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Origin and properties of own error signals of the
discrete wavelet transform algorithms

Łukasz Dróżdż, and Jerzy Roj

Abstract—The article presents a method for analyzing the own
errors of the discrete wavelet transform algorithms, which are
introduced by these algorithms into the output quantities. The
presented considerations include determining the origin of the
error signals in question and determining their parameters. Both
errors resulting from imperfections in the transmittance of the
algorithm and those resulting from its implementation in the
actual measurement chain were considered.
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I. INTRODUCTION

AS wavelet transform (WT) algorithms find their applica-
tions in many areas [1]–[5], the impact of the discussed

algorithms on the uncertainty budget of the measurement
chains in which the discussed algorithms are used is extremely
important.

In previous works [6]–[8], it was discussed in detail how
wavelet transform algorithms transfer error signals contained
in the input quantities to the output and it was indicated
how to describe the metrological properties of measurement
chains containing the algorithms in question in their structure,
in order to it was possible to prepare an uncertainty budget
and determine the resulting expanded uncertainty value of
the output values of the analyzed measurement chains. The
considerations presented so far took into account the own
errors of the analyzed algorithms only superficially – they did
not discuss, among other things, the role of the algorithm’s
transmittance, and only errors analyzed resulted from its
implementation and rounding introduced during calculations
was discussed briefly.

This work complements the previous considerations and is
devoted to the origins and properties of own error signals
of wavelet transform algorithms. The work has been divided
into 5 chapters. The first chapter is an introduction to the
work and presents its motivation. The second chapter shows
the division of own error signals according to their origin.
The third chapter describes the properties of the algorithm’s
own error signals, resulting from the imperfections of the
algorithm’s transmittance. The fourth chapter discusses the
properties of own error signals related to the implementation
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of the algorithm and the related rounding when performing
calculations. Chapter five is a summary of the work.

As the discrete wavelet transform (DWT) is the most
frequently used version of the analyzed algorithms [2], all
examples presented in the work concern this version of the
algorithm. It should be noted, however, that the analysis
method discussed in this work is uniform in the case of other
variants of the algorithm processing input data belonging to
the domain of real numbers.

II. GENESIS OF THE OWN ERROR SIGNALS

Wavelet transform algorithms can be treated as a set of
finite impulse response (FIR) filters [9]. Each output quantity
is associated with an appropriate filter, and for the output
quantities associated with the same iteration of the decompo-
sition process, the parameters for the corresponding filter are
identical [6]. The number of filters therefore depends on the
number Nd of iterations of the signal decomposition process
and, in general, is equal to Nd + 1. The given property does
not apply if the transmittance of the algorithm is additionally
modified (e.g. an additional measurement window function
is introduced, modifying subsequent input values of the al-
gorithm). Therefore, the operation scheme of the discussed
algorithm can be presented in the classic case as in the Fig. 1.

Fig. 1. A block diagram illustrating the operation of the wavelet transform
algorithm, where H∗(z) denotes the transmittance associated with the selected
output quantity, Tj denotes details and Sj denotes approximations for the
given j-th scale number

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,
https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/


644 L. DRÓŻDŻ, J. ROJ

The model of the wavelet transform algorithm presented in
the Fig. 1 simplifies the analysis of the metrological properties
of this algorithm, which result from the transmittance associ-
ated with its subsequent output quantities. It should be noted,
however, that in reality these algorithms usually transform N
of input quantities into M of output quantities (where in most
cases N = M ) for each k-th implementation of the analyzed
algorithm. The difference between the operation presented in
the Fig. 1 and the actual implementation of the algorithm
is the fact that for each output quantity of the algorithm,
an appropriate filter is used, to which only selected input
quantities are fed [2]. As the described property does not
affect the transmittance associated with the subsequent output
quantities of the actual algorithm, the model presented in Fig. 1
allows for simplifying the analysis without the negative results
resulting from this simplification.

In the general case, the transmittance associated with a
single i-th output quantity of the algorithm can be described
as [6]:

Hi (z) =

N−1∑
j=0

ai,jz
−j , (1)

where the symbol ai,j denotes the coefficients of the trans-
formation matrix of the algorithm, described in more detail in
the works [6], [7]. Based on the equation (1), the value of the
j-th output quantity X(j) for the k-th implementation of the
algorithm can be described as:

X (j) =

N−1∑
i=0

ai,jx (i) , (2)

where the symbol x(i) denotes subsequent input quantities of
this algorithm.

