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Static anti-windup compensator based on
BMI optimization for discrete-time systems

with directional change in controls avoidance

Dariusz HORLA ∗

Poznan University of Technology, Faculty of Automation, Robotics and Electrical Engineering, ul. Piotrowo 3a, 60-965 Poznan, Poland

Abstract. In the paper, a design method of a static anti-windup compensator for systems with input saturations is proposed. First, an anti-windup
controller is presented for system with cut-off saturations, and, secondly, the design problem of the compensator is presented to be a non-convex
optimization problem easily solved using bilinear matrix inequalities formulation. This approach guarantees stability of the closed-loop system
against saturation nonlinearities and optimizes the robust control performance while the saturation is active.
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1. INTRODUCTION

In this paper, we explore directional change phenomenon from
the viewpoint of compensation of negative effects of control
vector saturation. This approach is crucial for maintaining the
stability and performance of discrete-time control systems under
saturation conditions with directional change in controls avoid-
ance. The paper extends the bilinear matrix inequality (BMI)
formulation presented in paper [1] which has been the first
stage in this research, to a more demanding control scenario.
Static compensation is a research topic still currently devel-
oped, such as in [2] for nonlinear systems, satisfying Lipschitz
conditions, [3] for nonlinear time-delayed systems, or [4] for
time-delayed systems.

One can list a number of strategies present to avoid changes in
direction of a control vector, such as vector control techniques to
drive inverters and motor drives, to fit the requirement of precise
control of voltage, current and flux space vectors by avoiding
direction changes in a control vector [5].

The other might be a switched control strategy to incorporate
control constraints to preserve the initial control direction and,
at the same time, to prevent the state vector from leaving the
domain of control authority, to keep the system both stable and
work under constraints [6].

In electrical machines, especially in induction motors, there
is a space vector modulation algorithm to keep the direction of a
control vector unaltered by flux or torque ripple reduction, due
to varying switching frequency citeREFERENCE3.

It is not only the case of stability as the problem, but also it is
related to dynamic decoupling problem, tackled out in, e.g. [8,9],
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where the preservation of direction of a control vector is bound
with coupling its components to suit certain aims.

The problem of decoupling becomes even more impeding if
nonlinear multiple-input multiple-output plants are considered,
see [10] with uncertainty taken into account. The approach pre-
sented in the current paper can also be extended to uncertainty-
related case by adding a polytopic uncertainty information, to
present the conditions by a set of BMIs for the polytopic infor-
mation [11–13].

Recent research of the author of the paper, see the D.Sc. mono-
graph [14] or [15], or the research of the other authors, [16–18],
provide some detailed information on control quality improve-
ment with simultaneous anti-windup compensation scheme, also
for the case when directional change is to be avoided. However,
there was a gap in the current literature concerning extension of
this research to discrete-time models, leading to an optimization-
based way to obtain optimal static anti-windup compensator.
The optimization problems presented in the paper concern all
minimisation tasks of a linear function subject to BMI con-
straints [17, 19]. These problems will not be solvable using
linear matrix inequality approach, and require other software,
such as PENBMI (PENOPT suite) [19], TOMLAB-PENBMI or
other. The basic formulation of the problem is coded down in
Yalmip [20–22].

The results reported at the previous stage of the research [1],
present design of static compensators for discrete-time models
with cut-off constraints, whereas the results for no directional
change in controls are presented in this paper. It is a first try
to formalize the conditions, by introducing a scaling factor to
the conditions, to lead to an off-line calculation of the mapping
between the saturation level (expressed by the scaling factor)
versus compensator feedback matrix. The major contribution of
the paper, is not only the introduction of a scaling factor, but
also deriving the BMI conditions.
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2. DIRECTIONAL CHANGE IN CONTROLS

2.1. Introduction

The directional change in controls issue can be easily depicted
for a system with two control inputs, each with a prescribed cut-
off level. As it can be observed in Fig. 1 the calculated control
vector 𝑣

𝑡
has a different direction than the constrained control

vector 𝑢
𝑡

[15].

