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1. Introduction

The frequency-dependent attenuation of sound in
fluids is of importance in many technical and medical
applications, especially in medical imaging and tissue
specification. It is well-known that the Newtonian at-
tenuation often does not match the experimental data
of attenuation in tissues (Parker, 1983; Duck et al.,
1998). There are variety of mechanisms of relaxation
leading to dispersion and attenuation of sound, such as
chemical reactions and vibrational relaxation of the
molecules. The comprehensive review concerning var-
ious mechanisms of absorption in gases can be found
in the book written by Pierce (1981).

The mechanisms of relaxation and absorption in
liquids in the context of wave dynamics, is still un-
resolved issue since the problem was first mentioned
(Liebermann, 1948). The composition of a liquid has
a key role in a variety of relaxation processes. Typi-
cally, several kinds of relaxation take place in a liq-
uid (Pierce, Mast, 2021). Sound absorption in the
sea water is dominated by chemical relaxations with
contribution of magnesium sulfate at high frequen-
cies of oscillations and boric acid at low frequencies
of oscillations. There is an intermediate-frequency re-
laxation due to magnesium and carbonic acid (Yea-
ger, Fisher, 1973; Mellen et al., 1979). A detail

description of wave processes in the sea water is of
importance in view of fishery, naval, and biological ap-
plications. The experimental studies of wave processes
in water, aqueous solutions and other liquids, includ-
ing electrolytes, confidently indicate the kinds of re-
laxation in a liquid and its composition. The disper-
sion which follows relaxation in fluids, makes the sound
speed and attenuation frequency-dependent. Theoreti-
cal foundations of spatially distributed relaxation pro-
cesses with the frequency power law attenuation have
been discussed recently by Pierce and Mast (2021).
Shear viscosity and thermal conduction also contribute
to the total attenuation.

Whereas, attenuation due to relaxation is the most
important case of attenuation in liquid tissues, the first
justified wave equation considering several relaxation
mechanisms, was published by Nachman et al. (1990).
It relies on absorption dominated by relaxation. Until
this, the studies have focused mostly on attenuation
in the presence of relaxation, but did not develop the
linear wave theory (all the more so the nonlinear wave
theory). Nachman et al. (1990) made use of a set of
classical dynamic equations supplemented by thermo-
dynamic and constitutive relations for an electrolyte
(Liebermann, 1949; Eigen, Tamm, 1962). This re-
quires involving into consideration quantities specify-
ing chemical relaxation and enlargement of number of
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equations and variety of modes in a flow. Nachman
et al. (1990) considered spatial inhomogeneities in ma-
terial compressibility, density, and parameters of relax-
ation and pointed the difference of relaxation processes
and wave features in liquids and gases. The different
kind of relaxation in liquids provides especial features
of nonlinear distortions of a waveform, nonlinear exci-
tation of the non-wave modes (that is, the entropy and
the vortex modes) by the intense wave perturbations
(Perelomova, 2015).

An exact solution to the dynamic nonlinear equa-
tion with frequency-dependent relaxation in the wide
range of wave frequencies is still unresolved issue
(Hamilton et al., 1998). As for dynamic equations
which describe secondary nonlinear effects induced by
sound in electrolytes, they have been derived in the
limiting cases of high and low frequencies of an ex-
citer. This concerns excitation of the relaxation mode
and acoustic streaming and heating, i.e., nonlinear ex-
citation of vorticity and entropy modes due to losses in
momentum and energy of the intense sound (Perelo-
mova, 2015). In general, the nonlinear effects of sound
in a relaxing fluid are poorly studied theoretically and
rely only on a few papers (Molevich, 2001; Perelo-
mova, Pelc-Garska, 2010). This theoretical study
considers the nonlinear effects of sound in liquid elec-
trolytes with relaxation due to chemical reactions in
all frequency regimes.