If the measurement task performed by the measurement
chain requires a specific form of transmittance Ḣj(z) for
the analyzed output quantity, but the actual form of this
transmittance H̃j(z), resulting from the properties of the
analyzed algorithm, is different (where H̃j(z) ̸= Ḣj(z)),
the first source of the algorithm’s own error signal can be
distinguished. In such a case, it is possible to describe this
signal in a deterministic way, which is presented in the next
chapter of the work.

Analyzing the Equation (2), it can be noticed that de-
termining the value of the algorithm’s output quantity each
time requires N multiplication operations and N addition
operations. Since the actual implementation of the algorithm
usually uses a microcontroller or microprocessor [10]–[14],
rounding is associated with these operations, which is the
genesis of the second significant error signal [15]. The nature
of the signals discussed and their properties are described in
the fourth chapter of the work.

The last case requiring discussion is the discrepancy be-
tween the numerically and analytically determined values of
the coefficients ai,j of the transformation matrix of the algo-
rithm. As shown in the works [2], [6], [16], the origin of the
problem is the fact that the values of the discussed coefficients,
resulting from the properties of the mother wavelet used and
the algorithm parameters, are most often immeasurable. As

the discussed discrepancies are very small and are comparable
to the value of the numerical error, it is proposed not to
analyze these discrepancies as a difference between the ideal
and the actual form of the algorithm’s transmittance. However,
it is proposed to include the contribution of the discussed
phenomenon in the analysis of rounding error signals.

III. ERRORS RELATED WITH ALGORITHM’S
TRANSMITTANCE

As indicated in the previous chapter, if the actual form of
the algorithm’s transmittance differs from that assumed by
the designer of the measurement chain, the algorithm will
introduce its own errors into the output values. Assuming that
the subsequent input quantities of the algorithm are described
by the equation:

x (i) =

∞∑
l=0

Ex,l sin
(
ωx,ln+ φx,l

)
, (3)

where Ts = 1
fs

is the sampling period, appropriate for the
sampling frequency fs, in the case of ideal transmittance
Ḣj(z) for the j-th output quantity it can be written:

Ẋj (i) =

∞∑
l=0

K̇j

(
ωx,l

)
Ex,l sin

(
ωx,liTs + φx,l + φ̇j

(
ωx,l

))
,

(4)
while in the real case:

X̃j (i) =

∞∑
l=0

K̃j

(
ωx,l

)
Ex,l sin

(
ωx,liTs + φx,l + φ̃j

(
ωx,l

))
.

(5)
The values of the gain Kj(ω) and the phase shift φj(ω) can be
determined based on the transmittance Hj(z) assuming z =
ejωTs [17]–[19], then:

Kj (ω) =

∣∣∣∣Hj

(
ejωTp

)∣∣∣∣ =√(
ℜ
(
Hj

(
ejωTp

)))2

+

(
ℑ
(
Hj

(
ejωTp

)))2
, (6)

φj (ω) = arctan


ℑ
(
Hj

(
ejωTp

))
ℜ
(
Hj

(
ejωTp

))
 . (7)

By defining the own error eXj ,h(i), resulting from the
imperfection of the algorithm’s transmittance, as the difference
between the ideal (4) and the actual (5) course of the output
quantity Xj(i), it can be written:

eXj ,h (i) = X̃j (i)− Ẋj (i) . (8)

Taking into account the content of the Equation (1) and
Equation (2), the Equation (8) can also be written in the form:

eXj ,h (k) =

N−1∑
i=0

(
ãi,jx (i+ kN)− ȧi,jx (i+ kN)

)
, (9)

where the values of the transformation matrix coefficients ȧi,j
in the ideal case correspond to the transmittance Ḣj(z), while
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the values ãi,j correspond to the transmittance H̃j(x) in the
real case.