Fig. 1. Directional change issue

A change in control vector direction should not be connected
to coupling avoidance task only, but rather in maintaining the
information stored in the original, i.e., calculated control vec-
tor, to preserve balance between separate control inputs, what
could be met in various robotics-correlated problems. The di-
rectional change problem can be avoided/miminized by the use
of a posteriori anti-windup compensators, or a priori ones, see
the description in [15].

2.2. Optimization problem formulation of directional
change

A task of taking constraints into account, which are imposed on
the calculated control vector, is connected with solving the op-
timization problem by the direction-preserving (DP) algorithm.
Let the constraints be given by affine functions in the form

𝑯𝑢
𝑡
≤ 𝛼 . (1)

One needs to seek the vector 𝑢
𝑡

which is as close as possible
(in the sense of some norm) to 𝑣

𝑡
, what in turn having introduced

a weighting matrix 𝑸DP > 0 can be stated as

min
𝑢 𝑡

(𝑢
𝑡
− 𝑣

𝑡
)𝑇𝑸−1

DP (𝑢 𝑡
− 𝑣

𝑡
)

s.t. 𝑯𝑢
𝑡
≤ 𝛼 , (2)

𝑢
𝑡

of the same direction as 𝑣
𝑡
.

As an example, let us consider the case with 𝑚 = 2 control
inputs and constraints in the form −𝛼 ≤ 𝑢1,𝑡 ≤ 𝛼, −𝛼 ≤ 𝑢2,𝑡 ≤ 𝛼.
On the basis of (1) one gets:

𝑯 =


1 0
0 1

−1 0
0 −1


, 𝛼 =


𝛼

𝛼

𝛼

𝛼


.

The problem (2) can be transformed to finding a scalar mul-
tiplier 𝛾 which enters as a product into 𝑣

𝑡
to satisfy the require-

ments (1), thus:

min
𝛾

(𝑢
𝑡
− 𝑣

𝑡
)𝑇𝑸−1

DP (𝑢 𝑡
− 𝑣

𝑡
)

s.t. 𝑯𝑢
𝑡
≤ 𝛼 , (3)

𝑢
𝑡
= 𝛾𝑣

𝑡
,

which simplifies to the form

min
𝛾

(𝛾−1)2𝑣𝑇
𝑡
𝑸−1

DP𝑣 𝑡

s.t. 𝛾𝑯𝑣
𝑡
≤ 𝛼 . (4)

The problem (4) is convex (minimisation of a convex function
over a convex set). As can be seen, when no constraints are
active, one gets 𝛾∗ = 1 as the optimal solution. Otherwise 0 ≤
𝛾∗ < 1 (the calculated control vector gets contracted).

Usually the matrix 𝑯 is not of full rank, and the problem
cannot be solved analytically via a Lagrange dual problem, as per
its connection with the inversion of a matrix 𝑿𝑇𝑯𝑇𝒀𝑯𝑿 (where
the introduced matrices are of appropriate dimensions), and the
other solution methods must apply, such as KKT condition-
based.

First, it can be assumed that the constraints from (4) can be
presented in a compact form as a set of 𝑛const inequalities

𝛾𝑯const𝑣 𝑡 ≤ 𝑏 ,

where 𝑛const is the smallest number of constraints describing the
feasible set and:

𝑯const𝑣 𝑡 =


ℎ1

ℎ2
...

ℎ𝑛const


, 𝑏 =


𝑏1

𝑏2
...

𝑏𝑛const


.

It is important to verify what value of 𝛾 makes all constraints
inactive only in the case whenever 𝑏𝑖 ≤ ℎ𝑖 (1 ≤ 𝑖 ≤ 𝑛const), where

𝛾 = min©« min
𝑏𝑖<ℎ𝑖

1≤𝑖≤𝑛const

𝑏𝑖

ℎ𝑖
, 1ª®¬

corresponds to the multiplier 𝛾, which should be used to multiply
the calculated control vector 𝑣

𝑡
, to avoid directional change in

controls (satisfying 𝑏𝑖 < ℎ𝑖 guaranteed the inactive and equality
conditions are eliminated). In summary one can formulate the
complete DP algorithms in which the inner min function defines
the minimal ratio (provided it exists), and the outer function –
the lesser of two: 𝑏𝑖

ℎ𝑖
and 1.

