tactile sensing: Tactile sensors integrated into robot fingertips or end-
effectors provide valuable information about contact forces and object prop-
erties. Combining tactile feedback with other sensorless control methods
enhances performance [27–29].

• Sensorless force control: It often relies on dynamic models of the robot
and its interactions with the environment. These models use sensor data,
primarily joint positions, torque measurements, and currents of the motors,
to estimate contact forces and control their application [30–34].

The control schemes that rely on velocity and acceleration sensors come with
certain limitations and challenges. Firstly, the integration of such sensors adds
to the overall complexity and cost of the robot system, making it less economi-
cally viable, particularly for smaller-scale applications or industries with budget
constraints [35]. Additionally, the presence of sensors increases the likelihood of
mechanical failures and requires regular maintenance, leading to potential down-
time and increased operational costs. Moreover, the sensors can be susceptible
to noise, drift, and calibration issues, which can degrade the accuracy and reli-
ability of the control system over time [36]. In dynamic environments or during
high-speed movements, the delay in sensor data acquisition and processing can
lead to suboptimal control performance, potentially compromising the safety and
efficiency of the robot. These limitations highlight the importance of exploring
alternative control techniques based on a minimum number of sensors that can
mitigate these issues and provide more robust and cost-effective solutions for
robot manipulators [7].

In this work we are interested in the precise and direct control of force and
motion of robot manipulators, without using velocity sensors. The issue of hybrid
force/motion control over unknown rigid surfaces, where only position measure-
ments are considered, is addressed in [37]. Their proposed solution relies on
an extended state high-gain observer to concurrently estimate contact force and
joint velocities. The authors provide both numerical simulations and experimen-
tal results. It is noteworthy that the experimental results exhibit slightly lower
performance accuracy compared to the simulation results, indicating that this
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discrepancy arises from uncertainties in the model and the presence of unknown
external disturbances. In [38], the authors propose an integral sliding-mode ob-
server for estimating external disturbances and velocity. They also introduce an
application of a sensorless admittance controller scheme based on this observer.
Their experimental results demonstrate high precision, bandwidth, and robust-
ness. On the other hand, in [39], a sliding perturbation observer is developed for
estimating assembly force without the reliance on a force sensor, and the need for
velocity sensing is circumvented through the use of a sliding velocity estimator.
This estimator is implemented on a dual-arm robot system, where actuators are
controlled using drivers that estimate the rated torque by monitoring motor cur-
rents. The study verifies that the perturbation observer closely matches the actual
torque provided by the drivers. However, it falls short in accurately representing
the force estimation required for practical dual-arm assembly tasks.

The works mentioned above are intended for implementation in low-cost
robotic platforms with only position sensors. However, these schemes have several
significant drawbacks as follows:

• The response time of observers is slower compared to the real-time response
of sensors.

• Observers exhibit noise in situations where there is no contact between the
robot and the environment, which can cause instability.

• Most observers have a high degree of dependency on the accuracy of the
model, and this is reflected in a decrease in the precision of the regulation
of forces and/or movement.

• The cited works do not take into account limits on nominal torques imposed
by the actuator drivers. Consequently, the schemes are not designed to
accommodate input saturation on control torques, and this scenario is not
considered in their stability analysis.

• The estimation techniques are employed exclusively for practical purposes
within direct force control schemes, lacking a formal demonstration of
stability [33]. Therefore, these observers are usually used only in indirect
force regulation schemes as impedance/admittance controllers.

In order to study stability and generate bounded control actions, a nonlinear
force/position controller is proposed in this study, which does not necessitate ve-
locity measurements. The proposed approach directly regulates force and utilizes
a linear filter for velocity estimation, thereby enhancing response speed compared
to model-based observers. Furthermore, this controller offers versatility as it can
be adapted to generate bounded control actions in robot-environment interaction
tasks. The proposed scheme is underpinned by a stability analysis in the Lyapunov
sense and is validated through a series of simulation and experimental tests.
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2. Preliminaries

Let 𝐴 ∈ R𝑛×𝑚 with 𝐴𝑖 and 𝐴𝑖 𝑗 being the 𝑖-th row vector and (𝑖, 𝑗)-th element of
matrix 𝐴, respectively; and 𝑦 ∈ R𝑛 with 𝑦𝑖 representing the 𝑖-th component of 𝑦;
while 0𝑛 and 𝐼𝑛 denote the origin of R𝑛 and the 𝑛×𝑛 identity matrix, respectively.
In addition, ∥𝑦∥ =

√︁
𝑦𝑇 𝑦 is the Euclidean vector norm and ∥𝐴∥ =

√︁
𝜆max{𝐴𝑇 𝐴}

represents the induced matrix norm, with 𝜆max{·} being the maximum eigenvalue.
Let 𝜁 : R ↦−→ R be a continuously differentiable scalar function and

𝜑 : R ↦−→ R be a locally Lipschitz, continuous, scalar function, both vanish-
ing at zero, i.e., 𝜁 (0) = 𝜑(0) = 0. Furthermore, 𝜁 ′ denotes the derivative
of 𝜁 with respect to its argument, i.e., 𝜁 ′(𝜍) = 𝜕𝜁 (𝜍)/𝜕𝜍. While 𝐷+𝜑 (𝜍) =

lim supℎ→0+ [𝜑(𝜍 + ℎ) − 𝜑(𝜍)]/ℎ, ∀𝜍 ∈ R, is the upper right-hand derivative,

then 𝜑(𝜍) =
∫ 𝜍

0
𝐷+𝜑(𝑟)d𝑟 [40].

Definition 1. A nondecreasing Lipschitz-continuous function 𝜎 : R → R
bounded by 𝑀 > 0 is a generalized saturation function (GSF) if

(a) 𝜍𝜎(𝜍) > 0,∀𝜍 ≠ 0.
(b) |𝜎(𝜍) | ¬ 𝑀,∀𝜍 ∈ R.
(c) In addition, if 𝜎(𝜍) = 𝜍 when |𝜍 | ¬ 𝐿, for some 0 < 𝐿 ¬ 𝑀 , then 𝜎 is a

linear generalized saturation function (L-GSF) for (𝐿, 𝑀).
Moreover, there is a constant 𝑘 > 0 such that any generalized saturation function
satisfies the following properties [11, 12]:

1. lim|𝜍 |→∞ 𝐷
+𝜎(𝜍) = 0.

2. ∃𝜎′
𝑀

∈ (0,∞): 0 ¬ 𝐷+𝜎(𝜍) ¬ 𝜎′
𝑀
,∀𝜍 ∈ R.

3.
𝜎2(𝑘𝜍)
2𝑘𝜎′

𝑀

¬
∫ 𝜍

0
𝜎(𝑘𝑟)d𝑟 ¬

𝑘𝜎′
𝑀
𝜍2

2
, ∀𝜍 ∈ R.

4.
∫ 𝜍

0
𝜎(𝑘𝑟)d𝑟 > 0,∀𝜍 ≠ 0.

5.
∫ 𝜍

0
𝜎(𝑘𝑟)d𝑟 → ∞ as |𝜍 | → ∞.

6. If 𝜎 is strictly increasing, then

a. 𝜍 [𝜎(𝜍 + 𝜂) − 𝜎(𝜂)] > 0, ∀𝜍 ≠ 0, ∀𝜂 ∈ R.
b. For any constant 𝑎 ∈ R, 𝜎̄(𝜍) = 𝜎(𝜍+𝑎)−𝜎(𝑎) is a strictly increasing

generalized saturation function (SI-GSF) bounded by 𝑀̄ = 𝑀+|𝜎(𝑎) |.
7. If 𝜎 is a L-GSF for (𝐿, 𝑀) then 𝜍 [𝜎(𝜍 + 𝜈(𝜂)) − 𝜎(𝜈(𝜂))] > 0, ∀𝜍 ≠ 0,

∀𝜂 ∈ R, for any continuous function 𝜈 : R ↦→ R such that |𝜈(𝜂) | < 𝐿.
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According to the Euler-Lagrange methodology, the dynamic model of a 𝑛-
degree-of-freedom robot interacting with its environment can be represented as

𝐻 (𝑞) ¥𝑞 + 𝐶 (𝑞, ¤𝑞) ¤𝑞 + 𝐹 ¤𝑞 + 𝑔(𝑞) = 𝜏 − 𝐽𝑇 (𝑞) 𝑓𝑒 , (1)

where 𝑞, ¤𝑞, ¥𝑞 ∈ R𝑛 are vectors of joint position, velocity and acceleration,
respectively; 𝐻 (𝑞), 𝐶 (𝑞, ¤𝑞), 𝐹 ∈ R𝑛×𝑛 are matrices of inertia, centripetal and
Coriolis, and viscous friction, respectively; 𝐽 (𝑞) ∈ R𝑚×𝑛 is the analytical Jacobian
matrix; while, 𝑔(𝑞), 𝜏 ∈ R𝑛 and 𝑓𝑒 ∈ R𝑚 are vectors of gravitational, control and
environmental torques acting on the robot, respectively.

