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Abstract. In this article, we propose a data-driven method for short-circuit fault detection in transmission lines that exploits the capabilities 
of convolutional neural networks (CNNs). CNNs, a class of deep feedforward neural networks, can autonomously detect different features 
from data, eliminating the need for manual intervention. To mitigate the effects of noise and increase network robustness, we present a CNN 
architecture with six convolutional layers. The study uses a single busbar power system model developed with the PSCAD simulation program 
to evaluate the performance of the proposed method. The proposed CNN method is also compared with machine learning methods such as 
LSTM, SVM and ELM. Our results show a high success rate of 98.4% across all fault impedances, confirming the effectiveness of the proposed
CNN methods in accurately detecting short-circuit faults based on current and voltage measurements.
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1. INTRODUCTION

The integration of renewable energy sources, electric vehi-
cles, and energy storage systems into power transmission net-
works has significantly increased their complexity [1, 2]. This
heightened complexity renders power systems highly inten-
sive enterprises, thereby elevating the risk of fault occurrences
within transmission networks. Such failures not only disrupt
power transmission but also inflict substantial economic dam-
age on national economies[3]. According to the 2020 elec-
tricity losses report by the Council of European Energy Reg-
ulators (CEER), electricity losses in 18 European countries
ranged between 2% and 9% from 2012 to 2018 [4]. Among
these transmission system faults, 70% are single-phase ground
faults. Additionally, three-phase earth faults are the most haz-
ardous, and the occurrence of two-phase faults and two-phase
earth faults, which are notably difficult to detect, also poses
significant challenges [5, 6, 7, 8].

Faults in transmission systems result in excessive current
flow, power quality deterioration, and voltage drops. These
issues can also lead to electrical fires, equipment loss, and life-
threatening situations for personnel, adversely affecting the
national economy [9]. According to the 2021 Electricity Se-
curity report, medium-sized and large commercial-industrial
consumers face an instantaneous cost of 190.70$ per kWh due
to outages [10]. Therefore, it is imperative to promptly de-
tect, classify, and eliminate outages to mitigate these adverse
effects.

Fault detection utilizes fault data from the literature, neces-
sitating the extraction of distinctive features from this data.
Various feature extraction methods are well-documented. Re-
vati Godse and Sunil Bhat [11] extracted features from faulty
current signals using the Mathematical Morphology (MM)
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method. Pathirikkat Gopakumar et al. [12] employed the Park
transform and Fast Fourier Transform (FFT) using fault current
and voltage phase angles. Das et al. [13] used the Fast Fre-
quency S-transform method for extracting faulty current sig-
nals. Ananthan et al. [14] applied discrete wavelet rotation
to current signals to extract features. Rathore and Shaik [15]
utilized the wavelet transform on faulty current signals for fea-
ture extraction. In the study by Salehi and Namderi [16],the
phase modal transform method was used to extract features
from faulty current signals. Ranjbar and Jamali [17] extracted
features from stream and revenue signals using the wavelet
packet transform method. Malhotra et al. [18] extracted fea-
tures from current and voltage data using the discrete wavelet
transform method.

In the literature, after extracting distinguishing features,
fault detection is performed using a classification algorithm.
S. Ranjbar and S. Jamali employed the Random Forest (RF)
method for fault diagnosis using fault currents and signals [17].
A. Swetapadma et al. used the Decision Tree (DT) method
for diagnosing faults with fault current signals, although this
method has the disadvantage of slow learning time [19]. Stud-
ies [20] and [21] utilized Artificial Neural Networks (ANNs)
for fault diagnosis; however, this method is not accurate for
large training datasets. In the study by Papia Ray and D.P. In
Mishra, Support Vector Machines (SVMs) were used for fault
detection, though this method is sensitive to parameter selec-
tion [22]. Aida Asadi Majd et al. diagnosed faults using the
K-Nearest Neighbor (KNN) method with fault current signals,
but this method is sensitive to noise [23].

Upon examining the literature, it becomes evident that find-
ing a combination of a specific feature extraction technique
and a particular classification model is challenging, despite the
good classification results obtained with the aforementioned
models. Consequently, evaluating the performance of different
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classification models can be time-consuming.
In this study, we first created a model using the single busbar

system in Power Systems Computer-Aided Design (PSCAD)
software. A dataset was generated by capturing fault data from
this model. We then propose a new method for fault detection
in power transmission systems based on Convolutional Neural
Networks (CNN) with 6 convolutional layers, utilizing current
measurements. Finally, the success of the proposed CNN sys-
tem is compared with the Long Short Term Memory (LSTM),
the Support Vector Machine (SVM) and the Extreme Learning
Machine (ELM) methods, which are the most widely used ma-
chine learning algorithms in the literature. The comparisons
were made on the same data set.

