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This paper investigates on developing a novel model-based identification technique
for the simultaneous identification of severe faults such as the unbalance in the rotor
and transverse crack in the shaft supported on foil bearings. With plenty of advantages
over rolling element bearings or fluid film bearings, foil bearings have been used as
the supported bearings in rotating machines such as fuel cell-electric air compressors,
blowers, expanders, air cycle machines, etc. In the present article, a rotor model
consisting of a cracked and unbalanced rotor with a disc in the middle supported by
foil bearings has been considered for easier understanding of online identification of
faults in high-speed rotating machines. Dynamic equations of motion of the rotor-foil
bearing system have been derived based on the equivalent stiffness concept of shaft-foil
bearing, inertia force, unbalance force, and crack force relying on the switching crack
concept. The solutions of the equations, i.e., time domain displacement responses,
orbit plots, etc. have been obtained numerically using the Simulink inbuilt Runge-
Kutta method for different values of spin speed of the rotor and ramp-up speeds.
The shaft centreline orbit is found to have eight shaped and asymmetric about the
axes due to presence of crack and unbalance faults. The force due to unbalance fault
gets dominated over the crack force at the higher speeds. Moreover, the orbit line
is also observed to be thicker at higher level of noise addition in the responses. As
the switching crack force contains multiple harmonics, a full spectrum analysis has
been done to investigate both the forward and backward rotor whirls. The frequency-
based rotor displacement is utilized to illustrate an identification algorithm for the
estimation of the dynamic coefficients of foil bearings, additive crack stiffness, and
magnitude as well as phase of disc unbalance. The identification algorithm is found to
be quite suitable for the estimation of system and faults parameters even with addition
of different levels of noise signal and modelling errors.
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1. Introduction

Various machines running at high speed are prone to different kinds of faults
such as unbalance, transverse cracks, bearing and coupling misalignment, rub-
impact, internal damping, mechanical looseness, etc. [1]. Bearings are the machine
components that assist in supporting the rotating elements such as shafts associated
with discs, flywheels, gears, and other revolving parts [2]. Since a long year back,
traditional bearings have been employed to support the rotor. However, this paper
uses air foil bearings, which is one of the current research trends [3–5]. Foil bearings
work on the principle of hydrodynamic action of air, which consists of top foil,
bump foil, and outer sleeve (refer Fig. 1 ). Relative motion between top foil and
bump foil provides damping to the system and flexibility in bump foil during the
rotor operation provides stiffness to the system [6]. As there is no requirement
for lubricant in foil bearing, this becomes more effective and reliable in use in
comparison to conventional bearings such as rolling contact bearings and fluid-
film bearings. Foil bearing helps in rotating the rotor at ultra-high speeds and higher
temperature zones [7]. There are fewer chances of wear and tear in the rotor-foil
bearing system and also has a low maintenance cost. In modern days, foil bearings
are commonly utilized in micro-turbines, air circulators, fuel cell blowers, and
aerospace industries in the air cycle machine [8, 9].
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Fig. 1. Cross-sectional view of gas foil bearing

Peng and Carpino [10] utilized a perturbation method for obtaining linearized
dynamic coefficient equations and calculating the stiffness and damping coeffi-
cients of gas-lubricated foil bearings. It was found that the elastic foundation could
significantly reduce both the stiffness as well as damping constants of bearings.
Rubio and Andres [11] performed experiments to determine the structural stiff-
ness of bump-type foil bearings. It was observed that the single bump stiffness
is the most sensitive to the dry friction coefficient as well as the bump length.
Arora et al. [12] identified experimentally the dynamic coefficients of axial-type
foil bearings. From the experimental results, one of the observations was made that
the stiffness value was extremely high at the rotor’s static position and the value
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decreased with an increase in the shaft rotational speed. Later, an experimental
work was executed by Balducchi et al. [13] in a rotor system supported by two foil
bearings. They analysed unbalance responses with consideration of only in-phase
imbalance masses, as there was a rapid heating issue considering the opposite-
phase imbalance masses. Larsen et al. [14] proposed two different schemes for
stability analysis of a rigid rotor mounted on foil bearings. The schemes include
nonlinear time domain simulation as the first one and the frequency domain method
as the second scheme. They have also shown that the bump structure compliance
had a very strong influence on the journal lateral stability. In order to accurately
design a foil bearing, the effect of air temperature was studied by Maraiy et al.
[15] for describing the bearing performance. It was noticed that an increase in gas
temperature leads to an increase in gas viscosity, which affects the foil-bearing
performance. The performance was checked based on various parameters such
as eccentricity ratio, length-to-diameter ratio, compliance coefficient, and bearing
number. They have also explored the effect of increasing the number of bumps on
bearing load carrying capacity. Further, Guo et al. [16] investigated the effects of
the nominal radial clearance and foil structure on the rotor dynamic performance
of a rotor-gas foil bearing system. Three test gas foil bearings with different radial
clearance (30, 40, and 65 𝑚𝑢𝑢𝑝m) were taken for testing. They observed that the
values of dynamic coefficients increased with a decrease in the nominal clearance.
Further, the measurements and predictions acquired by them indicated that the
radial clearance and foil structure significantly affect the rotor dynamic perfor-
mance of the rotor-foil bearing system. Li et al. [17] evaluated the static as well as
the dynamic behaviour of gas foil bearings under the influence of a misalignment
fault. It was noticed that when there is a large misalignment between the rotor and
foil bearing, the gas film thickness and distribution in the pressure get immensely
distorted. Martowicz et al. [18] utilized smart materials in gas foil bearings to
enhance their capability and performance in terms of their mechanical as well as
thermal characteristics. The working operation of gas foil bearings remained stable
even for demanding excitations and environmental conditions. In the same year
2021, Kumar et al. [19] presented a sensitivity analysis and provided an optimum
range of four design parameters (i.e., minimum film thickness, the ratio of angular
extent at wedging, the angular extent of thrust pad, and rotational speed) of a gas
foil thrust bearing for which it can have a maximum load-carrying capacity and
low power loss using artificial intelligence techniques. They observed that these
parameters have a significant effect on load-carrying capacity, power loss, and side
leakage. Khamari et al. [20] presented a brief review on mathematical modelling
and stability analysis of a rotor system supported by gas foil bearing. They have also
described several analytical models used for simulating the performance of gas foil
bearing as well as their correlations with experimental data. Afterward, Xu et al.
[21] studied vibration characteristics control of hybrid radial gas foil bearing-rotor
systems through both numerical and experimental works. It was concluded that the
hybrid type bearing can minimize the shaft system vibration and enhance shaft sys-
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tem stability. Recently, Guan et al. [22] performed rotordynamic analysis of a rotor
supported by active bump-type foil bearings in the radial direction and bump-type
thrust foil bearings in the axial direction. The effects of various disk misalignments
on the minimum gas film thickness of the bump-type thrust foil bearings were also
elaborated by them. Zhao et al. [23] developed a nonlinear model by considering
frictional contacts inside the foil structure. This was done to explore the dissipation
mechanism and dynamic characteristics of the rotor-gas foil bearing system. The
model has taken into account the transient hydrodynamic pressure, rotor motion,
and deflection of the foil structure. At last, they concluded that a large nominal
clearance can help in eliminating the large amplitude subsynchronous vibrations.
This can further ensure a more stable and reliable operation.