It is important to note that the dynamic model (1) has some properties that
are relevant for the purposes of this work [41, 42].

Property 1. For any robot manipulator, 𝐻 (𝑞) and 𝐹 are positive definite sym-
metric matrices, even 𝐹 is diagonal.

Property 2. In the case of robot manipulators with only revolute joints, 𝑔(𝑞)
is bounded on R𝑛 in such a way that |𝑔𝑖 (𝑞) | ¬ 𝐵𝑔𝑖, ∀𝑞 ∈ R𝑛 and 𝐵𝑔𝑖 ­ 0,
𝑖 = 1, . . . , 𝑛.

Property 3. In the case of robot manipulators with only revolute joints, there are
non-negative constants such that ∥𝐽𝑇

𝑖
(𝑦)∥ ¬ 𝐵𝐽𝑖, ∀𝑦 ∈ R𝑛, 𝑖 = 1, . . . , 𝑛.

It is well known that, due to the characteristics of the robot actuators and
their corresponding electronic drivers, the control inputs of the robotic system
are bounded and it gives rise to the following assumption.

Assumption 1. Each component of vector 𝜏 is bounded by 𝑇𝑖 > 0, i.e., |𝜏𝑖 | ¬ 𝑇𝑖,
𝑖 = 1, . . . , 𝑛, then assume that

𝜏𝑖 = 𝑇𝑖sat
(
𝑢𝑖

𝑇𝑖

)
, (2)

where sat(·) is the standard saturation function, i.e. sat(𝜍) = sign(𝜍) min{|𝜍 |, 1}
and 𝑢𝑖 is the 𝑖-th control signal. In addition, assume that 𝑇𝑖 > 𝐵𝑔𝑖, ∀𝑖 ∈ {1, ..., 𝑛}.

Using the direct kinematic mapping 𝑥 = K(𝑞) ∈ R𝑚, the dynamic model (1)
can be rewritten in task space as

𝐻𝑥 ¥𝑥 + 𝐶𝑥 ¤𝑥 + 𝐹𝑥 ¤𝑥 + 𝑔𝑥 = 𝑓𝑥 − 𝑓𝑒 (3)

where ¤𝑥 = 𝐽 (𝑞) ¤𝑞 ∈ R𝑚 is the task-space velocity, ¥𝑥 = ¤𝐽 (𝑞, ¤𝑞) ¤𝑞+𝐽 (𝑞) ¥𝑞 ∈ R𝑚 is the
task-space acceleration, 𝑓𝑥 is the vector of control forces such that 𝜏 = 𝐽𝑇 (𝑞) 𝑓𝑥 ,
𝐻𝑥 = [𝐽−1(𝑞)]𝑇𝐻 (𝑞)𝐽−1(𝑞),𝐶𝑥 = {[𝐽−1(𝑞)]𝑇𝐶 (𝑞, ¤𝑞) −𝐻𝑥 ¤𝐽 (𝑞, ¤𝑞)}𝐽−1(𝑞), 𝐹𝑥 =
[𝐽−1(𝑞)]𝑇𝐹𝐽−1(𝑞) and 𝑔𝑥 = [𝐽−1(𝑞)]𝑇𝑔(𝑞). Note that the task-space dynamic
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model (3) is valid when the robot is away from singular configurations and the
right pseudo-inverse of 𝐽 (𝑞) should be considered when the robot is redundant,
i.e., 𝑛 > 𝑚 [43].

The robot-environment interaction forces can be modeled in different ways,
in our case we are considering the generalized model of a spring system.
Assumption 2. The vector 𝑓𝑒 can be modeled as

𝑓𝑒 = 𝐾𝑒 [𝑥 − 𝑥𝑒] , (4)

where 𝐾𝑒 ∈ R𝑚×𝑚 is a positive-definite diagonal stiffness matrix and 𝑥𝑒 ∈ R𝑚 is
the rest position.

The permissible deformation of the environment before a fracture is bounded,
therefore it is possible to assume that the robot-environment interaction forces
can be represented by a bounded version of the generalized spring system.
Assumption 3. A bounded version of model (4) can be represented by

𝑓𝑒 = 𝑠𝑒 (𝐾𝑒 [𝑥 − 𝑥𝑒]), (5)

where 𝑠𝑒 (𝑦) = (𝜎𝑒1(𝑦1), ..., 𝜎𝑒𝑚 (𝑦𝑚))𝑇 with 𝜎𝑒 𝑗 (·) being strictly increasing L-
GSFs bounded by 𝑀𝑒 𝑗 .

Also the dynamic model (3) has some relevant properties of interest for the
further stability analysis [10–12]:
Property 4. There exist constants 𝜇𝑀 ­ 𝜇𝑚 > 0 such that 𝐻𝑥 ∈ R𝑚×𝑚 satisfies
𝜇𝑚 𝐼𝑚 ¬ 𝐻𝑥 ¬ 𝜇𝑀 𝐼𝑚.
Property 5. There exists a constant 𝑘𝑐 ­ 0 such that 𝐶𝑥 ∈ R𝑚×𝑚 satisfies
∥𝐶𝑥 ¤𝑥∥ ¬ 𝑘𝑐∥ ¤𝑥∥2, ∀¤𝑥 ∈ R𝑚.
Property 6. There exist constants 𝑓𝑀 ­ 𝑓𝑚 > 0 such that 𝐹𝑥 ∈ R𝑚×𝑚 satisfies
𝑓𝑚 𝐼𝑚 ¬ 𝐹𝑥 ¬ 𝑓𝑀 𝐼𝑚.
Property 7. The matrices 𝐶𝑥 and ¤𝐻𝑥 ≜ 𝑑𝐻𝑥/𝑑𝑡 satisfy ¤𝑥𝑇

[ ¤𝐻𝑥 − 2𝐶𝑥
]
¤𝑥 = 0,

∀¤𝑥 ∈ R𝑚, and actually ¤𝐻𝑥 = 𝐶𝑥 + 𝐶𝑇𝑥 (see proof in A).
Recalling that the robot inputs are bounded, it is important to assume that this

is also the case in task space.
Assumption 4. According to Assumption 1 and Property 3, because 𝜏 = 𝐽𝑇 (𝑞) 𝑓𝑥
each component of 𝑓𝑥 can be bounded by a constant F𝑗 > 0, i.e.,

�� 𝑓𝑥 𝑗 �� ¬ F𝑗 ,
𝑗 = 1, . . . , 𝑚. Thus, assume that

𝑓𝑥 𝑗 = F𝑗sat
(
𝑢𝑥 𝑗

F𝑗

)
(6)

and then 𝑢 = 𝐽𝑇 (𝑞)𝑢𝑥 .
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3. Nonlinear force/position controller without velocity measurement

To avoid the use of velocity sensors while regulating robot-environment in-
teraction, the following force/position control structure is proposed

𝑢𝑥 = −𝑠𝐹 (𝐾𝐹 𝑓 ) − 𝑠𝑃 (𝐾𝑃𝑥) − 𝑠𝐷 (𝐾𝐷𝜗) + 𝑔𝑥 + 𝑓𝑒 (7)

where the force and position errors are given by 𝑓 = 𝑓𝑒 − 𝑓𝑑 and 𝑥 = 𝑥 − 𝑥𝑑 with
𝑓𝑑 , 𝑥𝑑 ∈ R𝑚 being constant desired force and position vectors, respectively; 𝐾𝐹 =

diag[𝑘𝐹1, ..., 𝑘𝐹𝑚], 𝐾𝑃 = diag[𝑘𝑃1, ..., 𝑘𝑃𝑚] and 𝐾𝐷 = diag[𝑘𝐷1, ..., 𝑘𝐷𝑚] are
positive definite matrices of gain parameters; 𝑠𝐹 (𝑦) = (𝜎𝐹1(𝑦1), ..., 𝜎𝐹𝑚 (𝑦𝑚))𝑇
and 𝑠𝑃 (𝑦) = (𝜎𝑃1(𝑦1), ..., 𝜎𝑃𝑚 (𝑦𝑚))𝑇 with 𝜎𝐹 𝑗 (·) and 𝜎𝑃 𝑗 (·) being SI-GSFs
bounded by 𝑀𝐹 𝑗 and 𝑀𝑃 𝑗 , respectively; 𝑠𝐷 (𝑦) = (𝜎𝐷1(𝑦1), ..., 𝜎𝐷𝑚 (𝑦𝑚))𝑇 with
𝜎𝐷 𝑗 (·) being GSFs bounded by 𝑀𝐷 𝑗 and that satisfies