The contributions of this study are as follows:

• In previous studies, MATLAB was generally used for the im-
plementation of the single busbar distribution system. Com-
pared to MATLAB, PSCAD offers numerous advantages in
modeling power systems, particularly in terms of speed and
model accuracy, as it is specifically designed for power sys-
tems. Due to these features, the PSCAD program was uti-
lized for simulation in this study.

• The proposed CNN method addresses issues such as long
learning times, large computational resource requirements,
quadratic programming complexities, and noise sensitivity.

2. FAULT-DIAGNOSIS METHOD FOR SINGLE TRANSMIS-
SION LINES

In this study, a single busbar model was initially developed
using the PSCAD simulation program. Subsequently, a dataset
was generated by simulating various fault scenarios.

A. Simulation Model

The single line diagram of the power system used in this study
is shown in Figure 1. The transmission line is represented
in PSCAD/EMTDC using the Bergeron line model, with an
ohmic-inductive load applied.The Bergeron model represents
the inductance (L) and capacitance (C) elements in a dis-
tributed manner, which makes it suitable for accurately mod-
eling the fundamental frequency. This is particularly benefi-
cial for load flow and protection studies, where the fundamen-
tal frequency load is the primary concern. Additionally, the
Bergeron model is computationally less intensive compared to
frequency-dependent models. It allows for quicker simulations
without sacrificing significant accuracy for the fundamental
frequency, which was essential given our focus on relay studies
and the need for efficient computation. Moreover, the Berg-
eron model is appropriate when detailed frequency-dependent
data is not available or when a simpler model is sufficient to
meet the study’s objectives (PSCAD). he sampling frequency
used in the PSCAD simulation for this study is 3.6 kHz.The
power system parameter values are provided in Table I.

The accuracy of a classification algorithm depends on a suf-
ficient amount of data for training and testing. Therefore,
it is essential to prepare a large dataset representing various
faults and system conditions. The multi-run component of the
PSCAD software facilitates the creation of such large datasets.

Fig. 1. Transmission line model

Table 1. Power System Parameters

Frequency (Hz) 50
Nominal Source voltage 230 kV
Load 100 kW+10kVAR
Line length 300 km
Positive sequence resistance (ohm/km) 0.0275
Positive sequence inductance (ohm/km) 0.3159
Positive sequence capacitance (Mohm*m) 244.20
Zero sequence resistance (ohm/km) 0.275
Zero sequence inductance (ohm/km) 1.087
Zero sequence capacitance ((Mohm*m 373.413

By using this component, fault resistance and "fault inception
angle can be set as variable parameters in PSCAD. The gener-
ated data is stored using the output file option in the PSCAD
project setup [24].

The PSCAD model is shown in Figure 2. The three-phase
fault model depicted in Figure 2 is constructed to simulate a
short-circuit fault in the transmission line. With this model,
ground impedance, fault type, and fault inception angle can
be determined.The model was rigorously tested using a com-
prehensive dataset to ensure its accuracy and reliability[25].
Specifically, we generated 390 different fault scenarios, which
were created by varying several parameters:

• Fault Locations: 30 distinct locations along the transmis-
sion line at 10 km intervals.

• Fault Resistances: 0 ohm, 10 ohm, 30 ohm, 50 ohm, and
100 ohm.

• Fault Inception Angles: Various angles including 0, 45, 60,
90, 135, 170, 225, 260, and 320 degrees.

• Fault Types: A range of fault types such as AG, BG, CG,
AB, AC, BC, ABG, ACG, BCG, and ABC.

These scenarios were simulated in PSCAD, which allowed
us to test the model under diverse conditions, ensuring its ro-
bustness and effectiveness in detecting and classifying differ-
ent types of faults. Moreover, The fault signals in our study
were recorded for a duration of 0.1 seconds, capturing both
pre-fault and post-fault conditions to ensure a comprehensive
analysis. The recording started 0.05 seconds before the fault
occurrence, providing a clear view of the system behavior be-
fore, during, and after the fault event.
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Fig. 2. PSCAD model

Fig. 3. An image expressing the convolution operation applied to a
one-dimensional signal.

B. Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNN) were first developed
by Yann LeCun for recognizing digital handwritten digits
[26, 27]. The original model featured smaller layers compared
to modern CNNs, which now have higher-dimensional layers
and weights. It consisted of successive convolution and sub-
sampling layers, totaling four layers (2 convolutional and 2
subsampling), followed by two fully connected layers. With
advancements in hardware technologies, larger layers have
been proposed. For instance, Krizhevsky et al. used a structure
consisting of 5 convolutional layers (5C), 3 subsampling lay-
ers (3S), 2 fully connected layers (2FC), and 1 Softmax layer
to classify a 1000-class dataset in the ImageNet competition
[28]. Over the past decade, numerous CNN models featuring
various architectures have been introduced. Unlike traditional
feature extraction methods, CNNs utilize different filter struc-
tures to extract features that maximize distinguishability from
the signal or image. The typical layers in a CNN include Con-
volution, Subsampling, Dropout, Fully Connected, and Soft-
max.

Convolution Layer: In the convolution layer, randomly
generated filters are applied to the input signal to extract its
distinctive features. The sizes and characteristics of these fil-
ters vary. After filtering the input signal, activation maps are
produced, with each activation map representing a different at-

tribute of the signal.

b[n] =
l

∑
k=1

x[n]×w[k] (1)

Here, x[n] denotes the n-dimensional input signal, w[k] de-
notes the k-dimensional filter, and b[n] the output signal to be
obtained.

Figure 3 shows the convolution operation applied to a one-
dimensional signal. x[n] denotes n-length input signal, w[k]
denotes k-length filter applied to input signal. b[n] denotes the
output signal obtained as a result of convolution. The process
is designed to take the average of every 5 elements of a sig-
nal given as input to the system. Equation 2 is an equation
expressed with symbols commonly used in the literature used
to calculate the length of the output obtained as a result of the
process expressed in the Figure.

w− f +2p
s

+ (2)1

Here, w is the dimensions of the input image, f is the length
of the filter applied to the input image, p is the amount of ex-
pansion in terms of no loss from the input image, and s is how
many steps the filter will advance.

Subsampling Layer: This layer is applied to the activation
maps obtained from the previous convolution layer, reducing
the data size. This reduction decreases processing costs in sub-
sequent layers and initiates the extraction of higher-level fea-
tures. Subsampling operations can be either max-pooling or
average-pooling.

Dropout: In this layer, operation costs are reduced by elim-
inating neurons (nodes) from the activation maps that do not
contribute to discrimination. This process also enhances focus
on neurons that provide discrimination in the next layer.

Fully Connected Layer: After applying a series of con-
volution and subsampling layers, the data is vectorized before
classification in this layer. A standard CNN architecture typ-
ically includes multiple fully connected layers, ensuring that
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the weights of neurons contributing most to classification suc-
cess are increased. Dropout can also be performed in these
layers to eliminate neurons that do not contribute to the result,
further reducing operation costs.

Softmax Layer: Classification is performed in this layer,
which contains as many neurons as the total number of classes
in the dataset. Each neuron has a value in the range of 0-1,
with the neuron having the maximum value being considered
the output.

Figure 4 illustrates the model applied in this proposed study.
The model consists of 6 convolutional layers, 4 subsampling
layers, 1 fully connected layer, and 1 Softmax layer. The con-
volutional layers apply 32 5-dimensional, 64 3-dimensional,
128 5-dimensional, 256 3-dimensional, 256 7-dimensional,
and 32 3-dimensional filters to the relevant signals, respec-
tively. Each subsampling layer uses a stride value of 2, halving
the resulting output signal. The ReLU activation function is
used in the model [29]. In the final stage, to obtain a one-
dimensional vector of length 512, the dense layer is followed
by Softmax layers with neurons equal to the number of classes
(four) to classify.

3. SIMULATION RESULTS AND DISCUSSION

PSCAD/EMTDC is the industry-standard proprietary simula-
tion tool for analyzing the transient behavior of electrical net-
works. This advanced simulation program offers a compre-
hensive graphical user interface, real-time model applications,
runtime control, and result analysis within a single integrated
environment. It enables the precise and efficient modeling of
FACTS and HVDC systems and supports both AC and DC
power plant components and controls. In our study, we lever-
aged these advantages to create a realistic application using the
PSCAD/EMTDC Simulator [30, 31].