The mathematical concept of derivation of coupling
nonlinear equations for interacting modes is explained
and discussed in details by Leble and Perelomova
(2018). In essence, it is immediate projection of the ini-
tial equations onto dynamic equations governing differ-
ent modes. The first step is to determine modes as spe-
cific types of motion in a fluid. That allows to establish
projecting operators and to derive the leading-order
coupling equations governing every mode in a weakly
nonlinear flow. These equations take into account in-
teraction of modes. As usual, some wave modes are
considered as dominative and hence contribute pre-
dominantly to the “forces” in excitation of the secon-
dary modes. The method was proposed, tested and ap-
plied by the author in analysis of nonlinear phenom-
ena in fluids with the standard attenuation and differ-
ent mechanisms of relaxation (Leble, Perelomova,
2018). This method operates on instantaneous quanti-
ties, does not require averaging over the sound period
at any stage and is valid for both periodic and aperi-
odic sound. It allows to distribute the nonlinear terms
between dynamic equations for the individual modes
correctly. This study investigates weakly nonlinear dy-
namics of the secondary entropy and relaxation modes
in electrolyte with a chemical reaction in the total fre-
quency range of the acoustic exciting perturbations.
The peculiarity of this type of relaxation in compari-
son with relaxation in gases, is explained and discussed
in the Concluding Remarks. Relaxation of this kind

brings also unusual nonlinear relations between acous-
tic perturbations.

2. Weakly nonlinear dynamics of a flow

2.1. Starting points and basic equations

We start from consideration of governing equations
for a fluid flow with relaxation:

Dρ

Dt
+ ρ (∇ ⋅ v) = 0, (1)

(conservation of mass; ρ and v are density and particle
velocity, and D

Dt
designates the total time derivative

operator),

ρ
Dv
Dt

= −∇p, (2)

(conservation of momentum; p is the total pressure),
and the energy balance equation. The Gibbs relation
for the rate of variation of entropy s is as follows:

T
Ds

Dt
=
Du

Dt
−
p

ρ2
Dρ

Dt
+∑

l

Al
Dnl
Dt

, (3)

where u is the internal energy per unit mass, Al are
affinities, and n designates the number of molecules of
species l per unit mass (Liebermann, 1949; Eigen,
Tamm, 1962). The entropy is a sum of an equilibrium
part se and of an irreversible part (Eigen, Tamm,
1962; Nachman et al., 1990; Pierce, 2021):

s(p, ρ, n) = se(p, ρ) +
Cp

βT
∑
l

κl∆ξl, (4)

where
∆ξl =

n − nel (p, T )

∂nel (p, T )/∂p
,

κl designates the contribution of the dissolved mole-
cules of species l to the isothermal compressibility
(reciprocal of the bulk modulus), and the appropri-
ate thermodynamic coefficients (the heat capacity un-
der constant pressure and the volumetric coefficient of
thermal expansion) are determined as

Cp = T0 (
∂se

∂T
)
p
, β = −

1

ρ0
(
∂ρ

∂T
)
p
,

where T0 and ρ0 denote temperature and density of
a medium in equilibrium. Finally, the entropy bal-
ance equation takes the leading-order form as follows
(Nachman et al., 1990):

Dp

Dt
−c2

Dρ

Dt
−
B

2ρ20

Dρ2

Dt
+ρc2∑

l

κl
D∆ξl
Dt

=∑
l

κlβc
2

τlCp
∆ξ2l ,

(5)

where c is the equilibrium speed of infinitely-small
magnitude sound, τl is the relaxation time for the pro-
cess in species l and B is determined by an equality
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(Rudenko, Soluyan, 1977; Makarov, Ochmann,
1996):

(
∂2p

∂ρ2
)
se
=
B

ρ20
.

Our primary objective is to derive dynamic equations
valid at order M2, where the Mach number M is a ra-
tio of magnitude of a fluid velocity to the sound speed.
The Mach number measures degree of nonlinearity of
a flow. A linear flow corresponds to the infinitely small
Mach number. Assuming constant equilibrium quanti-
ties ρ0 and p0, and a lack of the bulk flow and a planar
geometry of a flow, we arrive to the system (Perelo-
mova, 2015):