Crack is an important fault in the rotor. It may occur at a position where high
stresses are present in the rotor and also occurs due to the fatigue of the shaft material
during the excessive cycle of operations in the machine’s life [24]. Timely detection
and identification of cracks in the rotor plays a vital role in preventing expensive and
catastrophic failure in the rotating machine, which helps in the proper working of
industrial plants. Gasch [25] presented stability behaviour of a simple rotor having a
disk in the middle with a transverse crack and forced vibrations due to the imbalance
and to the crack based on the hinge model with no damping. Modelling of transverse
crack is done with the switching crack concept, in which the crack gets opened and
closed periodically in time. Paper [26] elaborated on the vibrational behaviour of a
rotor system with a crack and active magnetic bearing (AMB) support mechanism.
The peak value of response was obtained at twice as well as thrice the speed.
Sekhar [27] proposed a model-based method for the identification of two cracks
in the rotor system. The arrogant nature of the estimated equivalent forces at the
two locations on the shaft was used to identify two cracks in the system. The
identification method was used with the estimation of equivalent loads to identify
the two cracks since the fast Fourier transform of the estimated equivalent force did
not identify them together. Later, the same method was utilized by Pennacchi et al.
[28] for the identification of transverse cracks present in industrial machines. They
validated the identified results with experimental results obtained on a large test rig
specially designed for dynamic behaviour analysis of the horizontal cracked rotor.
Three different types of cracks were considered, i.e., crack having a slot of 34%
depth, a partially breathing crack having a depth of 14% of the diameter, and a deep
crack having a depth of 47% of the diameter. The proposed method was found to be
effective, robust, and reliable with good accuracy for identifying the position and
location of different cracks. Moreover, they also noticed that this method is suitable
for large industry field applications, as only measurements in the bearings, or close
to the bearings were required for this identification procedure. Researchers have also
used the switching crack theory in structural dynamics. Further, the model-based
estimation methodology was also used by researchers [29] for the purpose of crack
and unbalance identification in an AMB-controlled rotating model. Peng and He
[30] investigated the effect of positioning of breathing crack on the dynamic nature
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of a cracked rotor in the presence of rotational damping. They have also examined
the effects of the crack position on both the stiffness and the whirl motion of the
breathing cracked rotor as well as on the rotor stability. A new technique based on
squared gain of vibration amplitude was utilized by Gradzki et al. [31] to detect
crack fault. They have performed both the experimental and numerical simulation
to evaluate effectiveness of the proposed method. For removing environmental
signals, i.e., sensor noise, external disturbances, etc. from the diagnostic model,
the two time intervals were analysed. One was related to the operational signal
and another was for environmental signal. However, they used a short time interval
concept so that the environmental signal remains unchanged in those time intervals.
The method was capable of detecting the crack fault in the existence of variable
amplitude data and reasonably high measurement disruptions. It was also planned
to perform experiments in the future and detect other faults such as misalignment
and rub using this method. Thereafter, fifteen tree classification-based machine-
learning algorithms were used for the localization and identification of crack on
wind turbine blades [32]. The algorithms have taken the blade’s vibration response
as an input received from the piezoelectric accelerometer. They compared the
obtained results with statistical, histogram as well as autoregressive moving average
analysis. It was observed that the machine learning approach was very helpful and
effective in the health monitoring of the wind turbine blade. This would enhance
the harvest of wind power capacity and minimize downtime of the windmill. In
the field of identification of crack fault in a gear system, researchers [33] detected
a crack in a spur gear tooth by developing a three-degrees-of-freedom gear pair
model. For model development purposes, they considered tooth backlash as well
as nonlinearity in the bearing clearance. Later, Yang et al. [34] presented the
vibrational dynamics of a transverse cracked hollow-shaft system by considering
the parametric uncertainties. The rotor system consisted of one hollow shaft linked
with two offset discs supported by conventional bearings. The finite element method
was used to develop the dynamical equations of the rotor system. They have utilized
the Polynomial Chaos Expansion technique to elucidate the uncertainties of the
physical parameters in the rotor system. Further, the Harmonic Balance method
was used for solving the system’s equations of motion. It was observed that the
uncertain parameters for the dynamical response were seriously affected by an
increase in the crack depth. Zhang et al. [35] proposed a novel energy identification
method to investigate a rotor system having a shallow-type transverse crack and
flexible supports. They have applied the vibration energy method and a novel
3D energy model to examine the vibration characteristics of the cracked system,
under the effect of rotating speed, crack depth, and crack location. Experimental
works were also performed by them to validate the proposed theoretical methods.
Recently, a model was developed by Qiao et al. [36] to identify the crack in a gear
drive system in a wind turbine. It was remarked that the crack had a high impact
on the mesh stiffness of the single-tooth contact zone. Han et al. [37] explored the
breathing behaviour of a cracked rotor system under the influence of unbalance
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disturbance. The unbalanced cracked rotor was found to have a 2×superharmonic
resonance in the subcritical speed region, while the 3×superharmonic frequency
component was observed to be weaker in the amplitude.