Figure 5 shows the accuracy rate of the CNN algorithm in
fault detection in comparison with the Long Short Term Mem-
ory (LSTM), Support Vector Machine (SVM) and Extreme
Learning Machine (ELM) methods. CNN was found to pre-
dict faults with the highest accuracy for all fault impedances
compared to these methods. Using the raw data, the fault
impedance of 0 ohms was classified by the CNN method with
100% success. When the fault impedance was increased to
30 ohms, the CNN algorithm showed 99.75% classification
success, and when the fault impedance was increased to 50
ohms, the CNN algorithm showed 99.5% success. Finally,
when the fault impedance was increased to 100 ohms, the CNN
algorithm detected the fault at a rate of 94.5%. The LSTM
method achieved 100% accuracy in 0 ohm fault impedance
and 92.77% accuracy in 100 ohm fault impedance. The SVM
method achieved 98% accuracy in 0 ohm fault impedance, and
89% accuracy in 100 ohm fault impedance. The ELM method
achieved 97% accuracy in 0 ohm fault impedance, and 88%
accuracy in 100 ohm fault impedance. It was found that the
CNN method can be highly accurate for fault detection even at
high fault impedances.

In order to estimate the fault location, a dataset was pre-
pared by creating 50 faults for different fault types at locations

approximately 90, 50 and 10 km from the supply busbar. The
success of CNN, LSTM, SVM and ELM was analysed on this
data set. The results obtained for the different fault types are
shown in Table 3-6. The tables show the number of false de-
tections, the distance of the false detection from the actual fault
location and the average error value for different line lengths
and fault impedances for the analysed methods. At a distance
of more than 0.5 km from the actual fault location, there are
no false detections. For this reason, the distances to the ac-
tual fault location for false detections were classified into 3
categories between 0 and 0.5 km. These categories are 0-0.1
km, 0.2-0.3 km and 0.4-0.5 km from the actual fault location.
Accurate fault location determinations indicate that the fault
location can be determined with an accuracy of 1 km.

Table 2 shows the fault location results for 3-phase faults.
Analysing Table 3, for example, 27 out of 50 faults with a
fault impedance of 100 Ohm at a distance of 90 km from the
supply busbar were correctly detected, while 11 faults with a
distance error between 0 and 0.1 km, 8 faults with a distance
error between 0.2 and 0.3 km and 3 faults with a distance er-
ror between 0.4 and 0.5 km were incorrectly detected. CNN
is the most successful detection method compared to the other
methods analysed. The number of incorrect detections for the
location ranges from 21 to 26 for the CNN, 23 to 29 for the
LSTM, 24 to 36 for the SVM and 34 to 42 for the ELM. For
the 3-phase short-circuit fault, the average error range of the
CNN method varies between 0.19% and 0.23% for these dif-
ferent distances and fault impedances. For the same type of
fault, the average error range of the LSTM method varies be-
tween 0.21% and 0.25%, the average error range of the SVM
method varies between 0.23% and 0.27% and the average error
range of the ELM method varies between 0.25% and 0.30%.

Table 3 shows the fault location results for single-phase
ground faults. The number of incorrect detections for the loca-
tion ranges from 21 to 29 for the CNN, 24 to 34 for the LSTM,
30 to 37 for the SVM and 37 to 43 for the ELM. The average
error range of the CNN method for single-phase earth faults
varies between 0.18% and 0.27% for different distances and
fault impedances. For the same type of fault, the average error
range varies between 0.22% and 0.30% for the LSTM method,
between 0.23% and 0.33% for the SVM method and between
0.25% and 0.37% for the ELM method. The CNN method was
found to give the best results.

Table 4 shows the fault location results for two phase faults.
The number of incorrect detections for the location ranges
from 19 to 26 for the CNN, 21 to 30 for the LSTM, 24 to
33 for the SVM and 27 to 38 for the ELM. The average er-
ror range of the CNN method for single-phase earth faults
varies between 0.20% and 0.23% for different distances and
fault impedances. For the same type of fault, the average error
range varies between 0.22% and 0.26% for the LSTM method,
between 0.24% and 0.27% for the SVM method and between
0.25% and 0.29% for the ELM method. The CNN method was
found to give the best results.

Table 5 shows the fault location results for two phase-ground
faults. The number of incorrect detections for the location
ranges from 20 to 25 for the CNN, 23 to 28 for the LSTM,
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Fig. 4. In this proposed study, (custom) convolutional neural networks applied to the input signal. CNN architecture consists of 6 Convolution, 4
Subsampling and 1 FC and 1 Softmax layers.