∂v

∂t
+

1

ρ0

∂p′

∂x
= −v

∂v

∂x
+
ρ′

ρ20

∂p′

∂x
,

∂p′

∂t
+ ρ0c

2 ∂v

∂x
+ ρ0c

2
∑
l

κl
∂

∂t
∆ξl = −v

∂p′

∂x

−
c2ρ0 +B

ρ0
ρ′
∂v

∂x
+
βc2

Cp
∑
l

κl
τl

∆ξ2l

(6)
−ρ′c2∑

l

κl
∂

∂t
∆ξl − ρ0c

2v
∂

∂x
∑
l

κl∆ξl,

∂ρ′

∂t
+ ρ0

∂v

∂x
= −ρ′

∂v

∂x
− v

∂ρ′

∂x
,

∂∆ξl
∂t
+

∆ξl
τl
+
∂p′

∂t
= −v

∂p′

∂x
− v

∂

∂x
∆ξl.

The linear version of this system was derived by Nach-
man et al. (1990).

2.2. Dispersion relations and modes of a linear flow

Studies of motions of infinitely-small magnitudes
begin usually by representing all perturbations as
a sum of planar waves:

f ′(x, t) = ∫ f̃(k) exp(iω(k)t − ikx)dk,

where k is the wave vector, f̃(k) exp(iω(k)t) denotes
the Fourier transform of f ′(x, t), f̃(k, t) = 1

2π ∫ f(x, t)

eikx dx. The number of dispersion relations, i.e., num-
ber of modes, coincides with the number of initial
equations in partial derivatives which include the first
derivative with respect to time. Only one relaxation
process is considered for simplicity. There are two
sound modes (i = 1 and i = 2), one entropy mode (i = 3)
and one relaxation mode (i = 4). The dispersion rela-
tions ωi (i = 1, ...,4) take the leading-order forms:

ω1,2 = ± ck + i
c4k2ρ0τ

2(1 ± ickτ)
κ, ω3 = 0,

ω4 =
i

τ
(1 +

κc2ρ0
1 + c2k2τ2

).

(7)

We consider weakly dispersive flows which are charac-
terized by a small dimensionless parameter responsible
for relaxation:

α = κc2ρ0 ≪ 1.

All formulae are derived with an accuracy up to α1.
It is convenient to express all Fourier transforms in
terms of the Fourier transform of excess density ρ̃ for
the first three modes:

ṽi =
ωiρ̃i
kρ0

,

p̃i =
ω2
i ρ̃i
k2

,

∆̃ξi = −i
ω3
i ρ̃i

k2(iωi + 1/τ)
, (i = 1,2,3),

(8)

and to make use of ∆̃ξ4 as the reference variable for
the relaxation mode:

ρ̃4 =
k2(i − τω4)

τω3
4

∆̃ξ4,

p̃4 =
i − τω4

τω4
∆̃ξ4,

ṽ4 =
k(i − τω4)

τρ0ω2
4

∆̃ξ4.

(9)

In particular, the leading-order links for the Fourier
transforms of perturbations in the first sound mode,
the entropy mode and the relaxation mode are as fol-
lows:

p̃1 = c
2ρ̃1 +

iαc3kτ

1 + ickτ
ρ̃1,

ṽ1 =
c

ρ0
(1 +

iαckτ

2(1 + ickτ)
) ρ̃1,

∆̃ξ1 = −
ic3kτ

1 + ickτ
(1 +

α(3ickτ − 2c2k2τ2)

2(1 + ickτ)2
) ρ̃1,

p̃3 = 0, ṽ3 = 0, ∆̃ξ3 = 0,

ρ̃4 =
αk2τ2

1 + c2k2τ2
∆̃ξ4,

p̃4 = −
α

1 + c2k2τ2
∆̃ξ4,

ṽ4 =
iαkτ

(1 + c2k2τ2)ρ0
∆̃ξ4.

(10)
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Equations (10) determine relations of perturbations
in x space at any moment t unequivocally. The to-
tal small-magnitude perturbations and their Fourier
transforms are the sums of all specific ones:

ṽ =
4

∑
i=1
ṽi, p̃ =

4

∑
i=1
p̃i,

ρ̃ =
4

∑
i=1
ρ̃i, ∆̃ξ =

4

∑
i=1

∆̃ξi.