Unbalance fault is also one of the most critical faults in rotating machines, as
the force due to this fault increases highly in amount with a slight increment in the
speed. This force is equal to the product of mass, rotor eccentricity, and square of
spin speed [38]. The system response also gets enhanced with increments in the un-
balanced force. Hence, several researchers have investigated the dynamics analysis
of the faulty system and different condition monitoring techniques for the identifi-
cation of fault [39]. More than 80 years ago, Baker [40] proposed a mathematical
model for determining unbalance corrections in machines, where the locations were
difficult to identify through balancing machines. He applied this method to find
unbalance corrections in an internal combustion engine crankshaft. Gupta et al.
[41] developed a dual rotor test rig setup and determined experimentally the unbal-
ance response, critical speeds and mode shape of the system. Experimental results
were also compared with theoretical results and found to be reliable and effective.
However, they did not consider the gyroscopic couple effects and rotary inertia.
Thereafter, Shih and Lee [42] first measured the vibration signals of the pedestal
and determined the discrete imbalance state of the rotating machine. However, the
method was not found to be sensitive in the identification with noise corrupted
signals. Zhou and Shi [43] reviewed different theoretical models for the rigid and
flexible rotor balancing. They have claimed that the active balancing techniques can
be used for controlling the vibration-induced rotor displacements. Later, an active
control technique was employed by the researcher [44] to identify unbalance state
in a Jeffcott rotor system. De Castro et al. [45] proposed a metaheuristic search
algorithm for estimation of the unbalance magnitude and phase and its location
in the shaft supported on hydrodynamic bearings. The method was observed to
be robust in identifying the unbalance parameters and position along the rotor
axis. Researchers [46] applied inverse problem for solving the estimation equation
and finding the characteristics of rotor-bearing system’s unbalance. They have also
used Tikhonov regularization method to acquire stable results. Afterward, the un-
balance in the rotor and misalignment in active magnetic bearing were identified
in the published paper [47] by developing a novel trial misalignment approach.
This approach was similar to the trial unbalance technique used for balancing.
In recent years, Zhang et al. [48] presented a method based on signal purifica-
tion for solving the dynamic balancing problem of a rotor. The signal purification
technique included signal resampling and spectrum correction. They have also
used this technique for suppressing vibration due to unbalance fault. Experiments
were also performed on a test rig setup consisting of a rotor system linked with
two discs and data acquisition as well as a processing device. Shun and Lei [49]
also proposed an unsupervised deep Lagrangian network method for balancing the
rotor. To introduce the prior knowledge of physical test rig setup, a Lagrangian
layer was applied to the network. Both experimental and numerical works were
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executed to validate the developed balancing method. Numerical simulation was
done by considering a rotor system having four rigid discs and two ball bearings
support. They used Newton’s second law to establish equations of motion of the
system. The responses like displacement, velocity, and acceleration were generated
by solving equations of motion using the Runge-Kutta method. Output results of
the rotor balancing through simulation and experiment proved that the technique
was reasonable, costless, and user-convenient. Lin et al. [50] utilized a deep learn-
ing method for the identification of unbalance force in a hypergravity centrifuge
structure. They have also developed a feature fusion framework and combined it
with time domain signals for exploring the identification effect. It was found that
the proposed approach is simple and quite reliable as compared to the conventional
unbalanced force identification technique. This approach surpasses the concept of
trial mass and model complexity. Similarly, Baltazar-Tadeo et al. [51] proposed
an integrated rotor balancing method for the identification of unbalance force in a
multi-degrees-of-freedom unbalanced and asymmetric rotor-bearing system. This
method included the methodology of parameter algebraic identification and the
traditional modal balancing approach. The developed algebraic identifier needed
the displacement response as input data, in place of the vibration response obtained
by putting trial weights in the traditional rotor balancing methods. Recently, Kang
et al. [52] applied a dual augmented Kalman filter technique for simultaneous es-
timation of residual unbalance and bearing dynamic coefficients for a double-disk
rotor-bearing system. The proposed method exhibited robust estimation capabili-
ties, particularly when the system was operated under steady-state conditions. The
percentage errors in the estimation of identifiable parameters were low and in the
acceptable range.

By going through various published literature, it has been remarked that the
papers are quite available in the field of stability analysis of foil bearings, the effect
of gas temperature, number of bumps, eccentricity ratio, and misalignment in foil
bearings. Research papers are also available in the identification of unbalance and
crack faults in the supported conventional bearings as well as active magnetic
bearings. Different techniques such as model-based methods, artificial intelligence
techniques such as deep learning algorithms, machine learning algorithms, Kalman
filter technique, and harmonic balance method, etc., were found to be used by
researchers for solving dynamic equations of motion and severe fault identification.
However, there is no publication found in the area of mathematical modelling and
simultaneous identification of the rotor unbalance and crack in the rotor system
with foil bearings support. Therefore, the novelty of the present work would be
simultaneously identifying severe faults such as unbalance and crack malfunctions,
as well as the supported bearing parameters in a rotor-foil bearing system, by
estimating the unbalance magnitude and phase, crack additive stiffness, and stiffness
and damping coefficients of foil bearings.

Hence, the present work discusses modelling, dynamic analysis, and identifi-
cation in a cracked and unbalanced Jeffcott rotor system with a disc at the middle
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supported by two foil bearings. Incorporating the equivalent stiffness concept of
shaft and foil bearings and considering the forces due to inertia, unbalance, and
crack faults, the dynamic equations of motion of the rotor-foil bearing system have
been derived using Newton’s law of motion. The mechanism of a switching crack
has been utilized to analyse the effect of a transverse crack fault, which manifests
multiple harmonics in the vibrational nature of the system. The displacement re-
sponses in the transverse directions (time domain spectrum and orbit plots) have
been obtained using the SimulinkTM block diagram for different speeds and ramp-
up speeds. Full spectrum data analysis has also been performed to transform the
time domain response into the frequency domain, which gives rise to both the for-
ward and backward rotor whirls. The main objective of the paper is to investigate the
dynamic effects of unbalance and crack faults as well as to develop a model-based
technique to identify them in a rotor system with foil bearing supports.

2. Rotor system modelling configuration

To develop a mathematical model for the exploration of an identification tech-
nique that can be used for the identification of various faults in high-speed rotating
machinery, a rotor-foil bearing system has been considered. The rotor-model (as
shown in Fig. 2) has been taken as a simple model to explore the dynamic vibra-
tional analysis of an unbalanced and cracked single-disc Jeffcott rotor-foil bearing
system and to illustrate the proposed identification methodology. Moreover, a faulty
rotor system has been considered which can provide various information on time
domain response signals, frequency spectrum, and orbit plots under the effect of
unbalance and crack faults with foil bearing supports. This information may be
helpful in understanding the dynamics of faulty gas turbines, air cycle machines in
aircraft, etc., associated with the combined unbalance and crack faults. The con-
sidered rotor system consists of a shaft with a rigid disc at mid-span supported by
two foil bearings (FBs) as depicted in Fig.2, where 𝑧 represent the operating axis
of rotor. The 𝑥- and 𝑦-directions represent for the vertical and horizontal direc-
tions, respectively. The shaft is assumed to be massless as compared to rigid disc
mass. The rotor is having two transverse displacements along 𝑥 and 𝑦 directions. A
transverse crack on the shaft is modelled as switching crack. Both foil bearings are
considered to be identical. The stiffness and damping coefficients of foil bearings
are also assumed to be speed-independent for brevity. In Fig. 2, the springs are
shown at the locations of the foil bearings to represent their stiffness value 𝑘𝑏.
The symbol 𝑘0 represents the intact shaft stiffness. It can be observed from Fig. 2
that both foil bearings and shaft are in series combination. Hence, the equivalent
stiffness of the rotor system, as experienced by disc, can be written as

𝑘eq =
2𝑘0𝑘𝑏

2𝑘𝑏 + 𝑘0
. (1)
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Fig. 2. Schematic diagram of a cracked Jeffcott rotor system supported on foil bearings