∥𝑠𝐷 (𝐾𝐷𝜗)∥2 ¬ 𝜅𝜗𝑇 𝑠𝐷 (𝐾𝐷𝜗) ¬ 𝜅2∥𝜗∥2 (8)

for some constant 𝜅 > 0 and ∀𝜗 ∈ R𝑚 that represents the estimated velocity
vector obtained from the following auxiliary dynamics

¤𝜗𝑐 = −𝐴[𝜗𝑐 + 𝐵𝑥], (9)
𝜗 = 𝜗𝑐 + 𝐵𝑥, (10)

where 𝐴, 𝐵 ∈ R𝑚×𝑚 are positive definite diagonal matrices, i.e., 𝐴 =

diag[𝑎1, ..., 𝑎𝑚] and 𝐵 = diag[𝑏1, ..., 𝑏𝑚] with 𝑎 𝑗 > 0, 𝑏 𝑗 > 0, ∀ 𝑗 = 1, ..., 𝑚.

3.1. Closed-loop analysis

The closed-loop robot-environment interaction dynamics is obtained by com-
bining the robot and environment models (3), (4) and the force/position controller
(7), (9)-(10), such that

¤̄𝑓 = 𝐾𝑒 ¤𝑥, (11)
¤̄𝑥 = ¤𝑥, (12)
¤𝜗 = −𝐴𝜗 + 𝐵 ¤𝑥, (13)

𝐻𝑥 ¥𝑥 = −𝑠𝐹 (𝐾𝐹 𝑓 ) − 𝑠𝑃 (𝐾𝑃𝑥) − 𝑠𝐷 (𝐾𝐷𝜗) − 𝐶𝑥 ¤𝑥 − 𝐹𝑥 ¤𝑥. (14)

To analyze the existence of equilibrium point in the closed-loop system (11)-(14),
under stationary conditions ¤̄𝑓 = ¤̄𝑥 = ¤𝜗 = ¥𝑥 = ¤𝑥 = 0𝑚, we have that

−𝐴𝜗 = 0𝑚 , (15)
−𝑠𝐹 (𝐾𝐹 𝑓 ) − 𝑠𝑃 (𝐾𝑃𝑥) − 𝑠𝐷 (𝐾𝐷𝜗) = 0𝑚 . (16)
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Then, ( 𝑓𝐸 , 𝑥𝐸 , 𝜗𝐸 , ¤𝑥𝐸 )𝑇 = ( 𝑓 ∗, 𝑥∗, 0𝑚, 0𝑚)𝑇 is the equilibrium vector such that

𝑠𝐹
(
𝐾𝐹 𝑓

∗) = −𝑠𝑃 (𝐾𝑃𝑥∗), (17)

where 𝑓 ∗
𝑗
= 𝜎−1

𝐹 𝑗
(−𝜎𝑃 𝑗 (𝑘𝑃 𝑗𝑥∗𝑗 ))/𝑘𝐹 𝑗 , ∀ 𝑗 = 1, ..., 𝑚.

3.2. Stability analysis

In order to analyze the stability of the closed-loop equilibrium vector, we use
Lyapunov’s direct method (see Theorem 4.1, [40, Section 4.1]) and the invariance
principle (see Theorem 4.4, [40, Section 4.2]), and the corresponding procedure
is described below.

Proposition 1. Consider the dynamic closed-loop system (11)-(14) and Assump-
tions 1 and 4. Thus, for any positive definite diagonal matrices 𝐾𝐹 , 𝐾𝑃 and 𝐾𝐷 ,
and any 𝜖 satisfying the following condition

𝜖 < 𝜖𝑀 ≜ min {𝜖1, 𝜖2, 𝜖3, 𝜖4} (18)

where

𝜖1 ≜

√︄
𝜇𝑚

𝜇2
𝑀
(𝛽𝐹 + 𝛽𝑃)

, (19)

𝜖2 ≜
𝛽𝑑

𝜅
, (20)

𝜖3 ≜
𝛽𝑑 𝑓𝑚 − 𝜅
𝛽𝑑𝛽𝑀

, (21)

𝜖4 ≜
𝑓𝑚

𝛽𝑀 + 𝑓 2
𝑀

(22)

with

𝛽𝐹 ≜ max
𝑗

{𝜎′
𝐹 𝑗𝑀 𝑘𝐹 𝑗 𝑘𝑒 𝑗 } (23)

𝛽𝑃 ≜ max
𝑗

{𝜎′
𝑃 𝑗𝑀 𝑘𝑃 𝑗 } (24)

𝛽𝑑 ≜ min
𝑗

{
𝑎 𝑗

𝑏 𝑗

}
>

𝜅

𝑓𝑚
(25)

𝛽𝑀 ≜ 𝑘𝑐𝐵𝐹𝑃 + 𝜇𝑀 (𝛽𝐹 + 𝛽𝑃) (26)

where 𝐵𝐹𝑃 ≜
√︃∑𝑚

𝑗=1 𝑀
2
𝐹 𝑗

+
√︃∑𝑚

𝑗=1 𝑀
2
𝑃 𝑗

, 𝜎′
𝐹 𝑗𝑀

and 𝜎′
𝑃 𝑗𝑀

are the positive bounds
of 𝐷+𝜎𝐹 𝑗 (·) and 𝐷+𝜎𝑃 𝑗 (·), respectively (see item 2 of Definition 1), 𝜇𝑚, 𝜇𝑀 , 𝑘𝑐,
𝑓𝑚 and 𝑓𝑀 as defined in Properties 4, 5 and 6, respectively, and 𝜅 as defined in
(8); the asymptotic stability of the closed-loop equilibrium vector is guaranteed.
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Remark 1. It is important to note that conditions (18) and (25) are not necessary
but only sufficient to ensure stability in closed loop, therefore there is a margin
of tolerance without causing instability.

Proof. In order to prove the stability of closed-loop equilibrium vector, we
consider the following candidate function

𝑉 (𝑥, 𝑓 , ¤𝑥, 𝜗) = 1
2
¤𝑥𝑇𝐻𝑥 ¤𝑥 +

𝑓∫
0𝑚

𝑠𝑇𝐹 (𝐾𝐹𝑟)𝐾−1
𝑒 d𝑟 + 𝜖 ¤𝑥𝑇𝐻𝑥𝑠𝐹 (𝐾𝐹 𝑓 )

+ 𝜅
2
𝜗𝑇𝐵−1𝜗 +

𝑥∫
0𝑚

𝑠𝑇𝑃 (𝐾𝑃𝑟)d𝑟 + 𝜖 ¤𝑥𝑇𝐻𝑥𝑠𝑃 (𝐾𝑃𝑥). (27)

To demonstrate that this candidate function is positive definite, it can be rewritten
as follows

𝑉 (𝑥, 𝑓 , ¤𝑥, 𝜗) =
1
2
¤𝑥𝑇𝐻𝑥 ¤𝑥 + 𝛼


𝑓∫

0𝑚

𝑠𝑇𝐹 (𝐾𝐹𝑟)𝐾−1
𝑒 d𝑟 +

𝑥∫
0𝑚

𝑠𝑇𝑃 (𝐾𝑃𝑟)d𝑟


+𝜖 ¤𝑥𝑇𝐻𝑥𝑠𝐹 (𝐾𝐹 𝑓 ) + 𝜖 ¤𝑥𝑇𝐻𝑥𝑠𝑃 (𝐾𝑃𝑥) +

𝜅

2
𝜗𝑇𝐵−1𝜗

+(1 − 𝛼)