2.3. DP algorithm

1) for given 𝑯, 𝑣
𝑡

and defined constraints transform (4) into

min
𝛾

(𝛾−1)2𝑣𝑇
𝑡
𝑸−1

DP𝑣 𝑡

s.t. 𝛾𝑯const𝑣 𝑡 ≤ 𝑏 ; (5)
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2) evaluate the optimal multiplier of 𝑣
𝑡
, as

𝛾∗ = min©« min
𝑏𝑖<ℎ𝑖

1≤𝑖≤𝑛const

𝑏𝑖

ℎ𝑖
, 1ª®¬ ; (6)

3) calculate the constrained control vector

𝑢
𝑡
= 𝛾∗𝑣

𝑡
(7)

and use it to impose constraints on the control vector.
The proposed DP algorithm can be used to any general set of

constraints defined by affine functions. In the other cases one has
to approximate the feasible set by a set defined by inequalities
with affine functions.

As an example, let 𝑯 =


1 0
0 1
−1 0
0 −1


, 𝛼 =


3
2
4
4


, 𝑣

𝑡
=

[
4
3

]
be

given. As can be seen, the first two constraints are active, and:

𝑯const =

[
1 0
0 1

]
, 𝑯const𝑣 𝑡 =

[
4
3

]
, 𝑏 =

[
3
2

]
,

with
min
𝑏𝑖<ℎ𝑖

1≤𝑖≤𝑛const

𝑏𝑖

ℎ𝑖
= min

(
3
4
,

2
3

)
=

2
3
,

resulting in 𝛾∗ = min
(

2
3 , 1

)
= 2

3 and 𝑢
𝑡
= [ 8

3 , 2]𝑇 satisfies the
constraints and is of the same direction as 𝑣

𝑡
(see Fig. 2).

(a) (b)

Fig. 2. Control vector: (a) calculated, (b) DP-constrained

3. DISCRETE-TIME MODEL OF THE CONTROL SYSTEM

The plant is modeled by a set of difference equations

𝑥P,𝑡+1 = 𝑨P𝑥P,𝑡
+𝑩P𝑢

𝑡
, (8)

𝑦
𝑡
= 𝑪P𝑥P,𝑡

+𝑫P𝑢
𝑡
, (9)

with the matrices 𝑨P ∈ ℛ
𝑛×𝑛, 𝑩P ∈ ℛ

𝑛×𝑚, 𝑪P ∈ ℛ
𝑝×𝑛,

𝑫P ∈ℛ
𝑝×𝑚, whereas the controller is described as

𝑥
𝑐,𝑡+1 = 𝑨𝑐𝑥 𝑐,𝑡

+𝑩𝑐𝑒 𝑡 + 𝜉 𝑡
, (10)

𝑣
𝑡
= 𝑪𝑐𝑥 𝑐,𝑡

+𝑫𝑐𝑒 𝑡 , (11)

with 𝑨𝑐 ∈ ℛ
𝑛𝑐×𝑛𝑐 , 𝑩𝑐 ∈ ℛ

𝑛𝑐×𝑝 , 𝑪𝑐 ∈ ℛ
𝑚×𝑛𝑐 , 𝑫𝑐 ∈ ℛ

𝑚×𝑝 .
The static anti-windup compensation action is carried out by
calculation of the 𝜉 to alter interior states of the controller (𝑛𝑐
states). The general block diagram is the same as in [1] and has
been omitted here for the sake of brevity.

The state-space vector of the model of the plant has 𝑛 com-
ponents, 𝑥P ∈ℛ

𝑛, whereas the output vector (to track the ref-
erence vector 𝑟 ∈ ℛ

𝑝) has 𝑝 elements as well, 𝑦 ∈ ℛ
𝑝 , and

finally control vectors have 𝑚 components, namely 𝑢, 𝑣 ∈ ℛ
𝑚.

As has already been stated the full-state anti-windup compen-
sator modifies 𝑛𝑐 states of the controller, i.e. 𝜉 ∈ℛ

𝑛𝑐 .
special version of a cut-off saturation is considered, related

to the DP algorithm, which for the amplitude-constrained can
be presented as a result of the operation 𝛾𝑣

𝑡
, where 𝛾 ≤ 1

corresponds to the saturation level of all the components of
the calculated control vector.