Further, Fig. 3a shows the stationary and rotating coordinate systems for crack
fault in the system. Fig. 3b shows a cross-sectional view of the rotor and disc with
the relative position of unbalance and crack fault, where 𝑒 is the eccentricity of the
rotor and 𝛽 is the angle between eccentricity line and crack centreline.
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Fig. 3. (a) Stationary and rotating coordinate references; (b) Relative position of unbalance and crack

2.1. Crack model

In line with the derivation of the stiffness matrix of the cracked shaft, as done in
Gasch [53] using transformation between rotating and inertial coordinate systems
by referring to Fig. 3a, the matrix can be expressed as

K(𝑡)=Keq+ΔK𝑐 (𝑡) =
[
𝑘eq 0
0 𝑘eq

]
− 1

2
𝑠𝑐 (𝑡)Δ𝑘 b

[
1+ cos(2𝜔𝑡) sin(2𝜔𝑡)

sin(2𝜔𝑡) 1− cos(2𝜔𝑡)

]
, (2)

where, 𝑘eq is the equivalent stiffness of shaft and foil bearings. Δ𝑘 b denotes loss
in the shaft stiffness due to crack in the direction of crack front, b. 𝑠𝑐 (𝑡) is steering
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function for crack having value 0 and 1 for opening and closing of crack respectively.
ΔK𝑐 (𝑡) denotes shaft stiffness matrix due to crack only.

Displacement of the rotor centre, q(𝑡), can be written using Fig. 3b as

q(𝑡) = Δq(𝑡) + q0 (3)

with q(𝑡) =
{
𝑥(𝑡)
𝑦(𝑡)

}
, Δq(𝑡) =

{
𝑢𝑥 (𝑡)
𝑢𝑦 (𝑡)

}
, q0 =

{
𝛿𝑥

0

}
.

3. Equations of motion of the rotor-foil bearing system

Equations of motion of the rotor-foil bearing system in terms of static deflection
(𝛿𝑥) and vibration induced displacements (𝑢𝑥 and 𝑢𝑦) can be written as

M¥q(𝑡) + C ¤q(𝑡) + K(𝑡)q(𝑡) = fst + funb(𝑡), (4)

with

M =

[
𝑚 0
0 𝑚

]
, C =

[
2𝑐𝑏 0
0 2𝑐𝑏

]
, fst =

{
𝑚𝑔

0

}
, funb(𝑡) = 𝑚𝑒𝜔2

{
cos(𝜔𝑡 + 𝛽)
sin(𝜔𝑡 + 𝛽)

}
.

On substituting Eqs. (2) and (3) into Eq. (4) and then, neglecting smaller terms
ΔK(𝑡)Δq(𝑡) (this term is neglected because, in a heavy rotor, the static deflection
𝛿𝑥 is large as compared to vibration-induced displacements, which is known as the
weight dominance effect [53]) as well as equating Keqq0 = fst, we get

MΔ¥q(𝑡) + CΔ ¤q(𝑡) + KeqΔq(𝑡) = fcr(𝑡) + funb(𝑡), (5)

where the force due to crack fault is

fcr(𝑡) = −ΔK𝑐 (𝑡)q0 =
1
2
Δ𝑘 b 𝑠𝑐 (𝑡)𝛿𝑥

{
1 + cos 2𝜔𝑡

sin 2𝜔𝑡

}
. (6)

3.1. Steering function for the transverse crack

A transverse crack is assumed as a switching crack [53]. The opening and
closing of the switching crack are supposed to be modelled as hinge-type when the
crack depth is assumed to be less than half of the shaft radius (𝑎/𝑅 < 0.5) [25],
where 𝑎 is the crack depth and 𝑅 is the radius of the shaft. Here, it is assumed
that the crack toggles between full open and full crack positions, mimicking the
opening and closing of a hinge based on the loading condition. A switching crack
is approximated by a rectangular waveform (Gasch [53]) as shown in Fig. 4. The
switching function (𝑠𝑐 (𝑡)) can be expressed in the mathematical form as

𝑠𝑐 (𝑡) = 0.5000 + 0.6366 cos(𝜔𝑡) − 0.2120 cos(3𝜔𝑡) + 0.1273 cos(5𝜔𝑡)
− 0.0910 cos(7𝜔𝑡) + 0.0707 cos(9𝜔𝑡) − . . . (7)
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Fig. 4. Variation of crack switching function, 𝑠𝑐 (𝑡) with shaft rotation [53]

In complex form, the crack force, i.e., Eq. (6), can be expressed in a series of
multiple harmonics,

𝑓 𝑐crack(𝑡) = Δ𝑘 b 𝛿𝑥
©«
. . . 0.009𝑒−j5𝜔𝑡 − 0.021𝑒−j3𝜔𝑡 + 0.106𝑒−j𝜔𝑡 + 0.250
+ 0.319𝑒j𝜔𝑡 + 0.250𝑒j2𝜔𝑡 + 0.106𝑒j3𝜔𝑡

− 0.021𝑒j5𝜔𝑡 + 0.009𝑒j7𝜔𝑡 + . . .

ª®®¬ . (8)

In notational form

𝑓 𝑐crack = Δ𝑘 b 𝛿𝑥

𝑖=+𝑛∑︁
𝑖=−𝑛

𝑝ic𝑒
j𝑖𝜔𝑡 ,

where 𝑝ic is the i-th harmonic coefficient of the crack excitation force.

3.2. Analysis of forced responses

Forced vibration analysis of the rotor system can be done using Eq. (5). For
less computational effort, the displacements 𝑢𝑥 and 𝑢𝑦 can be written in complex
form as

𝑟 (𝑡) = 𝑢𝑥 (𝑡) + j𝑢𝑦 (𝑡). (9)

The complex form of Eq. (5) is written as

𝑚 ¥𝑟 + 2𝑐𝑏 ¤𝑟 + 𝑘eq𝑟 = 𝑓 𝑐cr + 𝑓 𝑐unb (10)

with
𝑓 𝑐unb = 𝑚𝑒𝜔2𝑒j(𝜔𝑡+𝛽) ,

where j denotes a complex number equal to
√
−1. The salient reason for expressing

the equations of motion (5) in complex form is to explore the frequency based full
spectrum analysis, which will be further utilized in the developed identification
algorithm for the estimation purpose. It is briefly explained in the next section.
Eq. (10) has been solved by building a SIMULINKTM model to generate the rotor
displacement response of the system in the time domain. Response in the time
domain can be used to obtain the harmonics of the crack excitation function. The
response 𝑅𝑖 (𝑡) for a particular harmonic of crack excitation force is assumed as
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𝑅𝑖 (𝜔)𝑒j𝑖𝜔𝑡 . Thus, at any instant of time, the relationship between the complex
displacement signal and its individual complex harmonics are given as