(11)

An equation governing excess density in an acoustic
planar wave which propagates in the positive direction
of the axis OX, ρ1(x, t), may be reconstructed by the
use of ω1 (Eq. (7)):

∂ρ1
∂t
+ c

∂ρ1
∂x
−
αc

2

∞

∫
x

exp(
x − x′

cτ
)
∂2ρ1
∂x′2

dx′ = 0. (12)

The linear equation specifying perturbations in the re-
laxation mode, takes the form

∂∆ξ4
∂t
+

∆ξ4
τ
+

α

2cτ2

∞

∫
−∞

exp(−
∣x − x′∣
cτ

)∆ξ4(x
′, t)dx′=0.

(13)

In derivation of Eqs. (12) and (13), we make use of
conformity of operators in k and x spaces:

−ik⇔
∂

∂x
,

1

1 + ickτ
⇔

1

cτ

∞

∫
x

dx′ exp(
x − x′

cτ
),

1

1 − ickτ
⇔

1

cτ

x

∫
−∞

dx′ exp(−
x − x′

cτ
),

1

1 + c2k2τ2
⇔

1

2cτ

∞

∫
−∞

dx′ exp(−
∣x − x′∣
cτ

).

(14)

The approximate solutions to an equation similar to
Eq. (12) are discussed by Hamilton et al. (1998).
Apart from the dispersion relations and links speci-
fying every mode, we are able to evaluate operators
which distinguish the specific perturbation from the
vector of total disturbances in a linear flow. Solving
algebraic equations:

P̃1(ṽ p̃ ρ̃ ∆̃ξ)T = ρ̃1,

P̃3(ṽ p̃ ρ̃ ∆̃ξ)T = ρ̃3,

P̃4(ṽ p̃ ρ̃ ∆̃ξ)T = ∆̃ξ4,

one arrives at operator rows which distinguish every
specific Fourier transform of excess quantities for these
three modes:

P̃1 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ρ0
2c
+

αck2τ2ρ0
4(1 + ickτ)2

1

2c2
−
iαkτ(1 + 2ickτ)

4c(1 + ickτ)2

0

α

2c2(1 + ick)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

T

,

P̃3 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

−
1

c2

1

−
α

c2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

T

,

P̃4 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ic2kρ0τ

1 + c2k2τ2
+

4iαc4k3ρ0τ
3

(1 + c2k2τ2)3

c2k2τ2

1 + c2k2τ2
+
αc2k2τ2(3c2k2τ2 − 1)

(1 + c2k2τ2)3

0

1 +
2αc2k2τ2

(1 + c2k2τ2)2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

T

.

(15)

They are evaluated with accuracy up to terms pro-
portional to α0 and α1 but without any restrictions
concerning spatial spectrum of perturbations. The ele-
ments of P̃3 and P̃4 determine some integro-differential
spatial operators P3 and P4 in the x space accordingly
to Eq. (14). When P3, P4 apply at the system of con-
servation Eq. (6), they distinguish equations for the
excess specific densities of the entropy and relaxation
modes, respectively.

2.3. Nonlinear dynamics of sound

Equation (12) may be expanded by inclusion of the
nonlinear term. For this purpose, it is sufficient to ap-
ply P1 on the system Eq. (6) with the leading-order
result:

∂ρ1
∂t
+ c

∂ρ1
∂x
−
αc

2

∞

∫
x

exp(
x − x′

cτ
)
∂2ρ1
∂x′2

dx′

+
εc

ρ0
ρ1
∂ρ1
∂x

= 0. (16)

The nonlinear distortion of a wave is conditioned by
the positive parameter of nonlinearity ε:

ε =
B

2c2ρ0
+ 1.

Links (Eq. (10)) specifying acoustic perturbations,
may be corrected by involving nonlinear terms. As for
links connecting p1, v1 and ρ1, they are as follows:
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p1 = c
2ρ1 − c

2α

∞

∫
x

exp(
x − x′

cτ
)
∂ρ1
∂x′

dx′ +
B

2ρ20
ρ21,

v1 =
c

ρ0
ρ1 + c

2

∞

∫
x

exp(
x − x′

cτ
)
∂ρ1
∂x′

dx′ +
B − 2c2ρ0

4cρ30
ρ21.