As in [1], the compensator modifies controller states via 𝜉,

𝜉 = 𝚲𝜂 = 𝚲(𝑢− 𝑣) . (12)

Taking (8)–(11) into account, and introducing 𝑞 operator,
the state-space description in a linear-fractional form is given
by [16]

𝑞𝑥 =

[
𝑞𝑥P

𝑞𝑥
𝑐

]
=

[
𝑨P𝑥P +𝑩P𝑢

𝑨𝑐𝑥 𝑐
+𝑩𝑐 (𝑤− 𝑦) + 𝜉

]
=

[
𝑨P𝑥P+𝑩P𝑢

𝑨𝑐𝑥 𝑐
+𝑩𝑐𝑤−𝑩𝑐

(
𝑪P𝑥P+𝑫P𝑢

)
+𝜉

]
= A 𝑥 +B𝑢𝑢 +B𝑤𝑤 +B 𝜉 𝜉 , (13)

where 𝑤 = 𝑟 , 𝑧 = 𝑒 and:

A =

[
𝑨P 0𝑛×𝑛𝑐

−𝑩𝑐𝑪P 𝑨𝑐

]
, (14)

B𝑢 =

[
𝑩P

−𝑩𝑐𝑫P

]
, (15)

B𝑤 =

[
0𝑛×𝑝

𝑩𝑐

]
, (16)

B 𝜉 =

[
0𝑛×𝑛𝑐

𝑰𝑛𝑐×𝑛𝑐

]
. (17)

Following [12, 17], like in [1] one can write

𝑣 = 𝑪𝑐𝑥 𝑐
+𝑫𝑐𝑒 = 𝑪𝑐𝑥 𝑐

+𝑫𝑐 (𝑤− 𝑦)

= C 𝑣𝑥 +D 𝑣𝑢𝑢 +D 𝑣𝑤𝑤 +D 𝑣 𝜉 𝜉 , (18)

where:

C 𝑣 = [−𝑫𝑐𝑪P , 𝑪𝑐] , D 𝑣𝑢 = −𝑫𝑐𝑫P , (19)

D 𝑣𝑤 = 𝑫𝑐 , D 𝑣 𝜉 = 0𝑚×𝑛𝑐 . (20)
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The output vector of a linear-fractional transformation form,
from Fig. 3, becomes

𝑧 = 𝑒 = 𝑤− 𝑦 = 𝑤−𝑪P𝑥P −𝑫P𝑢

= C 𝑧𝑥 +D 𝑧𝑢𝑢 +D 𝑧𝑤𝑤 +D 𝑧 𝜉 𝜉 , (21)

with:

C 𝑧 =
[
−𝑪P , 0𝑝×𝑛𝑐 ] , D 𝑧𝑢 = −𝑫P , (22)

D 𝑧𝑤 = 𝑰𝑝×𝑝 , D 𝑧 𝜉 = 0𝑝×𝑛𝑐 . (23)

Fig. 3. Linear-fractional transformation-related description of the
discrete-time model of the control system

As per 𝜂 = 𝑢− 𝑣, and according to [1], the 𝜉 can be removed
from the linear-fractional form by introduction of

𝜉 = −𝑿C 𝑣𝑥 + 𝑿 (𝑰−D 𝑣𝑢) 𝑢− 𝑿D 𝑣𝑤𝑤 , (24)

𝑿 =
(
𝑰𝑛𝑐×𝑛𝑐 +𝚲D 𝑣 𝜉

)−1𝚲 . (25)

Shortly, by substitution of (24) to (13), (18) and (21), one
obtains:

𝐷𝑥 = 𝑨𝑥 +𝑩𝑢𝑢 +𝑩𝑤𝑤 , (26)

𝑣 = 𝑪𝑣𝑥 +𝑫𝑣𝑢𝑢 +𝑫𝑣𝑤𝑤 , (27)

𝑧 = 𝑪𝑧𝑥 +𝑫𝑧𝑢𝑢 +𝑫𝑧𝑤𝑤 , , (28)

where:

𝑨 = A −B 𝜉 𝑿C 𝑣 , (29)

𝑩𝑢 = B𝑢 +B 𝜉 𝑿 (𝑰−D 𝑣𝑢) , (30)