𝑟 (𝑡) = 𝑅−𝑛𝑒
−𝑛j𝜔𝑡 + · · · + 𝑅−5𝑒

−5j𝜔𝑡 + 𝑅−3𝑒
−3j𝜔𝑡 + 𝑅−1𝑒

−1j𝜔𝑡 + 𝑅0𝑒
−0j𝜔𝑡

+ 𝑅1𝑒
1j𝜔𝑡 + 𝑅2𝑒

2j𝜔𝑡 + 𝑅3𝑒
3j𝜔𝑡 + 𝑅5𝑒

5j𝜔𝑡 + · · · + 𝑅𝑛𝑒
𝑛j𝜔𝑡 . (11)

Assuming

𝑅𝑖 (𝑡) = 𝑅𝑖 (𝜔)𝑒j𝑖𝜔𝑡 ; ¤𝑅𝑖 (𝑡) = j𝑖𝜔𝑅𝑖 (𝜔)𝑒j𝑖𝜔𝑡 ; ¥𝑅𝑖 (𝑡) = −𝑖2𝜔2𝑅𝑖 (𝜔)𝑒j𝑖𝜔𝑡 . (12)

4. Model based identification algorithm of the considered rotor-foil
bearing system

Inverse engineering problem is nothing but transforming a mathematical form
of the equations of motion of the system into a regression form. The system
parameters such as the damping coefficient of bearing (𝑐𝑏), equivalent stiffness
of the system (𝑘eq), additive crack stiffness (Δ𝑘 b ), and unbalance (phase and
magnitude, i.e., 𝑒, 𝛽) can also be simultaneously identified utilizing grey box
identification method [54]. Estimation of foil bearing stiffness coefficient (𝑘𝑏) can
also be done using rearrangement of equation (1) as

𝑘𝑏 =
𝑘eq𝑘0

2(𝑘0 − 𝑘eq)
, (13)

where 𝑘0 is the stiffness value of the intact shaft, which is the known parameter.

4.1. Estimation of rotor displacement harmonics from full spectrum

FFT technique of MATLABTM has been utilized to convert the time-domain
displacement responses into frequency-domain responses [55]. Further, the full
spectrum analysis from FFT is required, because Eq. (11) shows that the displace-
ment signals have both positive and negative harmonic frequencies. A complex
number is the output of FFT analysis, which includes magnitude and phase. Due
to the linearity nature of FFT, the magnitude of the response remains the same
but the phase changes during the transformation of the time domain analysis into
frequency domain analysis. So, a reference signal is included with FFT analysed
signal to get the correct phase of the response in the frequency domain.

4.2. Mathematical procedure for estimation of system parameters

The complex form of the rotor displacement in the frequency domain captured
from the full spectrum as well as the complex form of unbalance force are separated
into the real and imaginary parts as

𝑅𝑖 = 𝑅𝑖,Re + j𝑅𝑖,Im,

𝑚𝑒𝜔2𝑒j𝛽 = 𝑚𝜔2(𝑒 cos 𝛽 + j𝑒 sin 𝛽) = 𝑚𝜔2(𝑒Re + j𝑒Im).
(14)
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Substituting Eqs. (12) and (14) into Eq. (10) we get fot (𝑖 ≠ 1) and (𝑖 = 1) as

(𝑅𝑖,Re + j𝑅𝑖,Im)
[
(−𝑖2𝜔2𝑚) + (j(j𝑖2𝜔𝑐𝑏) + (𝑘eq)

]
= Δ𝑘 b 𝛿𝑥 𝑝ic,

(𝑅𝑖,Re+j𝑅𝑖,Im)
[
(−𝜔2𝑚)+(j(j2𝜔𝑐𝑏)+(𝑘eq)

]
=Δ𝑘 b 𝛿𝑥 𝑝ic+𝑚𝜔2(𝑒Re+j𝑒Im)

(15)

Now, rearranging both equations of Eq. (15) in such a way that the known
parameters (𝑚) related terms are on the right-hand side and all the terms accom-
panied with the identifiable parameters that have to be estimated (i.e., 𝑐𝑏, Δ𝑘 b ,
𝑒Re, 𝑒Im, 𝑘eq) are on the left-hand side of the equations. Further, separating them
into real and imaginary parts for ‘p’ number of harmonics, and next rewriting all
equations in the matrix form to perform the linear regression analysis as

A(𝑝×𝑞)x(𝑞×1) = b(𝑝×1) , (16)

where, 𝑞 is the number of unknowns. It is noticeable that the number of unknowns
is less than the number of equations, so it is a class of overdetermined (𝑝 > 𝑞)
system of equations. Thus, Eq. (16) can be solved to determine the identifiable
parameters using the least-squares fitting technique as

x =

(
A𝑇A

)−1
A𝑇b , (17)

A=



−2𝜔𝑅1,Im −𝛿𝑥 𝑝1𝑐 −𝑚𝜔2 0 𝑅1,Re

0 −𝛿𝑥 𝑝0𝑐 0 0 𝑅0,Re

−4𝜔𝑅2,Im −𝛿𝑥 𝑝2𝑐 0 0 𝑅2,Re

−6𝜔𝑅3,Im −𝛿𝑥 𝑝3𝑐 0 0 𝑅3,Re

−10𝜔𝑅5,Im −𝛿𝑥 𝑝5𝑐 0 0 𝑅5,Re
...

...
...

...
...

2𝜔𝑅−1,Im −𝛿𝑥 𝑝−1𝑐 0 0 𝑅−1,Re

6𝜔𝑅−3,Im −𝛿𝑥 𝑝−3𝑐 0 0 𝑅−3,Re

10𝜔𝑅−5,Im −𝛿𝑥 𝑝−5𝑐 0 0 𝑅−5,Re
...

...
...

...
...

2𝜔𝑅1,Re 0 0 −𝑚𝜔2 𝑅1,Im

0 0 0 0 𝑅0,Im

4𝜔𝑅2,Re 0 0 0 𝑅2,Im

6𝜔𝑅3,Re 0 0 0 𝑅3,Im

10𝜔𝑅5,Re 0 0 0 𝑅5,Im
...

...
...

...
...

−2𝜔𝑅−1,Re 0 0 0 𝑅−1,Im

−6𝜔𝑅−3,Re 0 0 0 𝑅−3,Im

−10𝜔𝑅−5,Re 0 0 0 𝑅−5,Im
...

...
...

...
...



; b=



𝜔2𝑚𝑅1,Re

0
4𝜔2𝑚𝑅2,Re

9𝜔2𝑚𝑅3,Re

25𝜔2𝑚𝑅5,Re
...

𝜔2𝑚𝑅−1,Re

9𝜔2𝑚𝑅−3,Re

25𝜔2𝑚𝑅−5,Re
...

𝜔2𝑚𝑅1,Im

0
4𝜔2𝑚𝑅2,Im

9𝜔2𝑚𝑅3,Im

25𝜔2𝑚𝑅5,Im
...

𝜔2𝑚𝑅−1,Im

9𝜔2𝑚𝑅−3,Im

25𝜔2𝑚𝑅−5,Im
...