(17)

The nonlinear correction to ξ1 may be readily derived
in two limiting cases:

low-frequency: ∆ξ1 = c
3τ
∂ρ1
∂x
+
Bcτ

2ρ20
ρ1
∂ρ1
∂x

, (18)

high-frequency: ∆ξ1 = −c
2ρ1. (19)

Hence, nonlinearity introduces nothing in “high-
frequency” links (if cτ ∣∂ρ1

∂x
∣ ≫ ∣ρ1∣), but contributes in

the “low-frequency” ones (if cτ ∣∂ρ1
∂x
∣ ≪ ∣ρ1∣). The non-

linear correction is unusual. The links which determine
v1 and p1 are proportional to ρ21 in the Riemann wave.

3. Acoustic heating

We consider the dominant first acoustic mode as an
exciter of secondary pertubations. The perturbations
specifying all other modes are considered as negligibly
small at the beginning of evolution. The leading-order
linear links for the perturbations in this mode take the
forms (Eqs. (10) and (14)):

p1 = c
2ρ1 − αc

2

∞

∫
x

exp(
x − x′

cτ
)
∂ρ1
∂x′

dx′,

v1 =
c

ρ0
ρ1 −

αc

2ρ0

∞

∫
x

exp(
x − x′

cτ
)
∂ρ1
∂x′

dx′,

∆ξ1 = c
2

∞

∫
x

exp(
x − x′

cτ
)
∂ρ1
∂x′

dx′.

(20)

They make possible to express an acoustic source in
terms of perturbation of density attributable to the
acoustic mode. Application of P3 (Eq. (15)) at the sys-
tem Eq. (6) reduces all acoustic and relaxation terms
in the left-hand linear side and yields the leading-order
equation which governs acoustic heating:

∂ρ3
∂t

= −
α

2cCpρ20τ

⎛

⎝
2βc3ρ0

⎛

⎝

∞

∫
x

e
x−x′

cτ
∂ρ1(x

′, t)
∂x′

dx′
⎞

⎠

2

+2cCpρ0ρ1

∞

∫
x

e
x−x′

cτ
∂ρ1(x

′, t)
∂x′

dx′

+Cpτρ1
⎛

⎝

B

cτ

∞

∫
x

e
x−x′

cτ
∂ρ1(x

′, t)
∂x′

dx′

− (B + 2c2ρ0)
∂ρ1(x

′, t)
∂x

)
⎞

⎠
= Qa,e. (21)

The leading-order low- and high- frequency limits of
Qa,e have been preliminarily considered by Perelo-
mova (2015). They are the limiting cases of Eq. (21)
if cτ ∣∂ρ1

∂x
∣≪ ∣ρ1∣, cτ ∣∂ρ1∂x ∣≫ ∣ρ1∣, respectively:

low-frequency:

Qa,e = −
ατ

2Cpρ20
(2βc4ρ0 (

∂ρ1
∂x
)

2

+BCpρ1
∂2ρ1
∂x2
) ,

high-frequency:

Qa,e = −
α

2c2τ3Cpρ20
(2βc2ρ0 (∫ ρ1(x, t)dx)

2

+ 2c(2βc2 −Cp)ρ0τ (∫ ρ1(x, t)dx)ρ1

− τ2ρ1((BCp − 2βc4ρ0 + 2c2Cpρ0)ρ1

+cCp(B + 2c2ρ0)τ
∂ρ1
∂x
)) .

Equation (21) may be solved by the integration of Qa,e
over time.

3.1. Nearly harmonic exciter

The most interesting case is the median domain of
frequencies. Let the exciting perturbation in density
takes the form

ρ1 = Mρ0 exp(−
αc2k2τ

1 + c2k2τ2
t) sin

⋅(kx −
ck(1 + (1 + 0.5α)c2k2τ2)

1 + c2k2τ2
t), (22)

where M is the Mach number, and ck(1+(1+0.5α)c2k2τ2)
1+c2k2τ2

is the quasi-frequency of an exciter. The amplitude
of excess density decreases with time. The leading-
order acoustic source averaged over period equals

⟨Qa,e⟩ = exp(−
αc2k2τ

1 + c2k2τ2
t)

⋅
αM2k2τ(BCp + 2c2(Cp − βc

2)ρ0)

4Cp(1 + c2k2τ2)
. (23)

High-frequency limit ckτ ≫ 1 results in

⟨Qa,e⟩ = exp(−
αt

τ
)
αM2(BCp − 2c2Cpρ0 − 2c4βρ0)

4c2Cpτ
.