𝑩𝑤 = B𝑤 −B 𝜉 𝑿D 𝑣𝑤 , (31)

𝑪𝑣 = C 𝑣 −D 𝑣 𝜉 𝑿C 𝑣 , (32)

𝑫𝑣𝑢 = D 𝑣𝑢 +D 𝑣 𝜉 𝑿 (𝑰−D 𝑣𝑢) , (33)

𝑫𝑣𝑤 = D 𝑣𝑤 −D 𝑣 𝜉 𝑿D 𝑣𝑤 , (34)

𝑪𝑧 = C 𝑧 −D 𝑧 𝜉 𝑿C 𝑣 , (35)

𝑫𝑧𝑢 = D 𝑧𝑢 +D 𝑧 𝜉 𝑿 (𝑰−D 𝑣𝑢) , (36)

𝑫𝑧𝑤 = D 𝑧𝑤 −D 𝑧 𝜉 𝑿D 𝑣𝑤 . (37)

When the constraints are imposed with respect to the DP
algorithm, thus 𝑢 = 𝛾𝑣 holds, then on the basis of (26), (27)
and (28) a new description coherent with the linear-fractional
transformation form – LFT – for is obtained (LTF does not
change for a system with constraints):

𝐷𝑥 = 𝑨𝑥 +𝛾𝑩𝑢𝑣 +𝑩𝑤𝑤

=
(
𝑨+𝛾𝑩𝑢𝑪𝑣

)
𝑥 +𝛾𝑩𝑢𝑫𝑣𝑢𝑢

+
(
𝛾𝑩𝑢𝑫𝑣𝑤 +𝑩𝑤

)
𝑤

= 𝑨𝛾𝑥 +𝑩𝛾
𝑢𝑢 +𝑩𝛾

𝑤𝑤 , (38)

𝑧 = 𝑪𝑧𝑥 +𝛾𝑫𝑧𝑢𝑣 +𝑫𝑧𝑤𝑤

=
(
𝑪𝑧 +𝛾𝑫𝑧𝑢𝑪𝑣

)
𝑥 +𝛾𝑫𝑧𝑢𝑫𝑣𝑢𝑢

+
(
𝛾𝑫𝑧𝑢𝑫𝑣𝑤 + 𝑫𝑧𝑤

)
𝑤

= 𝑪𝛾
𝑧 𝑥 +𝑫𝛾

𝑧𝑢𝑢 +𝑫𝛾
𝑧𝑤𝑤 , (39)

where:

𝑨𝛾 = 𝑨+𝛾𝑩𝑢𝑪𝑣 , 𝑩𝛾
𝑢 = 𝛾𝑩𝑢𝑫𝑣𝑢 ,

𝑩𝛾
𝑤 = 𝛾𝑩𝑢𝑫𝑣𝑤 +𝑩𝑤 , 𝑪𝛾

𝑧 = 𝑪𝑧 +𝛾𝑫𝑧𝑢𝑪𝑣 ,

𝑫𝛾
𝑧𝑢 = 𝛾𝑫𝑧𝑢𝑫𝑣𝑢 , 𝑫𝛾

𝑧𝑤 = 𝛾𝑫𝑧𝑢𝑫𝑣𝑤 +𝑫𝑧𝑤 .

(40)

4. ON IMPOSING PERFORMANCE REQUIREMENTS WITH
RESPECT TO THE CLOSED-LOOP SYSTEM

The basic performance requirement imposed on the system is the
stability property, which is below, and following the derivations
in [1], is cast to a matrix inequality-related form. Secondly, and
in order to avoid repetitions, an induced norm helps to formulate
the other constraint, eventually leading to a BMI-constrained op-
timization task. On the basis of the representation of a system
with a DP algorithm, see (38), (39), the basic performance re-
quirement is the mean-square stability condition, related to the
existence of a Lyapunov function