; x=



𝑐𝑏

Δ𝑘 b

𝑒Re

𝑒Im

𝑘eq
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After finding the value of 𝑘eq (i.e., using Eq. (17)), the value of the stiffness coeffi-
cient of foil bearings can be obtained from Eq. (13). Thus, it is possible to determine
the values of unbalance fault parameters, stiffness and damping coefficients of foil
bearings as well as crack additive stiffness.

5. Generation of simulated responses and identification

Fig. 5 shows a developed SIMULINKTM model to generate the rotor displace-
ment response in the time domain using Eq. (10). Blocks in the model perform
various important functions. The clock is a source block, which outputs the present
simulation time. The gain triangular block is utilized for multiplication purposes.
The spin speed 𝜔 has been multiplied by the clock to give 𝜔𝑡 as output, which is the
further common input to the subsystems such as unbalance force and crack force
for exploring the dynamics of the defined rotor system. Summation and subtraction
of forces based on the derived equations of motion have been performed utilizing
the add block. The inverse of the mass parameter is multiplied with the add block
to acquire the acceleration response of the rotor-foil bearing system. Further, one
integrator block is used to obtain the velocity responses, and then again another
integrator block is utilized for obtaining the displacement responses of the system
in 𝑥 and 𝑦 directions. The correct phase in full spectrum analysed responses has
been obtained with the help of a multi-harmonic reference signal generator, which
is also included in the model. The workspace blocks save the real or complex data
of responses. Overall, this model is quite effective and advantageous.

Fig. 5. Simulink model of the rotor-foil bearing system

5.1. Numerical results analysis of the cracked rotor-foil bearing system

This section describes briefly the numerically generated responses for the
considered system presented in Fig. 2. The time domain displacements of the rotor
system in 𝑥 and 𝑦 directions have been determined using a fourth-order Runge-Kutta
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ordinary differential equation solver with a fixed step size of 0.0001 s following
Table 1 numerical data.

Table 1. Rotor-foil bearing system data for the numerical simulation

System parameters Assumed values System parameters Assumed values
Density of shaft and
disc material (mild

steel), 𝜌
7850 kg/m3

Elastic modulus of
shafts and disc material

(mild steel), 𝐸
2.1 × 1011 N/m2

Shaft diameter, 𝑑 17.7 mm Shaft length, 𝑙 400 mm

Disc diameter, 𝐷 115.2 mm Disc thickness, 𝑡 15 mm
Rotor mass (shaft

and disc), 𝑚 2 kg Stiffness coefficient
of foil bearing, 𝑘𝑏

1 × 106 N/m

Disc eccentricity, 𝑒 10 × 10−6 m Damping coefficien
t of foil bearing, 𝑐𝑏

120 N s/m

Shaft static deflection,
𝛿𝑥

3.567 × 10−5 m Stiffness of intact
shaft, 𝑘0

7.59 × 105 N/m

Unbalance phase, 𝛽 30◦ deg. Additive crack
stiffness, 𝛿𝑘 b

1.518 × 105 N/m

Rotor dimensions and their physical properties are based on the laboratory
rotor test kit developed by the researchers [56]. The mass of rotor (shaft and disc)
is calculated from the values of material density, diameter, length, and thickness
properties. The value of shaft intact stiffness is calculated with the values of the
moment of inertia of the round shaft, modulus of elasticity, and length of the
shaft. The value of shaft static deflection (i.e., 3.567 × 10−5 m) is obtained by
dividing the weight of the rotor (𝑚𝑔) by the equivalent stiffness of the shaft-foil
bearing system (𝑘eq). For the numerical simulation in this paper, the additive crack
stiffness (Δ𝑘 b ) is taken as 20% of the original stiffness of the shaft (𝑘0). It is found
from various published papers that researchers have also considered the value of
additive crack stiffness in the range of 25% to 40% of the intact stiffness of the shaft
(refer to [54, 57, 58]). A lower percentage of additive crack stiffness relative to the
original shaft stiffness demonstrates the lower value of crack depth. However, Gasch
[53] discussed that the exact value of crack additive stiffness can be determined
experimentally by measuring the natural frequencies of the rotor system with open
and closed cracks, using the following equation:(

𝜔b

𝜔0

)2
= 1 −

Δ𝑘 b

𝑘0
, (18)

where𝜔b and𝜔0 represent the natural frequency of the rotor system in the presence
of an open crack and a completely closed crack or a healthy rotor system without
crack, respectively. As the present paper is a demonstration of theoretical and
numerical works, therefore, the additive crack stiffness is assumed to be 20% of
the intact shaft stiffness. Apart from this, the values of foil bearing’s stiffness and
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damping coefficients are taken from the paper [10]. The displacement responses of
the rotor system in the 𝑥 and 𝑦 directions together with their respective orbit plots
at a shaft spin speed of 280 rad/s are represented in Fig. 6.

(a) (b)

(c)

Fig. 6. Generated numerical responses at a spin speed of 280 rad/s: (a) 𝑥-direction time domain
displacement; (b) 𝑦-direction time domain displacement (c) Shaft centreline orbit

The responses of the rotor along two orthogonal directions and the orbit plots
for shaft centre displacement play a vital role in predicting and detecting the
rotor’s working condition. The maximum value of displacement response in the
𝑥-direction is 1.69×10−5 m and the highest value of displacement in the 𝑦-direction
is 1.55× 10−5 m. As it can also be remarked from Fig. 6c, the shaft centreline orbit
is eight-shaped and simultaneously asymmetric about axes, so these orbit plots are
helpful to indicate the crack fault in the rotor. A similar kind of eight-shaped orbit
and the time domain displacement spectrum can also be seen in the paper [59].
This shows the accuracy of the results in the presence of a crack fault. Further, to
explore the effect of the crack in the unbalanced rotor, the simulation has been also
run for the case of without crack and with crack by putting the values of Δ𝑘 b as
zero and non-zero in Eq. (6). The orbital response by considering only unbalance
fault and unbalance as well as crack faults together is shown in Fig. 7. The highest
value of vertical direction displacement without crack condition is only 3.93×10−6

m, whilst the maximum displacement value with crack is 1.69×10−5 m. Therefore,
the percentage increase in the response is 76.75%., which is a considerable value.
Therefore, it becomes very much desirable for a researcher to detect crack fault in
a rotor-foil bearing system. Moreover, the orbit shape of only unbalance response
looks circular in shape. It is obvious due to the similar harmonic nature of equations
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Fig. 7. Orbital response exhibiting the effect of crack fault
in the unbalanced rotor at a spin speed of 280 rad/s

of motion in the vertical and horizontal directions. The circular type displacement
orbit is also observed in the article [58] for considering only unbalance fault in
a Jeffcott rotor-conventional bearings system with an offset disc and AMB at the
disc location. In this paper, the foil bearings were also assumed to be isotropic and
similar in nature while development of the mathematical model of the system.