(24)

This leads to uniform generation of perturbation of
density which starts at t = 0 (ρ3(0) = 0):

ρ3 = (1 − exp(−
αt

τ
))
M2(BCp − 2c2Cpρ0 − 2c4βρ0)

4c2Cp
.

(25)
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The maximum absolute value of excess density which
may be achieved in the course of acoustic heating, does
not depend on α and τ (these parameters determine
the rate of exciting of the entropy mode).

4. Excitation of the relaxation mode.
Case of harmonic exciter

Recalling relations (Eq. (10)) and applying P4 at
Eq. (6), one arrives at the leading-order dynamic equa-
tion for the perturbations in the relaxation mode:

∂∆ξ4
∂t
+

1

τ
∆ξ4 +

α

cτ2

∞

∫
−∞

exp(−
∣x − x′∣
cτ

)

⋅∆ξ4(x
′, t)dx′ = Qa,r. (26)

In view of the complex form of operators in P4 cor-
responding to P̃4 (Eq. (15)), we use the solution of
the equation without account of dispersion and non-
linearity,

ρ1 =Mρ0 sin(Ω(t − x/c)). (27)

The averaged form of Qa,r in the case of the harmonic
exciter is as follows:

⟨Qa,r⟩ =
αΩ2M2

64Cpτ(1 +Ω2τ2)3
(8BCp(1 +Ω2τ2)2

+ c2ρ0(Cp(16 + 93Ω2τ2 + 46Ω4τ4 + 9Ω6τ6))

−18β(1 +Ω2τ2)2c2).

The limiting forms of coupling equations are

low-frequency:

∂∆ξ4
∂t
+

1 + α

τ
∆ξ4 =

αM2Ω2τ

8Cp

⋅ (BCp + 2c2(Cpρ0 − βc
2
)ρ0), (28)

high-frequency:
∂∆ξ4
∂t
+

1

τ
∆ξ4 =

9

64
αM2ρ0c

2Ω2τ. (29)

The efficiency of low-frequency harmonic excitation is
fairly low. As for the high-frequency excitation, the
absolute value of an acoustic force does not tend to
any finite limit but enlarges with frequency of an ex-
citer as Ω2 in contrast to an acoustic source of the
entropy mode. Equations (28) and (29) may be readily
solved by direct integration over time making the use
of the substitutions ∆ξ4 = f(x, t) exp(−t(1+α)/τ) and
∆ξ4 = f(x, t) exp(−t/τ), respectively. There is non-zero
variation in temperature which associates with the re-
laxation mode:

T4 =
γ

β
p4 −

1

ρ0β
ρ4,

where
γ =

1

ρ0
(
∂ρ

∂p
)
T

designates the isothermal compressibility. These varia-
tions are of the order α2M2 in all ranges of frequencies.
They are much smaller than in the entropy mode (the
latter are of the order αM2).

5. Concluding remarks

In this study, we consider weakly nonlinear effects
of sound in an electrolyte. The total range of sound
frequencies is considered. Nonlinearity of a flow and
relaxation of thermodynamic processes are necessary
conditions for interaction of modes and excitation of
the secondary entropy and relaxation modes in the
field of intense sound. The instantaneous equations
which govern excitation of the relaxation and entropy
modes in the field of intense sound wave, are derived
(Eqs. (21), (26)). Thermodynamic parameters of the
nonlinear phenomena slowly vary with time since they
do not represent the wave processes. They are read-
ily measured and may be useful in indication of re-
laxation processes in liquids. Theoretical conclusions
may be employed in modeling of nonlinear scattering
in applications such as image reconstruction in a liq-
uid. The theory is of interest from the standpoint of
understanding wave processes in the sea and in bio-
logical systems, and as a tool in studies of colloidal
systems. In addition, studies of sound absorption in
various fluids such as distilled water and electrolytic
solutions, are of crucial importance in the understand-
ing of their molecular structure. The nonlinear phe-
nomena indicate the kind of relaxation in a fluid, its
equilibrium thermodynamic properties and frequency
of exciting wave perturbations. The mechanic viscosity
and heat conduction are not considered in this study.
In gases, these effects are well-studied (Rudenko,
Soluyan, 1977; Makarov, Ochmann, 1996), and
they are small compared to relaxation effects in liquids
and biological tissues (Mandelshtam, Leontowich,
1937; Hertzfeld, Litowitz, 1959; Nyborg, 1978).