𝑉 (𝑥
𝑡+1) −𝑉 (𝑥

𝑡
) = 𝑥𝑇

𝑡+1𝑷𝑥 𝑡+1 − 𝑥𝑇
𝑡
𝑷𝑥

𝑡
< 0, (41)

from where
𝑨𝛾𝑇𝑷𝑨𝛾 − 𝑷 ★ ★

𝑩𝛾
𝑢
𝑇
𝑷𝑨𝛾 𝑩𝛾

𝑢
𝑇
𝑷𝑩𝛾

𝑢 ★

𝑩𝛾
𝑤
𝑇
𝑷𝑨𝛾 𝑩𝛾

𝑤
𝑇
𝑷𝑩𝛾

𝑢 𝑩𝛾
𝑤
𝑇
𝑷𝑩𝛾

𝑤

 < 0 , (42)

or 
−𝑷 ★ ★ ★

0 0 ★ ★

0 0 0 ★

𝑷𝑨𝛾 𝑷𝑩𝛾
𝑢 𝑷𝑩𝛾

𝑤 −𝑷


< 0 . (43)

The nomenclature used in this Section is briefly characterized
in Table 1.

4 Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 5, p. e151046, 2024



Static anti-windup compensator based on BMI optimization. . .

Table 1
Nomenclature

Symbol Role

𝑷 positive-definite matrix, forming Lyapunov function

𝚪 𝚪 = [𝚪1, . . . , 𝚪𝑚] used to incorporate 𝑢2
𝑖
≤ 𝑣2

𝑖
(𝑖 = 1, . . . , 𝑚) conditions using the S-procedure

𝛿 supremum estimate of the norm-induced gain mentioned
below

𝛾 contraction ratio of the calculated control vector

∗ symmetrical entry of a matrix

Using the S-procedure, and on the basis of (42) one obtains


𝑨𝛾𝑇𝑷𝑨𝛾 − 𝑷+𝑪𝑣

𝑇𝚪𝑪𝑣 ★

𝑩𝛾
𝑢
𝑇
𝑷𝑨𝛾 +𝑫𝑣𝑢

𝑇𝚪𝑪𝑣 𝑩𝛾
𝑢
𝑇
𝑷𝑩𝛾

𝑢 +𝑫𝑣𝑢
𝑇𝚪𝑫𝑣𝑢 −𝚪

𝑩𝛾
𝑤
𝑇
𝑷𝑨𝛾 +𝑫𝑣𝑤

𝑇𝚪𝑪𝑣 𝑩𝛾
𝑤
𝑇
𝑷𝑩𝛾

𝑢 +𝑫𝑣𝑤
𝑇𝚪𝑫𝑣𝑢

★

★

𝑩𝛾
𝑤
𝑇
𝑷𝑩𝛾

𝑤 +𝑫𝑣𝑤
𝑇𝚪𝑫𝑣𝑤

 ≤ 0 (44)

that can be transformed into



−𝑷 ★ ★ ★ ★

0 −𝚪 ★ ★ ★

0 0 0 ★ ★

𝑷𝑨𝛾 𝑷𝑩𝛾
𝑢 𝑷𝑩𝛾

𝑤 −𝑷 ★

𝚪𝑪𝑣 𝚪𝑫𝑣𝑢 𝚪𝑫𝑣𝑤 0 −𝚪


≤ 0 . (45)

The next step, following a similar derivation for a cut-off
constrained system, with the 𝐿2-induced norm between 𝑧 and 𝑤

used, one gets

𝑉 (𝑥
𝑡+1) −𝑉 (𝑥

𝑡
) + 𝑧𝑇 𝑧− 𝛿𝑤𝑇𝑤 ≤ 0, (46)

where in the case of a discrete-time system one can write:


𝑨𝛾𝑇𝑷𝑨𝛾 − 𝑷+𝑪𝛾

𝑧
𝑇
𝑪𝛾

𝑧 ★

𝑩𝛾
𝑢
𝑇
𝑷𝑨𝛾 +𝑫𝛾

𝑧𝑢
𝑇
𝑪𝛾

𝑧 𝑩𝛾
𝑢
𝑇
𝑷𝑩𝛾

𝑢 +𝑫𝛾
𝑧𝑢

𝑇
𝑫𝛾

𝑧𝑢

𝑩𝛾
𝑤
𝑇
𝑷𝑨𝛾 +𝑫𝛾

𝑧𝑤
𝑇
𝑪𝛾

𝑧 𝑩𝛾
𝑤
𝑇
𝑷𝑩𝛾

𝑢 +𝑫𝛾
𝑧𝑤

𝑇
𝑫𝛾

𝑧𝑢

★

★

𝑩𝛾
𝑤
𝑇
𝑷𝑩𝛾

𝑤 +𝑫𝛾
𝑧𝑤

𝑇
𝑫𝛾

𝑧𝑤 − 𝛿

 ≤ 0. (47)