Fig. 5. The Fault Detection Accuracy of Different Methods

27 to 33 for the SVM and 28 to 36 for the ELM. The average
error range of the CNN method for single-phase earth faults
varies between 0.19% and 0.24% for different distances and
fault impedances. For the same type of fault, the average error
range varies between 0.23% and 0.28% for the LSTM method,
between 0.27% and 0.33% for the SVM method and between
0.28% and 0.36% for the ELM method. The CNN method was
found to give the best results.

In this study, fault types in distribution systems are detected
and classified using the 6 Evolution Layered CNN method. At
the same time, the success of the CNN method is compared
with other machine learning methods. For high impedance
faults that occur in distribution lines, fault detection becomes
difficult and the accuracy of the methods decreases. Table 6
shows MATLAB simulations from the literature and the accu-

racy of different methods in detecting literature in comparison
with the proposed method. The simulations performed with
MATLAB are not in real time, which increases the error prob-
ability of the simulations. Analysing the method using datasets
obtained from real-time simulations will provide more accu-
rate results. The data required to test the CNN method pro-
posed in this study was obtained by real-time simulation of a
single busbar system modelled in PSCAD. In particular, the
real-time model implementations, runtime checks and analysis
of the results are obtained from the perspective of looking at
modern distribution systems from the workspaces thanks to a
simulation program that provides a single integrated data. The
real-time migration of the model increased the constraint. In
this case, the fault type was detected with 98.5% accuracy us-
ing the CNN method. The proposed 6-layer CNN method was
found to give better results than LSTM, SVM and ELM meth-
ods.

4. CONCLUSIONS

In this study, data were obtained for single phase ground fault,
2 phase ground fault, phase phase fault, 3 phase short circuit
fault conditions at 0 ohm, 30 ohm, 50 ohm and 100 ohm fault
short circuit resistances, different angle values and different
kms in single busbar power system modelled in PSCAD. A
CNN method with 6 convolutional layers is presented to de-
tect short circuit faults of different resistances and types. The
proposed CNN method is also compared with LSTM, SVM
and ELM methods. Data obtained from the system modelled
in PSCAD were used to test the accuracy of the method. The
data was not pre-processed. The fault location distance esti-
mation algorithm based on the data obtained from the PSCAD
real-time simulation results works satisfactorily in all scenar-
ios. The simulation results show that the average distance esti-
mation error never exceeds 0.37% and most distance errors are
located with an error of less than 0.24% for all methods.
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Table 2. 3 Phase fault location results

Ohm Line
Number of Fault Detections Average

Error
Range %

0-0.1
km

0.2-0.3
km

0.4-0.5
km

6-CNN

100
90 11 8 4 0,20
50 13 5 4 0,23
10 13 5 3 0,23

50
90 11 6 3 0,21
50 12 10 4 0,23
10 13 6 2 0,22

0
90 11 11 4 0,20
50 10 9 3 0,23
10 14 8 3 0,20

LSTM

100
90 12 9 5 0,22
50 15 6 5 0,25
10 15 6 4 0,26

50
90 12 7 4 0,24
50 13 11 5 0,26
10 15 7 2 0,24

0
90 12 12 5 0,22
50 11 10 4 0,25
10 16 9 4 0,23

SVM

100
90 15 11 7 0,24
50 16 7 8 0,26
10 17 8 7 0,28

50
90 14 8 7 0,27
50 15 13 8 0,28
10 16 11 7 0,26

0
90 14 14 8 0,24
50 12 12 5 0,27
10 18 11 6 0,26

ELM

100
90 17 13 9 0,26
50 18 9 10 0,28
10 19 11 9 0,30

50
90 16 10 9 0,29
50 17 15 10 0,30
10 18 12 11 0,28

0
90 16 15 9 0,27
50 13 14 7 0,30
10 19 13 8 0,29

In this study, where raw data was applied, the CNN algo-
rithm shows the highest accuracy. It was classified in the CNN
algorithm at 0 ohm fault impedance with 100% success. When
the fault impedance was increased to 30 ohms, the CNN al-
gorithm showed 99.75% classification success, and when the
fault impedance was increased to 50 ohms, the CNN algorithm
showed 99.5% success. Finally, when the fault impedance was
increased to 100 ohms, the CNN algorithm detected the fault
very accurately even at high fault impedances with a rate of
94.5%. In this study, high impedance faults, especially those
that are difficult to predict, were detected very accurately. In
addition, 98.5% of the fault types were correctly identified.
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