𝑓∫
0𝑚

𝑠𝑇𝐹 (𝐾𝐹𝑟)𝐾−1
𝑒 d𝑟 +

𝑥∫
0𝑚

𝑠𝑇𝑃 (𝐾𝑃𝑟)d𝑟

 (28)

where 0 < 𝛼 < 1 and by bounding some terms we get

𝑉 (𝑥, 𝑓 , ¤𝑥, 𝜗) ­ 𝜇𝑚

2
∥ ¤𝑥∥2 + 𝛼

2𝛽𝐹
∥𝑠𝐹 (𝐾𝐹 𝑓 )∥2 + 𝛼

2𝛽𝑃
∥𝑠𝑃 (𝐾𝑃𝑥)∥2

−𝜖 𝜇𝑀 ∥𝑠𝐹 (𝐾𝐹 𝑓 )∥∥ ¤𝑥∥ − 𝜖 𝜇𝑀 ∥𝑠𝑃 (𝐾𝑃𝑥)∥∥ ¤𝑥∥

+(1 − 𝛼)


𝑓∫
0𝑚

𝑠𝑇𝐹 (𝐾𝐹𝑟)𝐾−1
𝑒 d𝑟 +

𝑥∫
0𝑚

𝑠𝑇𝑃 (𝐾𝑃𝑟)d𝑟


+𝜅

2
𝜗𝑇𝐵−1𝜗 (29)
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using Property 4 and item 3 of Definition 1, then

𝑉 (𝑥, 𝑓 , ¤𝑥, 𝜗) ­ (1 − 𝛼)


𝑓∫
0𝑚

𝑠𝑇𝐹 (𝐾𝐹𝑟)𝐾−1
𝑒 d𝑟 +

𝑥∫
0𝑚

𝑠𝑇𝑃 (𝐾𝑃𝑟)d𝑟


+𝑊1( 𝑓 , 𝑥, ¤𝑥) +

𝜅

2
𝜗𝑇𝐵−1𝜗 (30)

where

𝑊1( 𝑓 , 𝑥, ¤𝑥) =
1
2
𝑤𝑇1


𝛼
𝛽𝐹

−𝜖 𝜇𝑀 0
−𝜖 𝜇𝑀 𝜇𝑚 −𝜖 𝜇𝑀

0 −𝜖 𝜇𝑀 𝛼
𝛽𝑃

 𝑤1 (31)

with 𝑤1 = (∥𝑠𝐹 (𝐾𝐹 𝑓 )∥, ∥ ¤𝑥∥, ∥𝑠𝑃 (𝐾𝑃𝑥)∥)𝑇 . Therefore, by selecting

𝜖2

𝜖2
1
< 𝛼 < 1 (32)

𝑊1( 𝑓 , 𝑥, ¤𝑥) is positive definite when the inequality (18) is fulfilled (see B), and
𝑊1(0𝑚, 0𝑚, ¤𝑥) → ∞ as ∥ ¤𝑥∥ → ∞. Therefore, in accordance with inequality (32)
and the items 4 and 5 of Definition 1, we can concluded that 𝑉 (𝑥, 𝑓 , ¤𝑥, 𝜗) is a
positive definite and radially unbounded function.

The next step is to obtain the time derivative of the scalar function (27) along
the trajectories of the closed-loop system (11)-(14), which is given by

¤𝑉 (𝑥, 𝑓 , ¤𝑥, 𝜗) =
1
2
¤𝑥𝑇 ¤𝐻𝑥 ¤𝑥 + ¤𝑥𝑇𝐻𝑥 ¥𝑥 + 𝑠𝑇𝐹 (𝐾𝐹 𝑓 )𝐾−1

𝑒
¤̄𝑓 + 𝜖 𝑠𝑇𝐹 (𝐾𝐹 𝑓 )𝐻𝑥 ¥𝑥

+𝜖 ¤𝑥𝑇 ¤𝐻𝑥𝑠𝐹 (𝐾𝐹 𝑓 ) + 𝜖 ¤𝑥𝑇𝐻𝑥𝑠′𝐹 (𝐾𝐹 𝑓 )𝐾𝐹 ¤̄𝑓 + 𝜅𝜗𝑇𝐵−1 ¤𝜗
+𝑠𝑇𝑃 (𝐾𝑃 𝑓 ) ¤̄𝑥 + 𝜖 𝑠𝑇𝑃 (𝐾𝑃𝑥)𝐻𝑥 ¥𝑥 + 𝜖 ¤𝑥𝑇 ¤𝐻𝑥𝑠𝑃 (𝐾𝑃𝑥)
+𝜖 ¤𝑥𝑇𝐻𝑥𝑠′𝑃 (𝐾𝑃𝑥)𝐾𝑃 ¤̄𝑥

=
1
2
¤𝑥𝑇 ¤𝐻𝑥 ¤𝑥 + ¤𝑥𝑇 [−𝑠𝐹 (𝐾𝐹 𝑓 ) − 𝑠𝑃 (𝐾𝑃𝑥) − 𝑠𝐷 (𝐾𝐷𝜗)

−𝐶𝑥 ¤𝑥 − 𝐹𝑥 ¤𝑥] + 𝑠𝑇𝐹 (𝐾𝐹 𝑓 ) ¤𝑥 + 𝜖 𝑠𝑇𝐹 (𝐾𝐹 𝑓 ) [−𝑠𝐹 (𝐾𝐹 𝑓 )
−𝑠𝑃 (𝐾𝑃𝑥) − 𝑠𝐷 (𝐾𝐷𝜗) − 𝐶𝑥 ¤𝑥 − 𝐹𝑥 ¤𝑥] + 𝜖 ¤𝑥𝑇 ¤𝐻𝑥𝑠𝐹 (𝐾𝐹 𝑓 )
+𝜖 ¤𝑥𝑇𝐻𝑥𝑠′𝐹 (𝐾𝐹 𝑓 )𝐾𝐹𝐾𝑒 ¤𝑥 + 𝜅𝜗𝑇𝐵−1 [−𝐴𝜗 + 𝐵 ¤𝑥]
+𝑠𝑇𝑃 (𝐾𝑃 𝑓 ) ¤𝑥 + 𝜖 𝑠𝑇𝑃 (𝐾𝑃𝑥) [−𝑠𝐹 (𝐾𝐹 𝑓 ) − 𝑠𝑃 (𝐾𝑃𝑥)
−𝑠𝐷 (𝐾𝐷𝜗) − 𝐶𝑥 ¤𝑥 − 𝐹𝑥 ¤𝑥] + 𝜖 ¤𝑥𝑇 ¤𝐻𝑥𝑠𝑃 (𝐾𝑃𝑥)
+𝜖 ¤𝑥𝑇𝐻𝑥𝑠′𝑃 (𝐾𝑃𝑥)𝐾𝑃 ¤𝑥

= ¤𝑥𝑇 [𝜅𝜗 − 𝑠𝐷 (𝐾𝐷𝜗)] − ¤𝑥𝑇𝐹𝑥 ¤𝑥 − 𝜖 𝑠𝑇𝐹 (𝐾𝐹 𝑓 )𝑠𝐹 (𝐾𝐹 𝑓 )
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−2𝜖 𝑠𝑇𝐹 (𝐾𝐹 𝑓 )𝑠𝑃 (𝐾𝑃𝑥) − 𝜖 𝑠𝑇𝐷 (𝐾𝐷𝜗) [𝑠𝐹 (𝐾𝐹 𝑓 )
+𝑠𝑃 (𝐾𝑃𝑥)] − 𝜖 ¤𝑥𝑇𝐶𝑥 [𝑠𝐹 (𝐾𝐹 𝑓 ) + 𝑠𝑃 (𝐾𝑃𝑥)]
−𝜖 ¤𝑥𝑇𝐹𝑥 [𝑠𝐹 (𝐾𝐹 𝑓 ) + 𝑠𝑃 (𝐾𝑃𝑥)]
+𝜖 ¤𝑥𝑇𝐻𝑥𝑠′𝐹 (𝐾𝐹 𝑓 )𝐾𝐹𝐾𝑒 ¤𝑥 − 𝜅𝜗𝑇𝐵−1𝐴𝜗

−𝜖 𝑠𝑇𝑃 (𝐾𝑃𝑥)𝑠𝑃 (𝐾𝑃𝑥) + 𝜖 ¤𝑥𝑇𝐻𝑥𝑠′𝑃 (𝐾𝑃𝑥)𝐾𝑃 ¤𝑥 (33)

where Property 7 was used. Then, in accordance with Properties 4-6, the function
(33) can be bounded as