Further, the four different speeds of the rotor are also chosen in the simulation
work to study the cracked and unbalanced rotor vibrational behaviour. The values of
the speed taken are 150 rad/s, 200 rad/s, 280 rad/s and 370 rad/s. The displacement
orbits at these speeds captured from the simulation work is presented in Fig. 8. It
can be noticed from Fig. 8 that the crack fault is showing overpowering nature over
the unbalance fault at the lower speeds (i.e., Fig. 8a, 8b and 8c). However, the force
due to unbalance fault gets dominated over the force due to crack fault at the higher
speed. That’s why the shape of orbital response at the spin speed of 370 rad/s is
observed to be elliptical in Fig. 8d. Apart from running the numerical simulation
at a single speed one by one and analysing the responses from Fig. 6, Fig. 7 and
Fig. 8, the rotor is also accelerated with an angular acceleration of 12.50 rad/s2 and
an initial spin speed of 5 rad/s. Thus, the ramp-up speed of the rotor varies from
5 rad/s to 380 rad/s. The time domain vertical (𝑥) and horizontal (𝑦) displacement
responses and orbit plot at the disc location for the ramp-up speed are represented
in Fig. 9 and Fig. 10, respectively. A similar kind of displacement response in the
time domain for the ramp-up speed can be observed in the published literature [60].

Furthermore, to mimic the response that can be received from the actual test
rig setup, the different percentages of white Gaussian noise (i.e., 3%, 5%, and 10%)
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(a) (b)

(c) (d)

Fig. 8. Displacement orbit plots at the rotor spin speed of: (a) 150 rad/s, (b) 200 rad/s, (c) 280 rad/s,
(d) 370 rad/s

(a)

(b)

Fig. 9. Displacement response in the time domain for the ramp-up speed from 5 rad/s to 380 rad/s:
(a) 𝑥-direction (b) 𝑦-direction

have been added to the time domain displacement signals. The concept of adding
Gaussian noise in the numerical simulation is given as follows [36] (for example,
an addition of 3% noise):

𝐵𝑖 = 𝐴𝑖 + 0.01 × 𝐴𝑖 × 𝑅𝑖; −1.5 ⩽ 𝑅𝑖 ⩽ 1.5, (19)
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Fig. 10. Orbital response for the ramp-up speed from 5 rad/s
to 380 rad/s

where 𝐴𝑖 and 𝐵𝑖, respectively, represent the clean displacement signal (without
noise) and the displacement signal in which 3 percent (3%) random noise is added.
The Gaussian random noise signal 𝑅𝑖 (with 𝑖 = 1, 2, . . . , 𝑛) is generated from the
normal distribution concept based on the size of 𝐴𝑖. Similarly, the random noise 5%
and 10% have been added to the displacement signal. The orbital responses with
the addition of 3%, 5%, and 10% noise at the spin speed of 280 rad/s are given in
Fig. 11. The orbit looks more thicker and having a maximum value of displacement
response (2.1 × 10−5 m in the 𝑥-direction and 1.93 × 10−5 m in the 𝑦-direction)
at the highest magnitude of noise addition (i.e., 10% noise). This statement can be
validated by the results presented in the paper [61].

(a) (b) (c)

Fig. 11. Displacement orbits with the addition of different levels of noise at a spin speed of 280
rad/s: (a) 3% noise, (b) 5% noise, (c) 10% noise
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5.2. Identification of crack, unbalance and foil bearing parameters

The simulation was run for 5 s using Table 1 parameters. The responses in
the time domain for the duration from 4 s to 5 s (i.e., 1 s time length) were taken
into consideration for further analysis. The time domain responses associated with
Eq. (9) were converted to frequency domain assisted with the FFT function of
MATLABTM. Further, the full spectrum analysis [62] has been performed to exhibit
the responses at negative frequency harmonics together with positive frequency
harmonics.

Full spectrum for the displacement signal with its amplitude and phase is
shown in Fig. 12. The phase correction method explained by Singh and Tiwari [54]
has been utilized to plot the phase diagrams for the displacement response of the
system. The multiharmonic nature of the response in a full spectrum plot mainly
depends on the steering function, i.e., Eq. (7) chosen for exploring the nature of the
crack force. Table 2 summarizes the values of rotor displacement harmonics (𝑅𝑖)
with magnitudes and phases for several harmonics captured from full spectrum
analysis. It can be observed from Fig. 12a that the magnitude of the displacement
at twice of spin speed, i.e., at 560 rad/s is found to be maximum which represents
the presence of the crack fault in the rotor system. The peak value of displacement
is 8.45 × 10−6 m at a spin speed of 560 rad/s which can be noticed from Table 2.
Further, the real and imaginary components of displacement response adopted from
the magnitude and corrected phases for several harmonics of Table 2 have been
utilized in the identification equation (16) for estimating the values of identifiable
parameters at a single spin speed. The assumed and identified values of the system
parameters derived from the developed algorithm with the percentage error for the
clean signal are depicted in Table 3. It is observable that the identification of system
parameters is robust and quite effective for a single spin speed, i.e., 280 rad/s. The

(a) (b)

Fig. 12. Plots using full spectrum analysis: (a) displacement amplitude; (b) displacement phase
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Table 2. Displacement harmonics obtained in the frequency domain

Displacement (𝑅𝑖)

Harmonics (𝑖) Amplitude (m) Phase (deg)

0 2.40 × 10−6 –0.057

1 5.74 × 10−6 4.70

2 8.45 × 10−6 –120.21

3 5.61 × 10−7 –169.11

5 3.62 × 10−8 –1.33

7 9.20 × 10−9 126.12

–1 1.01 × 10−6 9.69

–3 1.17 × 10−7 –9.97

–5 1.79 × 10−8 –166.53

Table 3. Percentage error of identified values with respect to assumed values for clean signal

Parameters Assumed values Identified values
for clean signal

Foil bearing damping coefficient, 𝑐𝑏
120 (Ns/m) 120.035

% error 0.03%

Foil bearing stiffness coefficient, 𝑘𝑏
1 × 106 (N/m) 1 × 106

% error 0.00%

Additive crack stiffness, Δ𝑘 b
1.518 × 105 (N/m) 1.5181 × 105

% error 0.009%

Unbalance eccentricity, 𝑒
10 × 10−6 (m) 9.98 × 10−6

% error −0.20%

Unbalance phase, 𝛽
30 (deg) 30.09

% error 0.30%

estimation of foil bearing parameters, i.e., damping coefficient (𝑐𝑏) and stiffness
coefficient (𝑘𝑏) is good. The percentage error for these parameters is 0.03% and
0% only, which is very much acceptable. It can be noticed that the additive crack
stiffness (Δ𝑘 b ) which is the indicator for the crack fault in the considered rotor
system has also been estimated excellently. The percentage error concerning the
identified value is only 0.009%. Moreover, the unbalance parameters (𝑒, 𝛽) are also
identified very accurately, with percentage errors of −0.2% and 0.3%, respectively.