Analyzing the content of the Equation (8), we can distin-
guish subsequent harmonics of the error signal eXj ,h(i), each
of which will consist of two components. These harmonics
can be described in the form:

eXj ,h,l (i) =K̃j

(
ωx,l

)
Ex,l sin

(
ωx,liTs + φx,l + φ̃j

(
ωx,l

))
−

K̇j

(
ωx,l

)
Ex,l sin

(
ωx,liTs + φx,l + φ̇j

(
ωx,l

))
(10)

eXj ,h (i) =

∞∑
l=0

eXj ,h,l (i) , (11)

where the symbol l denotes the index of the analyzed har-
monic, the pulsation of which is equal to ωx,l. It can be seen
that the number of harmonics of the signal eXj ,h(i) depends
on the form of the signal x(i). By determining the resultant
amplitude EXj ,h,l and the phase shift φXj ,h,l for the l-th
harmonic of the signal eXj ,h(i) with pulsation ωx,l in the form:

EXj ,l,a =Ex,lK̃j

(
ωx,l

)
cos
(
φx,l + φ̃j

(
ωx,l

))
−

Ex,lK̇j

(
ωx,l

)
cos
(
φx,l + φ̇j

(
ωx,l

)) , (12)

EXj ,l,b =Ex,lK̃j

(
ωx,l

)
sin
(
φx,l + φ̃j

(
ωx,l

))
−

Ex,lK̇j

(
ωx,l

)
sin
(
φx,l + φ̇j

(
ωx,l

)) , (13)

EXj ,l =
√
E2

Xj ,l,a
+ E2

Xj ,l,b
, (14)

φXj ,l = arctan

(
EXj ,l,a

EXj ,l,b

)
, (15)

eXj ,h,l (i) = EXj ,l sin
(
ωx,l + φXj ,l

)
. (16)

the value of the variance of this harmonic for ωx,l > 0 rad
can be determined according to the relationship [18]:

σ2
Xj ,h,l =

1

2
E2

Xj ,l, (17)

while the value of the expanded uncertainty related to the
analyzed harmonic is equal [20]:

UXj ,h,l = cdσXj ,h,l, (18)

where cd is the coverage factor of the sine function distribution
for the assumed confidence level γ = 1− α [20].

In the case where ωx,l = 0 rad the Equation (10) simplifies
to the following form:

eXj ,h,0 (i) =K̃j (0)Ex,l sin
(
φx,l + φ̃j (0)

)
−

K̇j (0)Ex,l sin
(
φx,l + φ̇j (0)

) . (19)

For this case, the variance σ2
x,0 of the constant signal com-

ponent x(i) should be determined, the realization values of
which may change for subsequent measurement series, and
then according to the equation:

σ2
Xj ,h,0 =

(
K̃j (0)− K̇j (0)

)2
σ2
x,0. (20)

As the transmittance of the analyzed object is linear and time
invariant [19], the expanded uncertainty value in the discussed
case can be determined according to the equation:

UXj ,h,0 = σXj ,h,0cx,0, (21)

where cx,0 is the coverage factor for the probability density
distribution of the realization of the constant component of the
signal x(i).

As the successive harmonics of the error signal eXj ,h(i) are
not correlated [18], [19], the variance of this signal is described
by the relationship:

σ2
Xj ,h =

∞∑
l=0

σ2
Xj ,h,l. (22)

The resulting expanded uncertainty for the analyzed error
signal can be determined using the Monte Carlo method [21],
[22], the method using fuzzy sets [23], the reduction interval
arithmetic method [6] or any other method.

IV. ERRORS RELATED WITH ALGORITHM’S
IMPLEMENTATION

No microprocessor or microcontroller can achieve infinite
precision in computing floating-point numbers. In practice,
this means that every arithmetic operation that the device
performs on the numbers in question involves introducing
an error into the result. This error can be interpreted as the
difference between the value obtained by the device and the
value obtained assuming infinite precision of numbers [15].
As indicated in the first chapter of the work, the output
values of the wavelet transform algorithm are determined
according to the Equation (2). Theoretically, determining the
value of the implementation of a single output quantity of the
analyzed algorithm involves N multiplication operations and
N addition operations. In practice, however, this value does
not correspond to the real number of arithmetic operations,
because some of the coefficients of the transformation matrix
for the selected output quantity have a value equal to 0 , which
is explained later in the chapter.