¤𝑉 (𝑥, 𝑓 , ¤𝑥, 𝜗) ¬ ∥ ¤𝑥∥∥𝜅𝜗 − 𝑠𝐷 (𝐾𝐷𝜗)∥ − 𝑓𝑚 ∥ ¤𝑥∥2 − 𝜖 ∥𝑠𝐹 (𝐾𝐹 𝑓 )
+𝑠𝑃 (𝐾𝑃𝑥)∥2 + 𝜖 ∥𝑠𝐷 (𝐾𝐷𝜗)∥∥𝑠𝐹 (𝐾𝐹 𝑓 ) + 𝑠𝑃 (𝐾𝑃𝑥)∥
+𝜖 𝑘𝑐𝐵𝐹𝑃∥ ¤𝑥∥2 + 𝜖 𝑓𝑀 ∥ ¤𝑥∥∥𝑠𝐹 (𝐾𝐹 𝑓 ) + 𝑠𝑃 (𝐾𝑃𝑥)∥
+𝜖 𝜇𝑀 𝛽𝐹 ∥ ¤𝑥∥2 − 𝜅𝛽𝑑 ∥𝜗∥2 + 𝜖 𝜇𝑀 𝛽𝑃∥ ¤𝑥∥2 (34)

Observe that, in accordance with (8), 𝜅𝜗𝑇 𝑠𝐷 (𝐾𝐷𝜗) ­ ∥𝑠𝐷 (𝐾𝐷𝜗)∥2. Hence,

∥𝜅𝜗 − 𝑠𝐷 (𝐾𝐷𝜗)∥2 = [𝜅𝜗 − 𝑠𝐷 (𝐾𝐷𝜗)]𝑇 [𝜅𝜗 − 𝑠𝐷 (𝐾𝐷𝜗)]
= 𝜅2𝜗𝑇𝜗 − 2𝜅𝜗𝑇 𝑠𝐷 (𝐾𝐷𝜗) + 𝑠𝑇𝐷 (𝐾𝐷𝜗)𝑠𝐷 (𝐾𝐷𝜗)
= 𝜅2∥𝜗∥2 − 2𝜅𝜗𝑇 𝑠𝐷 (𝐾𝐷𝜗) + ∥𝑠𝐷 (𝐾𝐷𝜗)∥2

¬ 𝜅2∥𝜗∥2 − 2∥𝑠𝐷 (𝐾𝐷𝜗)∥2 + ∥𝑠𝐷 (𝐾𝐷𝜗)∥2

¬ 𝜅2∥𝜗∥2 − ∥𝑠𝐷 (𝐾𝐷𝜗)∥2

¬ 𝜅2∥𝜗∥2 (35)

then 𝜅∥𝜗∥ ­ ∥𝜅𝜗 − 𝑠𝐷 (𝐾𝐷𝜗)∥. Thus,

¤𝑉 (𝑥, 𝑓 , ¤𝑥, 𝜗) ¬ −1
2
𝑤𝑇2

[
𝜖 −𝜖𝜅

−𝜖𝜅 𝜅𝛽𝑑

]
𝑤2 −

1
2
𝑤𝑇3

[
𝜅𝛽𝑑 −𝜅
−𝜅 𝑓𝑚 − 𝜖 𝛽𝑀

]
𝑤3

−1
2
𝑤𝑇4

[
𝜖 −𝜖 𝑓𝑀

−𝜖 𝑓𝑀 𝑓𝑚 − 𝜖 𝛽𝑀

]
𝑤4 (36)

where 𝑤2 = (∥𝑠𝐹 (𝐾𝐹 𝑓 ) + 𝑠𝑃 (𝐾𝑃𝑥)∥, ∥𝜗∥)𝑇 , 𝑤3 = (∥𝜗∥, ∥ ¤𝑥∥)𝑇 and 𝑤4 =

(∥𝑠𝐹 (𝐾𝐹 𝑓 ) + 𝑠𝑃 (𝐾𝑃𝑥)∥, ∥ ¤𝑥∥)𝑇 . Therefore, when fulfilled (18), ¤𝑉 (𝑥, 𝑓 , ¤𝑥, 𝜗) ¬ 0
and by using LaSalle’s invariance principle [40] with the following set

Ω =
{
𝑓 , 𝑥, ¤𝑥, 𝜗 ∈ R𝑚 : ¤𝑉 (𝑥, 𝑓 , ¤𝑥, 𝜗) = 0

}
=

{
𝜗 = ¤𝑥 = 0𝑚, 𝑓 , 𝑥 ∈ R𝑚

}
(37)

Then, 𝜗 = ¤𝑥 = 0𝑚 ⇒ ¤𝜗 = ¥𝑥 = 0𝑚 and from the closed-loop dynamics (11)-(14),
−𝑠𝐹 (𝐾𝐹 𝑓 ) − 𝑠𝑃 (𝐾𝑃𝑥) = 0𝑚. Therefore, the closed-loop equilibrium vector is
asymptotically stable, which completes the proof. 2
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4. Force/position controller with bounded actions

When considering the environment model (5), the force/position controller
(7), (9)–(10) is able to generate bounded control actions that allow to respect
the torque limit values of the robot actuators. To prove it, by considering that
Assumption 3 is fulfilled, (7) is rewritten as 𝑢𝑥 = 𝑢𝐹𝑃𝐷 + 𝑔𝑥 where

𝑢𝐹𝑃𝐷 = −𝑠𝐹 (𝐾𝐹 𝑓 ) − 𝑠𝑃 (𝐾𝑃𝑥) − 𝑠𝐷 (𝐾𝐷𝜗) + 𝑠𝑒 (𝐾𝑒 [𝑥 − 𝑥𝑒]). (38)

Then, in order to avoid the actuator saturation

|𝑢𝑖 | =
��𝐽𝑇𝑖 (𝑞)𝑢𝑥 �� = ��𝐽𝑇𝑖 (𝑞)𝑢𝐹𝑃𝐷 + 𝑔𝑥

�� < 𝑇𝑖 (39)

and in accordance with Property 2, Inequality (39) can be rewritten as��𝐽𝑇𝑖 (𝑞)𝑢𝐹𝑃𝐷 �� ¬ ∥𝐽𝑇𝑖 (𝑞)∥∥𝑢𝐹𝑃𝐷 ∥ < 𝑇𝑖 − 𝐵𝑔𝑖 . (40)

Therefore, from Property 3, the following sufficient condition to avoid saturation
can be established√√√ 𝑚∑︁

𝑗=1

[
𝑀𝐹 𝑗 + 𝑀𝑃 𝑗 + 𝑀𝐷 𝑗 + 𝑀𝑒 𝑗

]2
< min

𝑖

{
𝑇𝑖 − 𝐵𝑔𝑖
𝐵𝐽𝑖

}
≜ 𝑢𝑀 . (41)

Remark 2. Because condition (41) is only sufficient and not necessary to avoid
saturation, values greater than 𝑢𝑀 can be considered.

5. Numerical simulation

To assess the effectiveness of the proposed control scheme, we conducted a
numerical simulation of an interaction task in MATLAB® R2023b, employing
the model of a three-degree-of-freedom anthropomorphic robot manipulator.
The model of the robotic platform, along with its nominal parameters, is detailed
in [44]. The maximum torques for this robot are 𝑇1 = 50 Nm, 𝑇2 = 150 Nm, and
𝑇3 = 15 Nm, respectively.