By using the S-procedure again:


𝑨𝛾𝑇𝑷𝑨𝛾 − 𝑷+𝑪𝛾

𝑧
𝑇
𝑪𝛾

𝑧 +𝑪𝑣
𝑇𝚪𝑪𝑣

𝑩𝛾
𝑢
𝑇
𝑷𝑨𝛾 +𝑫𝛾

𝑧𝑢
𝑇
𝑪𝛾

𝑧 +𝑫𝑣𝑢
𝑇𝚪𝑪𝑣

𝑩𝛾
𝑤
𝑇
𝑷𝑨𝛾 +𝑫𝛾

𝑧𝑤
𝑇
𝑪𝛾

𝑧 +𝑫𝑣𝑤
𝑇𝚪𝑪𝑣

★

𝑩𝛾
𝑢
𝑇
𝑷𝑩𝛾

𝑢 +𝑫𝛾
𝑧𝑢

𝑇
𝑫𝛾

𝑧𝑢 +𝑫𝑣𝑢
𝑇𝚪𝑫𝑣𝑢 −𝚪

𝑩𝛾
𝑤
𝑇
𝑷𝑩𝛾

𝑢 +𝑫𝛾
𝑧𝑤

𝑇
𝑫𝛾

𝑧𝑢 +𝑫𝑣𝑤
𝑇𝚪𝑫𝑣𝑢

★

★

𝑩𝛾
𝑤
𝑇
𝑷𝑩𝛾

𝑤 +𝑫𝛾
𝑧𝑤

𝑇
𝑫𝛾

𝑧𝑤 − 𝛿+𝑫𝑣𝑤
𝑇𝚪𝑫𝑣𝑤

 ≤ 0, (48)

which is synonymous with



𝑨𝛾𝑇𝑷𝑨𝛾−𝑷 ★ ★ ★ ★

𝑩𝛾
𝑢
𝑇
𝑷𝑨𝛾 𝑩𝛾

𝑢
𝑇
𝑷𝑩𝛾

𝑢−𝚪 ★ ★ ★

𝑩𝛾
𝑤
𝑇
𝑷𝑨𝛾 𝑩𝛾

𝑤
𝑇
𝑷𝑩𝛾

𝑢 𝑩𝛾
𝑤
𝑇
𝑷𝑩𝛾

𝑤−𝛿 ★ ★

𝚪𝑪𝑣 𝚪𝑫𝑣𝑢 𝚪𝑫𝑣𝑤 −𝚪 ★

𝑪𝛾
𝑧 𝑫𝛾

𝑧𝑢 𝑫𝛾
𝑧𝑤 0 −𝑰


≤ 0 (49)

or 

−𝑷 ★ ★ ★ ★

0 −𝚪 ★ ★ ★ ★

0 0 −𝛿 ★ ★ ★

𝑷𝑨𝛾 𝑷𝑩𝛾
𝑢 𝑷𝑩𝛾

𝑤 −𝑷 ★ ★

𝚪𝑪𝑣 𝚪𝑫𝑣𝑢 𝚪𝑫𝑣𝑤 0 −𝚪 ★

𝑪𝛾
𝑧 𝑫𝛾

𝑧𝑢 𝑫𝛾
𝑧𝑤 0 0 −𝑰


≤ 0. (50)

In order to derive the final form of the inequality conditions
one needs to define:

𝑷𝑨𝛾 = 𝑷 (𝑨+𝛾𝑩𝑢𝑪𝑣)
= 𝑷

(
A −B 𝜉 𝑿C 𝑣 +𝛾B𝑢C 𝑣 −𝛾B𝑢D 𝑣 𝜉 𝑿C 𝑣

+ 𝛾B 𝜉 𝑿 (𝑰−D 𝑣𝑢)C 𝑣

− 𝛾B 𝜉 𝑿 (𝑰−D 𝑣𝑢)D 𝑣 𝜉 𝑿C 𝑣

)
, (51)