Analyzing the information compiled in the works [2], [3],
[6], [7], [9], [16], it can be noticed that each mother wavelet
for given parameters is characterized by a certain number of
non-zero scaling factors, the numbers and values of which
depend on the values of the transformation matrix coefficients
algorithm. While the number of non-zero scaling factors is
constant for the given mother wavelet parameters, the number
and values of non-zero transformation matrix coefficients are
also influenced by the number of input quantities of the algo-
rithm and the number of iterations of the signal decomposition
process.

According to the content presented in the first paragraph
of this chapter, one important problem should be noted. Since
each digital device will introduce an error into the calculations
due to the limited precision of number recording, the use
of such a device in an experiment aimed at determining the
parameters of the signal related to the rounding in question is
impossible. However, it is proposed to perform an appropriate
experiment in the case when the precision of writing numbers
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Fig. 2. Dependence of the value of the rounding error signal variance on the number of iterations of the signal decomposition process and the number of
input quantities for the “coif5” wavelet when using floating-point numbers with a word length of a) 16 bits and b) 32 bits for the last scale of signal details

used to determine reference values (considered as ideal) will
be much higher than in the case of the real algorithm. For
the described experimental conditions, it can be assumed that
the errors introduced in the ideal part will be many orders
of magnitude smaller than in the real part, and therefore
the experiment will allow to estimate the parameters of the
analyzed error signal [15], [20].

Assuming that the input quantities x(i) of the algorithm are
not burdened with any error signal, and the transfer function of
the algorithm is ideal (the difference between the ideal and real
values of the transformation matrix coefficients is very small,
i.e. many orders of magnitude smaller than those described
in previous chapter), the error signal eXj ,z(i) related with the
j-th output quantity of the algorithm can be defined as:

eXj ,z (i) = X̃j (i)− Ẋj (i) , (23)

where X̃j(i) denotes the output value of the tested algorithm,
while Ẋj(i) denotes the output value of the reference al-
gorithm (for which much greater precision is used writing
numbers). Further in the work, it was assumed that the ideal
(reference) algorithm will use real numbers with a word
length of 128 bits. All described research was performed using

implementations of algorithms in “C”, which were translated
into machine code using the “GNU GCC” [24] compiler.

The first analyzed phenomenon is the influence of the
number of input quantities of the algorithm on the value of
the error signal variance, described by the Equation (23). The
second analyzed phenomenon is the influence of the number of
iterations of the signal decomposition process on the discussed
parameters. In order to determine the variance and shape of
the probability density function of obtaining the selected real-
ization of the error signal X̃j(i), a vector of input quantities of
the algorithm was generated, the realization values of which
were random numbers in the range x̂(i) ∈ [−1; 1] with the
same probability of obtaining each value. For a given vector
of input values, the vector of output values of the ideal and
real algorithm was determined, and for the real algorithm
floating-point numbers with a word length of 16 or 32 bits
were used (depending on the experiment variant). Based on the
Equation (23), the implementations of the analyzed error signal
was determined for the current iteration of the experiment
using 100,000 samples for each variant.

The above experiment was performed for the
wavelet “coif5” (the 5-th order “Coiflet” wavelet [25]).
The wavelet in question has 30 non-zero scaling
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factors. Depending on the experiment variant, the
number of input quantities for the algorithm was
N̂ ∈ {8; 16; 32; 64; 128; 256; 512; 1024; 2048; 4096}, while
the number of iterations of the input signal decomposition
process was N̂d ∈ [1; 6]. The value of the error signal
variance σ2

Xj ,z
depending on the experiment variant is shown

on Fig. 2. Based on the experiment, it can be seen that for
the selected number of iterations of the signal decomposition
process, the value of the variance of the error signal eXj ,z(i)
increases with the increase in the number of input quantities
of the algorithm. However, it can be noted that this increase
only occurs when the number of input quantities does not
exceed the number of non-zero coefficients of the algorithm’s
transformation matrix. As the number of non-zero coefficients
of the algorithm’s transformation matrix increases for the
final output scale as the number of iterations of the signal
decomposition process increases, the number of arithmetic
operations that introduce rounding errors also increases.
Additionally, it can be noted that the variance of the own
error signal in the case of the implementation using 32-bit
floating-point numbers is much smaller than in the case of
the algorithm using 16-bit numbers.