To compare the performance of the proposed controller utilizing the velocity
estimator with another scheme employing the backward difference approxima-
tion of velocity, we incorporated position and velocity measurements containing
additive white noise. These measurements took into account the position sensor
information provided by the manufacturers of robot actuators [44]. Specifically,
we considered an error of 1 incremental-encoder pulse corresponding to 6.136
×10−6 rad in the angular position measurement. A sampling period of 2.5 ms was
utilized for the scheme employing the dirty derivative to compute velocity.
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5.1. Description of the interaction task and configuration of the controller

Within the robot’s workspace, a flat and rigid surface has been positioned
for interaction with its end-effector. This task is illustrated in Fig. 1, showcasing
the reference frame (𝑥𝑝, 𝑦𝑝, 𝑧𝑝) affixed to the environment (surface), commonly
referred to as a user frame in industrial robotics. The origin of this frame is situated
at (0.5, 0.35,−0.49) m. The planar surface is inclined at 30 degrees relative
to the horizontal, with a stiffness value normal to the plane set at 2000 N/m,
corresponding to 𝐾𝑒 = diag {0, 1000, 1732.05} N/m. Note that the position of the
robot’s end effector relative to the user frame is

𝑥𝑝𝑒1
𝑥𝑝𝑒2
𝑥𝑝𝑒3

1

 = 𝐻
−1
𝑒


𝑥1
𝑥2
𝑥3
1

 , (42)

where 𝐻𝑒 is the following homogeneous transformation matrix

𝐻𝑒 =


0 −1 0 0.5

0.866 0 −0.5 0.35
0.5 0 0.866 −0.49
0 0 0 1

 . (43)

Figure 1: Graphical representation of the interaction task
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The initial position of the robot was set at 𝑞(0) = [−10, 110,−75]𝑇
degrees, corresponding to the location of its end-effector at 𝑥(0) =

[0.364, 0.627,−0.215]𝑇 m. The desired end-effector position is 𝑥𝑑 =

[0.307, 0.658,−0.335] m. However, the flat surface serves as an obstacle, caus-
ing a robot-environment interaction. During this interaction, the robot needs to
apply a normal force of 10 N, which is equivalent to 𝑓𝑑 = [0,−5, 8.66]𝑇 N. It is
important to note that the initial position of the robot is away from singularities.
Figure 2 depicts the graphical representation of these singularities and demon-
strates how the robot’s path avoids them. The singularities correspond to points
on the surface within the horizontal plane, i.e., det[𝐽 (𝑞)] ≡ 0.

Figure 2: Graphical representation of singularities and the robot’s trajectory for the interaction
task. The axes for 𝑞2 and 𝑞3 are shown in degrees

On the other hand, the proposed controller (7) was implemented using the
following generalized saturation functions

𝜎ℎ (𝜍;𝑀) = 𝑀sat(𝜍/𝑀), (44)

𝜎𝑠 (𝜍; 𝐿, 𝑀) =
{
𝜍, ∀|𝜍 | ¬ 𝐿,
𝜌𝑠 (𝜍), ∀|𝜍 | > 𝐿,

(45)

where

𝜌𝑠 (𝜍) = sign(𝜍)𝐿 + (𝑀 − 𝐿) tanh
(
𝜍 − sign(𝜍)𝐿

𝑀 − 𝐿

)
. (46)
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Then, the proportional actions of position, force, and velocity estimation were
implemented with

𝜎𝑃 𝑗 (𝜍) = 𝜎𝑠 (𝜍; 𝐿𝑃 𝑗 , 𝑀𝑃 𝑗 ), (47)
𝜎𝐹 𝑗 (𝜍) = 𝜎𝑠 (𝜍; 𝐿𝐹 𝑗 , 𝑀𝐹 𝑗 ), (48)
𝜎𝐷 𝑗 (𝜍) = 𝜎ℎ (𝜍;𝑀𝐷 𝑗 ), (49)

𝑗 = 1, ..., 3. Therefore, 𝜎′
𝑃 𝑗𝑀

= 𝜎′
𝐹 𝑗𝑀

= 𝜎′
𝐷 𝑗𝑀

= 1 and 𝜅 = max 𝑗
{
𝑘𝐷 𝑗

}
.

The selected controller parameters are presented in Table 1. These values were
employed for both the controller utilizing the velocity estimator and the one
employing the backward difference approach.

Table 1: Parameter tuning for the controller utilized in numerical simulation tests

Parameter Value
𝑀𝑃 [15, 10.2, 25]𝑇

𝑀𝐹 [5, 8, 20]𝑇

𝑀𝐷 [3, 5, 30]𝑇

𝑀𝐸 [5, 10, 15]𝑇

𝐿𝑃 0.9 · 𝑀𝑃

𝐿𝐹 0.9 · 𝑀𝐹

𝐾𝑃 diag {650, 700, 40}
𝐾𝐹 diag {3500, 800, 1560}
𝐾𝐷 diag {100, 100, 100}
𝐴 diag {160, 160, 160}
𝐵 diag {160, 160, 160}

5.2. Results

The numerical simulation results are depicted in Figs. 3–6, where the subscript
n refers to the controller utilizing the backward difference approximation for
velocity estimation. In Fig. 3, the position errors (𝑥1, 𝑥2, 𝑥3) corresponding to the
components (𝑥, 𝑦, 𝑧) of the world reference frame, respectively, are illustrated. It
is notable that all components endeavor to approach zero; however, the contact
of the end-effector with the surface impedes this achievement. Nonetheless, this
contact is effectively regulated to prevent any damage, as evident from Fig. 4,
where the force error components tend toward zero. It is crucial to highlight that
the noise present in joint position measurements primarily impacts the estimation
of Cartesian velocity when utilizing numerical differentiation. In contrast, the
estimation using the subsystem (9)–(10) remains immune, as illustrated in Fig. 5.
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Furthermore, this noise exerts influence on the transient response, delaying the
moment of contact in the proposed scheme. Nevertheless, the control objective is
still achieved. On the other hand, upon observing Fig. 6 which illustrates control
torques, it can be confirmed that the proposed controller ensures the control
torques remain bounded at all times.
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Figure 3: Components of position error obtained during numerical simulation tests
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Figure 4: Components of force error obtained during numerical simulation tests
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Figure 5: Velocity components obtained through position filtering and the dirty derivative method,
respectively, during numerical simulation tests
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Figure 6: Components of control torque obtained during numerical simulation tests
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To conduct a quantitative evaluation of the performance of both the proposed
controller and the version utilizing numerical differentiation (dirty derivative),
the following indices were taken into account:

1. L2-norm, defined as

∥𝑒∥L2 =

√√√√√ 1
𝑡 − 𝑡0

𝑡∫
𝑡0

𝑒𝑇 (𝑧)𝑒(𝑧)d𝑧 ,

where 𝑒 ∈ R𝑚 represents the position or force error.
2. L∞-norm, defined as

∥E∥L∞ = max
𝑡

{|E(𝑡) |} ,

where E(𝑡) represents the energy supplied to the kinematic chain (robot) at
time 𝑡, defined as

E(𝑡) =
𝑡∫

0

¤𝑞𝑇 (𝜎)𝜏(𝜎)d𝜎.

Table 2 presents the performance indices obtained for each controller. The
norms of position error and supplied energy were calculated throughout the entire
simulation, while the norm of force error was computed only during the contact
period. This commenced at approximately 1.185 s and 0.775 s for the schemes
with velocity estimator and numerical differentiation, respectively. The numerical
results lead us to conclude that the scheme utilizing numerical differentiation
demonstrates slightly superior performance in terms of the position error index,
attributed to its shorter transient period to reach contact compared to the scheme
employing the velocity estimator subsystem (9)-(10). Nonetheless, the force error
and supplied energy indices indicate that the proposed scheme expends less energy
and exhibits less aggressiveness upon impact, ensuring greater safety for both the
robot and its environment.

Table 2: Performance indices for the force/position controller utilizing the velocity estimator and
the numerical differentiation (dirty derivative), respectively

Index Velocity estimator Numerical differentiation

L2-norm of position error 0.057 m 0.051 m
L2-norm of force error 1.488 N 1.507 N
L∞-norm of supplied energy 5.594 J 6.087 J
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6. Experimental results

We conducted a experimental test to validate the force/position control con-
trol scheme involving a two-dimensional interaction task as states the following
sections.

6.1. Experimental robotic platform

The experimental platform showed in Fig. 7 consist on a two degree-of-
freedom parallelogram SCARA-type robot manipulator. The kinematic chain is
actuated by a pair of brushless motors and their corresponding drivers configured
in torque mode, specifically, the servomotor SVM-220B and the servoamplifier
SVA-2300. Both motors have a torque limit of 9.4 Nm and are equipped with
built-in quadrature encoders that provide joint position measurements with a
resolution of 10,000 pulses per revolution. The control algorithms are executed at
2 ms of sample time on an STM32F407 Discovery board. To get the interaction
force for feedback, an ATI multi-axis F/T sensor is mounted on the robot’s end-
effector, specifically, the model Gamma, calibrated to measure a maximum force
of 130 N and a maximum torque of 10 Nm about each axis.