𝑷𝑩𝛾
𝑢 = 𝑷 (𝛾𝑩𝑢𝑫𝑣𝑢)
= 𝑷

(
𝛾B𝑢D 𝑣𝑢 +𝛾B𝑢D 𝑣 𝜉 𝑿 (𝑰−D 𝑣𝑢)

+ 𝛾B 𝜉 𝑿 (𝑰−D 𝑣𝑢)D 𝑣𝑢

+ 𝛾B 𝜉 𝑿 (𝑰−D 𝑣𝑢)D 𝑣 𝜉 𝑿 (𝑰−D 𝑣𝑢)
)
, (52)

𝑷𝑩𝛾
𝑤 = 𝑷 (𝛾𝑩𝑢𝑫𝑣𝑤 +𝑩𝑤)
= 𝑷

(
B𝑤 −B 𝜉 𝑿D 𝑣𝑤

+ 𝛾B𝑢D 𝑣𝑤 −𝛾B𝑢D 𝑣 𝜉 𝑿D 𝑣𝑤

+ 𝛾B 𝜉 𝑿 (𝑰−D 𝑣𝑢)D 𝑣𝑤

− 𝛾B 𝜉 𝑿 (𝑰−D 𝑣𝑢)D 𝑣 𝜉 𝑿D 𝑣𝑤

)
, (53)

and 𝚪𝑪𝑣 , 𝑪𝛾
𝑧 , 𝚪𝑫𝑣𝑢, 𝑫𝛾

𝑧𝑢, 𝚪𝑫𝑣𝑤 , 𝑫𝛾
𝑧𝑤 defined as in [1].
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The optimization task enabling one to find the optimal com-
pensator feedback gains is

min
𝛾,𝑷,𝑿 ,𝚪,𝜹

𝛿

s.t. (50)
𝛾 > 0, 𝑷 > 0, 𝚪 > 0, 𝛿 > 0

(54)

and it is solved as a sequence of optimization tasks for a fixed
value of 𝛾 related to how severe the DP constraints are and
𝑷, 𝑿, 𝚪, 𝜹 as decision variables in

min
𝑷,𝑿 ,𝚪,𝜹

𝛿

s.t. (50)
𝑷 > 0, 𝚪 > 0, 𝛿 > 0

(55)

which has BMI constraints only. The optimal solution corre-
sponds to the minimal value of 𝛿 achieved. It can be easily
presented as a series of solutions, 𝛿 vs. 𝛾 to understand the
interplay. Strict inequalities in the optimization problems re-
sult mainly from the fact the interior-point methods are used
to obtain solutions, and with reference to properties of selected
matrices.

5. SIMULATION RESULTS

The simulation for the two-input two-output plant has been con-
ducted, with:

𝑨P =

[
0.9048 0
0 0.9048

]
, (56)

𝑩P =

[
9.516 0
0 9.516

]
, (57)

𝑪P =

[
0.4 −0.5

−0.3 0.4

]
, (58)

𝑫P =

[
0 0
0 0

]
(59)

and the controller with 𝑛𝑐 = 1 given by:

𝑨𝑐 = 1 , (60)
𝑩𝑐 = [7.0710, 7.0710] , (61)

𝑪𝑐 = [0.0318, 0.0247]𝑇 , (62)

𝑫𝑐 =

[
2.0 2.5
1.5 2.0

]
. (63)

It is assumed that for 𝑡 = 0 in accordance with [1] a step
change in reference vector takes place between 𝑤 = 0 and
𝑤 = [0.63, 0.79]𝑇 , and the control vector is saturated at the
level ±1, see Fig. 4 to observe tracking properties.

6. SUMMARY

The paper presented an optimization-based compensator design
method to ensure superior performance of a control system. The
proposed method can form a lookup table of various compen-
sators for different values of 𝛾 to swiftly change the controller
feedback gains for various constraint violation conditions in dy-
namic states. That would open the door to another interesting
research on the topic, based on switched-system formulation,
or linear-piecewise description, and will be topic of further re-
search.

Fig. 4. Tracking performance and constrained control vector
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