To mimic the identification results from a real condition of test setup, three
different noise levels, i.e., 3%, 5%, and 10% have been added to the displacement
signals obtained from the simulation work. In a practical situation, the noise can
come from the nearby environment, neighbouring machines in running condition,
any kind of maintenance work, etc. The identified values of foil bearing stiffness
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and damping constants, additive crack stiffness and unbalance parameters with the
addition of noise signals are given in Table 4. The same table also presents the
percentage deviation in the identified values relative to assumed ones. It has been
found that the highest percentage deviation in the identified value of 𝑐𝑏 is 1.992%
only with the addition of 10% noise. The parameter 𝑘𝑏 has been identified very
accurately with percentage errors varying from −0.4% to −1.1% only with the
addition of noise signals. The percentage deviation of the crack parameter varies
from 0.916% to 3.03%. Besides this, the unbalance eccentricity and phase have
been identified with the highest deviations of −8.77% and 8.90% at 10% noise
addition. However, these values are quite acceptable and under limit. Finally, it
can be also remarked that a higher percentage of noise signal addition gives more
deviation in the identified values.

Table 4. Percentage error of identified values with respect to assumed values with noise signal

Parameters Assumed values Identified values
for 3% noise

Identified values
for 5% noise

Identified values
for 10% noise

𝑐𝑏
120 (Ns/m) 120.75 121.219 122.39

% error 0.625% 1.016% 1.992%

𝑘𝑏
1 × 106 (N/m) 0.996 × 106 0.994 × 106 0.989 × 106

% error −0.400% −0.600% −1.100%

Δ𝑘 b
1.518 × 105 (N/m) 1.5319 × 105 1.5411 × 105 1.564 × 105

% error 0.916% 1.522% 3.030%

𝑒
10 × 10−6 (m) 9.718 × 10−6 9.547 × 10−6 9.123 × 10−6

% error −2.820% −4.530% −8.770%

𝛽
30 (deg) 30.82 31.33 32.67

% error 2.733% 4.433% 8.900%

Various operational constraints, measurement errors, and simplified assump-
tions in the model can also cause errors in the estimated values. Therefore, to
overcome these issues, the three different levels of modelling or bias errors (i.e.,
3%, 5%, and 10%) are also added to the system parameters such as density, mod-
ulus of elasticity, equivalent stiffness constant, etc. The identified values of faults
and bearing parameters with the addition of bias errors are given in Table 5. It can
be seen that all parameters have been identified precisely even with the addition
of a high percentage of bias error. Even there was no error in the identification of
the stiffness constant of the foil bearing. Various researchers [63–65] have used
model-based identification methodology for the identification of unbalance, crack
in rotor-conventional bearings support, AMB misalignment, and coupling mis-
alignment faults. They have also identified the system and fault parameters with
the addition of noise signals and modelling errors. Anyhow, they did not consider
the concept of utilizing foil bearing to support the rotor. However, a similar kind
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Table 5. Percentage error of identified values with respect to assumed values with the addition of
modelling or bias error

Parameters Assumed values Identified values
for 3% bias error

Identified values
for 5% bias error

Identified values
for 10% bias error

𝑐𝑏
120 (Ns/m) 120.035 120.034 120.033

% error 0.03% 0.028% 0.0275%

𝑘𝑏
1 × 106 (N/m) 1 × 106 1 × 106 1 × 106

% error 0.00% 0.00% 0.00%

Δ𝑘 b
1.518 × 105 (N/m) 1.5059 × 105 1.498 × 105 1.477 × 105

% error −0.800% −1.318% −2.700%

𝑒
10 × 10−6 (m) 9.98 × 10−6 9.98 × 10−6 9.98 × 10−6

% error −0.20% −0.20% −0.20%

𝛽
30 (deg) 30.09 30.09 30.09

% error 0.30% 0.30% 0.30%

of deviations in the estimated parameters were also observed by them in different
kinds of faults. This shows the relevancy of the results presented in this paper.
Therefore, the proposed estimation algorithm is one of the most salient and power-
ful techniques in identifying the unbalance and crack faults as well as stiffness and
damping coefficients of foil bearings in a rotor system.

6. Conclusions

To overcome several operational constraints of traditional bearings, such as
the low reliability and high maintenance of machines, friction losses due to lubri-
cation, and wear and tear of bearing materials, this paper proposed the foil bearing
technology to support a rotor system. In this direction, mathematical modelling and
dynamic vibrational analysis of a cracked and unbalanced Jeffcott rotor system with
a disc at the middle and levitated by two foil bearings at the ends were presented in
the article. Apart from this, a model-based identification algorithm relying on the
full spectrum technique was also proposed to estimate simultaneously unbalance
and crack faults, as well as foil bearings stiffness and damping coefficients.

Shaft displacement responses were generated at the disc location in the trans-
verse directions and analyzed for distinct spin and ramp-up speed values. The shaft
centreline orbit was found to have an eight-shaped curved trajectory and simulta-
neously asymmetric about axes, indicating cracks in the system at lower speeds.
Moreover, the orbit plots were also observed to be circular at higher speeds due to
the overpowering nature of unbalance force on the crack force. Further, to mimic
the actual test response, different levels of Gaussian noise were added to the simu-
lated response. It was observed that the shape of the displacement orbit was thicker
at the high value of noise addition. The displacement at twice the spin speed was
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maximum in the full spectrum plot. This was also an indicator of a crack fault
in the rotor system. Various parameters such as eccentricity and phase values of
unbalance fault, crack additive stiffness, as well as the stiffness and damping coeffi-
cients of foil bearings were excellently identified with a small amount of error even
with the addition of noise signals and system modelling errors. This represents the
effectiveness, accuracy, and robustness of the developed approach.

However, in the present paper, the considered rotor system was simple, in
which the rotational degrees of freedom were neglected. The shaft stiffness, damp-
ing, gyroscopic effects, and non-linearity effects from foil-bearing supports were
also not considered during mathematical modelling. Therefore, it is suggested to
consider a foil-bearing levitated multi-disc flexible shaft system and model it using
the finite element method in future work. Equations of motion of the flexible rotor
system can be derived from Timoshenko beam theory. This will include the gy-
roscopic couple effect, shaft stiffness and damping effects, and nonlinearity from
bearings. With the inclusion of these factors, the responses can be generated by
solving the equations of motion, and further used in the identification algorithm
to obtain higher accuracy in the estimation of system and fault parameters. Apart
from this, the present article was based on only theoretical and numerical works.
Hence, the experimental validation of the simulated rotor dynamic analysis and
the proposed methodology would be an interesting scope of work in the future, by
developing a laboratory test rig setup consisting of a rotor-foil bearing system.
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