Figure 7: Experimental robotic platform

The kinematic diagram of the robot is illustrated in Fig. 8, whith 𝐿𝑖 repre-
senting the length of the 𝑖-th link. Specifically, 𝐿1 = 𝐿4 = 0.35 m, 𝐿2 = 0.45 m
and 𝐿3 = 0.1867 m. The corresponding direct kinematic model 𝑥(𝑞) and the
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Figure 8: Kinematic diagram of the experimental robotic platform

Jacobian matrix 𝐽 (𝑞) are given by

𝑥(𝑞) =

[
𝐿1 sin 𝑞1 + 𝐿2 cos 𝑞2
𝐿1 cos 𝑞1 + 𝐿2 sin 𝑞2

]
,

𝐽 (𝑞) =

[
𝐿1 cos 𝑞1 −𝐿2 sin 𝑞2
−𝐿1 sin 𝑞1 𝐿2 cos 𝑞2

]
. (50)

The gravity field of earth is aligned to 𝑥3𝑜 of the reference frame, consequently
the potential energy of this robot is constant, hence the gravity vector 𝑔(𝑞) is null.
The inertia, Coriolis and viscous friction matrices are given by

𝐻 (𝑞) =

[
𝜚1 −𝜚2𝑠1,2 − 𝜚3𝑐1,2

−𝜚2𝑠1,2 − 𝜚3𝑐1,2 𝜚4

]
(51)

𝐶 (𝑞, ¤𝑞) =

[
0 ¤𝑞2

(
𝜚3𝑠1,2 − 𝜚2𝑐1,2

)
¤𝑞1

(
𝜚3𝑠1,2 − 𝜚2𝑐1,2

)
0

]
𝐹 =

[
𝑓𝑣1 0
0 𝑓𝑣2

]
(52)

where 𝑠1,2 = sin(𝑞1 + 𝑞2), 𝑐1,2 = cos(𝑞1 + 𝑞2), and 𝜚 𝑗 , 𝑗 = 1, ..., 4, are the
robot parameters related to mass, centers of mass, and moments of inertia, while
𝑓𝑣1 and 𝑓𝑣2 are the viscous friction coefficients. The numerical values of these
parameters are reported in Table 3.
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Table 3: Parameters for the robot model

Parameter Value Units
𝜚1 0.536032 Nm·s2/rad
𝜚2 0.295742 Nm·s2/rad
𝜚3 0.009131 Nm·s2/rad
𝜚4 0.336187 Nm·s2/rad
𝑓𝑣1 0.016366 Nm·s/rad
𝑓𝑣2 0.019832 Nm·s/rad

6.2. Results

A robot-environment force interaction scenario was configured in order to
validate the performance of the proposed scheme. The fixed environment consist
on a solid, flat surfaced made on wooden wall covered with a styrofoam plate. The
robot start its motion from a stationary position with joint configuration 𝑞(0) =
[45,−58]𝑇 degrees, that is, the initial location of the robot end-effector is placed
at 𝑥(0) = [0.4860,−0.1341]𝑇 meters. The tuning parameters for this experiment
appear in Table 4. The reference force was configured as 𝑓𝑑 = [−6, 8]𝑇 N, while
the position target was 𝑥𝑑 = [0.6379,−0.3142]𝑇 m. With this configuration for
initial and target positions, the end-effector collides with the flat surface before
achieving the position goal.

Table 4: Parameter tuning for the controller utilized in the experimental test

Parameter Value
𝑀𝑃 [2.5, 2.5]𝑇

𝑀𝐹 [2.5, 2.5]𝑇

𝑀𝐷 [3.5, 3.5]𝑇

𝑀𝐸 [10, 15]𝑇

𝐿𝑃 0.9 · 𝑀𝑃

𝐿𝐹 0.9 · 𝑀𝐹

𝐾𝑃 diag {8, 8}
𝐾𝐹 diag {4, 5}
𝐾𝐷 diag {70, 70}
𝐴 diag {162.65, 162.65}
𝐵 diag {162.65, 162.65}

The experimental findings are visually presented in Figs. 9–12. Figure 9 de-
picts the evolution of position error over time, showcasing its attempt to converge
to the desired position. However, due to contact with a flat surface, achieving
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the objective is hindered. Despite this, the position demonstrates stable behavior
during the interaction.

Figure 10 displays the estimated Cartesian velocity, calculated through the
subsystem described by equations (9) and (10). The figure reveals micro-
oscillations, attributed to noise, yet the formulation of the estimator as a low-pass
linear filter effectively mitigates this noise.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Figure 9: Components of position error obtained during the experimental test
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Figure 10: Components of estimated velocity obtained during the experimental test
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The behavior of force error is elucidated in Fig. 11, where the presence of
noise during free-space movement is observed. During contact, the amplification
of noise is attributed to the proportional term in the force-position controller;
nonetheless, the interaction remains stable.
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Figure 11: Components of force error obtained during the experimental test
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Figure 12: Components of control torque obtained during the experimental test
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Lastly, Fig. 12 illustrates the control torques of the experiment, revealing that
they stay within the limits of nominal values, ensuring a controlled and stable
operation.

7. Conclusions

The work presented herein introduces an innovative nonlinear force/position
controller tailored for robotic applications demanding precision in position con-
trol and interaction with the environment. This control scheme eliminates the
need for speed measurement, which is advantageous in low-budget applications,
with reduced maintenance and with the advantage of offering long-term reliable
operation, without compromising the safety and efficiency of the robotic system.

The introduced control scheme integrates a filter for velocity estimation, ad-
dressing significant shortcomings observed in model-based schemes documented
in the literature. This controller facilitates the generation of bounded control ac-
tions, and its stability is demonstrated in Lyapunov sense.

Validation of the proposed control scheme was conducted through numerical
simulation tests of a three-degree-of-freedom anthropomorphic robot and exper-
imentation on a two-degree-of-freedom SCARA-type robot manipulator. Both
the simulation and experimental results validate the proposal in terms of stabil-
ity during interaction with the environment, without exceeding the limits in the
torques exerted by the robot actuators. Furthermore, according to the performance
evaluation, the proposed scheme minimizes the effects of sensor noise, optimizes
energy consumption, and enhances accuracy and safety in robot-environment
interaction tasks.

A. Proof of skew symmetry of matrix ¤𝐻𝑥 − 2𝐶𝑥

In order to prove that the matrix ¤𝐻𝑥−2𝐶𝑥 is skew-symmetric, we first establish
the validity of the expression ¤𝐻𝑥 = 𝐶𝑥 + 𝐶𝑇𝑥 . To achieve this, we begin by
considering 𝑑

𝑑𝑡
𝐻𝑥 = ¤𝐻𝑥 as follows:

¤𝐻𝑥 =
𝑑

𝑑𝑡

{
[𝐽−1(𝑞)]𝑇𝐻 (𝑞)𝐽−1(𝑞)

}
=

𝑑

𝑑𝑡

{
[𝐽−1(𝑞)]𝑇

}
𝐻 (𝑞)𝐽−1(𝑞) + [𝐽−1(𝑞)]𝑇 𝑑

𝑑𝑡
[𝐻 (𝑞)] 𝐽−1(𝑞)

+[𝐽−1(𝑞)]𝑇𝐻 (𝑞) 𝑑
𝑑𝑡

[
𝐽−1(𝑞)

]
(53)
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Now, to simplify the above expression, note that

𝑑

𝑑𝑡

[
𝐽 (𝑞)𝐽−1(𝑞)

]
=

𝑑

𝑑𝑡
[𝐼𝑚]

𝐽 (𝑞) 𝑑
𝑑𝑡

[
𝐽−1(𝑞)

]
+ 𝑑

𝑑𝑡
[𝐽 (𝑞)] 𝐽−1(𝑞) = 0𝑚 (54)

then

𝑑

𝑑𝑡

[
𝐽−1(𝑞)

]
= −𝐽−1(𝑞) ¤𝐽 (𝑞, ¤𝑞)𝐽−1(𝑞) (55)

where ¤𝐽 (𝑞, ¤𝑞) = 𝑑
𝑑𝑡
[𝐽 (𝑞)]. Thus, with [𝐽 (𝑞)𝐽−1(𝑞)]𝑇 = 𝐼𝑚, we obtain

𝑑

𝑑𝑡
[𝐽−1(𝑞)]𝑇 = −

[
𝐽−1(𝑞)

]𝑇 𝑑

𝑑𝑡

[
𝐽𝑇 (𝑞)

] [
𝐽𝑇 (𝑞)

]−1 (56)

Thus, by substituting equations (55) and (56) into (53), we can rewrite (53) as

¤𝐻𝑥 = −
[
𝐽−1(𝑞)

]𝑇 𝑑

𝑑𝑡

[
𝐽𝑇 (𝑞)

]
𝐻𝑥 +

[
𝐽−1(𝑞)

]𝑇 ¤𝐻 (𝑞, ¤𝑞)𝐽−1(𝑞)

−𝐻𝑥 ¤𝐽 (𝑞, ¤𝑞)𝐽−1(𝑞) (57)

where ¤𝐻 (𝑞, ¤𝑞) = 𝑑
𝑑𝑡
[𝐻 (𝑞)] and [𝐽𝑇 (𝑞)]−1 = [𝐽−1(𝑞)]𝑇 .