There is an apparent difference of the consid-
ered case of relaxation in liquids and relaxation due
to other processes of deviation from the thermody-
namic equilibrium in gases, such as excitation of vi-
brational degrees of a molecule’s freedom or exother-
mic chemical reactions. That concerns dispersion re-
lations specifying wave and non-wave modes and, as
a result, linear dynamic equations describing pertur-
bations in these modes. The links of specific perturba-
tions in wave and non-wave mode are also different.
This has been indicated by Perelomova (2015). In
particular, the dispersion relation for the relaxation
mode in a gas flow with vibrational relaxation looks
different as compared with ω4,V from Eq. (7) (τV is
the characteristic time of vibrational relaxation, and
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T0 designates the equilibrium temperature of a gas)
(Perelomova, 2010):

ω4,V =
i

τV
+
i(γ − 1)(γ + c2k2τ2V )T0Cv

c2τV (1 + c2k2τ2V )
.

It describes different behavior especially at intermedi-
ate characteristic frequencies of exciting perturbations.
The relaxation mode is isobaric in the case of relax-
ation processes in gases. An excess pressure in the re-
laxation mode in electrolytes is not zero and relates to
excess density in the following manner

ρ4 = τ
2 ∂

2p4
∂x2

.

Also, the dispersion relations for the high-frequency
sound in a liquid which readily follow from Eq. (7):

ω1,2 = ±(ck + 0.5κc3kρ0),

fundamentally differ from that in a gas with vibrational
relaxation (Osipov, Uvarov, 1992; Molevich, 2001):

ω1,2 = ±ck + 0.5i(γ − 1)2CvT0/(τV c
2
).

There is an attenuation independent of frequency in
the case of vibrational relaxation, while there is only
pure dispersion without attenuation in the case of re-
laxation in electrolytes. The Newtonian attenuation is
proportional to k2. The links between acoustic pressure
and excess density also look different. In particular:

p1 = c
2ρ1 − αc

2

∞

∫
x

e
x−x′

cτ
∂ρ1(x

′, t)
∂x′

dx′

in the case of relaxation in electrolytes, and

p1 = c
2ρ1 −

θc

τ

∞

∫
x

e
x−x′

cτ ρ1(x
′, t)dx′

in the case of vibrational relaxation in gases, where θ
is a dimensionless parameter reflecting vibrational re-
laxation in gases in view of inflow of energy (may be
negative) (Perelomova, 2019). The similar link specifies
a gas flow with a chemical reaction (Leble, Perelo-
mova, 2018). The different behavior conditions dif-
firent hysteresis acoustic curves (Perelomova, 2013).
The nonlinear effects of sound also look different in
gases and liquids. The leading-order acoustic force is
proportional to the squared Mach number M2 and α,
and is frequency-dependent. The high-frequency sound
is effective in excitation of the secondary perturba-
tions in presence of all kinds of relaxation, but the
low-frequency exciters are not effective (Perelomova
2010; 2019).

The nonlinear links of specific acoustic variables
attract special attention. We face with the unusual

relations (Eq. (18)) for low-frequency sound pertur-
bations with a nonlinear term proportional to ρ1 ∂ρ1∂x ,
not ρ21 which is specific for the flows over uniform fluids
(Rudenko, Splyan, 1977). Hence, nonlinear links re-
veal the frequency-dependent character and may indi-
cate sound frequency, characteristic time of relaxation
and equilibrium parameters of an electrolyte.
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