On the other hand,

𝐶𝑥 + 𝐶𝑇𝑥 =
[
𝐽−1(𝑞)

]𝑇
𝐶 (𝑞, ¤𝑞)𝐽−1(𝑞) − 𝐻𝑥 ¤𝐽 (𝑞, ¤𝑞)𝐽−1(𝑞)

+
[
𝐽−1(𝑞)

]𝑇
𝐶𝑇 (𝑞, ¤𝑞)𝐽−1(𝑞) −

[
𝐽−1(𝑞)

]𝑇 [ ¤𝐽 (𝑞, ¤𝑞)]𝑇𝐻𝑇𝑥
=

[
𝐽−1(𝑞)

]𝑇 ¤𝐻 (𝑞, ¤𝑞)𝐽−1(𝑞) − 𝐻𝑥 ¤𝐽 (𝑞, ¤𝑞)𝐽−1(𝑞)

−
[
𝐽−1(𝑞)

]𝑇 𝑑

𝑑𝑡

[
𝐽𝑇 (𝑞)

]
𝐻𝑥 (58)

where, according to the well-known properties of the dynamic model [41, Chapter
4], ¤𝐻 (𝑞, ¤𝑞) = 𝐶 (𝑞, ¤𝑞) + 𝐶𝑇 (𝑞, ¤𝑞), 𝐻𝑥 is a symmetric matrix, i.e., 𝐻𝑥 = 𝐻𝑇𝑥 , as
well as 𝑑

𝑑𝑡

[
𝐽𝑇 (𝑞)

]
= [ ¤𝐽 (𝑞, ¤𝑞)]𝑇 . Then, by comparing the equations (57) and (58),

we can conclude that ¤𝐻𝑥 = 𝐶𝑥 + 𝐶𝑇𝑥 .
Next, we need to prove that𝐶𝑇𝑥 −𝐶𝑥 = −[𝐶𝑇𝑥 −𝐶𝑥]𝑇 . For this purpose consider

that

𝐶𝑇𝑥 − 𝐶𝑥 = [𝐽−1(𝑞)]𝑇𝐶𝑇 (𝑞, ¤𝑞)𝐽−1(𝑞) − [𝐽−1(𝑞)]𝑇 𝑑
𝑑𝑡

[
𝐽𝑇 (𝑞)

]
𝐻𝑇𝑥

−[𝐽−1(𝑞)]𝑇𝐶 (𝑞, ¤𝑞)𝐽−1(𝑞) + 𝐻𝑥 ¤𝐽 (𝑞, ¤𝑞)𝐽−1(𝑞) (59)
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On the other hand,

−[𝐶𝑇𝑥 − 𝐶𝑥]𝑇 = −
{
[𝐽−1(𝑞)]𝑇𝐶𝑇 (𝑞, ¤𝑞)𝐽−1(𝑞)

}𝑇 + {
[𝐽−1(𝑞)]𝑇 𝑑

𝑑𝑡

[
𝐽𝑇 (𝑞)

]
𝐻𝑇𝑥

}𝑇
+
{
[𝐽−1(𝑞)]𝑇𝐶 (𝑞, ¤𝑞)𝐽−1(𝑞)

}𝑇 − [
𝐻𝑥 ¤𝐽 (𝑞, ¤𝑞)𝐽−1(𝑞)

]𝑇
= −[𝐽−1(𝑞)]𝑇𝐶 (𝑞, ¤𝑞)𝐽−1(𝑞) + 𝐻𝑥 ¤𝐽 (𝑞, ¤𝑞)𝐽−1(𝑞)

+ [𝐽−1(𝑞)]𝑇𝐶𝑇 (𝑞, ¤𝑞)𝐽−1(𝑞) − [𝐽−1(𝑞)]𝑇 𝑑
𝑑𝑡

[
𝐽𝑇 (𝑞)

]
𝐻𝑇𝑥 . (60)

Thus, by comparing the equations (59) and (60), we conclude that 𝐶𝑇𝑥 − 𝐶𝑥 =

−[𝐶𝑇𝑥 − 𝐶𝑥]𝑇 .
Finally, please note that

¤𝑥𝑇
[ ¤𝐻𝑥 − 2𝐶𝑥

]
¤𝑥 = ¤𝑥𝑇

[
𝐶𝑥 + 𝐶𝑇𝑥 − 2𝐶𝑥

]
¤𝑥

= ¤𝑥𝑇
[
𝐶𝑇𝑥 − 𝐶𝑥

]
¤𝑥

= −¤𝑥𝑇
[
𝐶𝑇𝑥 − 𝐶𝑥

]𝑇 ¤𝑥
= 0. (61)

Therefore, the matrix ¤𝐻𝑥 − 2𝐶𝑥 is skew-symmetric, which completes the proof.

B. Proof of positive definiteness of𝑊1( 𝑓 , 𝑥, ¤𝑥)

According to the definition of 𝑊1( 𝑓 , 𝑥, ¤𝑥) in (31), consider the following
symmetric matrix

𝐴 =


𝛼

𝛽𝐹
−𝜖 𝜇𝑀 0

−𝜖 𝜇𝑀 𝜇𝑚 −𝜖 𝜇𝑀
0 −𝜖 𝜇𝑀

𝛼

𝛽𝑃

 . (62)

Using the theorem of Sylvester [41], it is known that 𝐴 is positive definite if and
only if

det[𝑎11] > 0, det
[
𝑎11 𝑎12
𝑎21 𝑎22

]
> 0, det[𝐴] > 0.

Therefore, because 𝛼 > 0 and 𝛽𝐹 > 0 =⇒ det [𝛼/𝛽𝐹] > 0.
Then, to satisfy that

det

[ 𝛼

𝛽𝐹
−𝜖 𝜇𝑀

−𝜖 𝜇𝑀 𝜇𝑚

]
=
𝛼𝜇𝑚

𝛽𝐹
− 𝜇2

𝑀𝜖
2 > 0 (63)
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it is necessary to select

𝜖 <

√︄
𝛼𝜇𝑚

𝜇2
𝑀
𝛽𝐹

≜ 𝜖0 . (64)

Finally,

det [𝐴] = 𝛼

𝛽𝐹

����� 𝜇𝑚 −𝜖 𝜇𝑀
−𝜖 𝜇𝑀

𝛼

𝛽𝑃

����� + 𝜖 𝜇𝑀
�����−𝜖 𝜇𝑀 −𝜖 𝜇𝑀

0
𝛼

𝛽𝑃

�����
=
𝛼2𝜇𝑚

𝛽𝐹𝛽𝑃
−
𝛼𝜇2

𝑀

𝛽𝐹
𝜖2 −

𝛼𝜇2
𝑀

𝛽𝑃
𝜖2

=
𝛼2𝜇𝑚

𝛽𝐹𝛽𝑃
−
(

1
𝛽𝐹

+ 1
𝛽𝑃

)
𝛼𝜇2

𝑀𝜖
2 . (65)

Therefore, to ensure that

𝛼𝜇𝑚

𝛽𝐹𝛽𝑃
>

(
1
𝛽𝐹

+ 1
𝛽𝑃

)
𝜇2
𝑀𝜖

2 (66)

it is required that

𝜖 <

√︄
𝛼𝜇𝑚

𝜇2
𝑀
(𝛽𝐹 + 𝛽𝑃)

≜ 𝜖1 (67)

and as 𝜖1 < 𝜖0, when fulfilled (67), it is concluded that 𝐴 > 0. In addition,
according to (66) and (67), note that

𝛼 >
(𝛽𝐹 + 𝛽𝑃)𝜇2

𝑀
𝜖2

𝜇𝑚
, (68)

𝜖2

𝜖2
1
=

(𝛽𝐹 + 𝛽𝑃)𝜇2
𝑀
𝜖2

𝛼𝜇𝑚
< 1. (69)

Then, it is always possible to select a positive constant 𝛼 < 1 that satisfies (32)
and the quadratic function 𝑊1( 𝑓 , 𝑥, ¤𝑥) is positive definite, which completes the
proof.
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