Another problem requiring discussion is the influence of
the range of implementation values of the algorithm’s input
quantities on the value of the rounding error signal variance.
To verify the phenomenon in question, an experiment was
performed in which the vector of input quantities were random
numbers from the range x̂(i) ∈ [−b; b] with the same prob-
ability of obtaining each value. The value of b changed for
each variant of the experiment, and for the selected variant the
parameters of the signal eXj ,z(i) were determined on the basis
of 100,000 values of the signal in question implementations.
Fig. 3 show selected experimental results for the output values
of the algorithm using the “db2” wavelet (the 2-nd order
“Daubechies” wavelet [16]) for 2 iterations of the signal
decomposition process and 128 input quantities. Based on the
presented results, one can notice an increase in the variance
of the analyzed error signal with an increase in the range
of possible implementation values of the algorithm’s input
quantities, and this trend can be approximated by a second-
order polynomial.

The last experiment was aimed at verifying the algorithm
model presented earlier in Fig. 1. The presented model as-
sumes that the transmittance of all output quantities related
to the same scale parameter is identical, and the only dif-
ference when determining the value of the output quantity is
therefore the set of data fed to the input of this transmittance.
Therefore, the variance of the rounding error signal should be
identical for quantities associated with the same transmittance.
In order to verify this thesis, an experiment was carried out in
which a vector of input quantities was fed to the algorithm,
the subsequent implementation values of which were in the
interval x̂(i) ∈ [−b; b] with the same probability of obtaining
each value, with the b values depending on the experiment
variant. The algorithm processed N = 8 input quantities using
the “db2” wavelet for 2 iterations of the signal decomposition
process. The experimental results are summarized in Table I.
Based on the results obtained, the thesis in question can be

considered true. The discrepancies obtained result from the
features of the Monte Carlo method [22].

TABLE I
ROUNDING ERROR SIGNAL VARIANCE VALUES FOR THE “DB2” WAVELET

FOR NUMBERS WITH A LENGTH OF A) 16 BITS AND B) 32 BITS,
DEPENDING ON THE RANGE OF POSSIBLE VALUES OF THE

IMPLEMENTATION OF THE INPUT QUANTITIES

Case Xj
Input value range

x̂ ∈ [−1; 1] x̂ ∈ [−2; 2] x̂ ∈ [−3; 3]

a)

S2,0 1.03×10−7 4.12×10−7 9.74×10−7

S2,1 1.11×10−7 4.43×10−7 1.01×10−6

T2,0 1.31×10−7 5.24×10−7 1.21×10−6

T2,1 1.07×10−7 4.29×10−7 9.73×10−7

T1,0 7.09×10−8 2.85×10−7 6.99×10−7

T1,1 5.83×10−8 2.33×10−7 5.87×10−7

T1,2 5.84×10−8 2.34×10−7 5.85×10−7

T1,3 5.53×10−8 2.21×10−7 5.41×10−7

b)

S2,0 1.40×10−15 5.57×10−15 1.30×10−14

S2,1 1.40×10−15 5.61×10−15 1.29×10−14

T2,0 1.71×10−15 6.83×10−15 1.58×10−14

T2,1 1.39×10−15 5.56×10−15 1.29×10−14

T1,0 8.28×10−16 3.54×10−15 8.38×10−15

T1,1 6.82×10−16 2.72×10−15 6.67×10−15

T1,2 6.82×10−16 2.72×10−15 6.66×10−15

T1,3 6.68×10−16 2.67×10−15 6.48×10−15
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Fig. 3. Dependence of the rounding error signal variance value on the range
of the input quantities implementation values for the “db2” wavelet using
floating-point numbers with a word length of a) 16 bits and b) 32 bits

The last issue is to determine the value of the coverage
factor for the analyzed own error signals. Based on the
experiments performed, it can be estimated that the value
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of the discussed coefficient is approximately cz ≈ 2.15 for
confidence level 1−α = 95%, while the exact value depends
on the parameters of the wavelet transform algorithm used and
its implementation. The probability density distribution of the
signal in question is therefore close to the normal distribution.

V. CONCLUSIONS

The article describes both error signals resulting from
imperfections in the transmittance of the wavelet transform
algorithm, as well as those resulting from the actual implemen-
tation conditions of this algorithm. The origin of the first group
of error signals is the fact that the actual transmittance of the
algorithm does not always coincide with the transmittance re-
quired by the measurement task. The role of the measurement
chain designer is to determine the ideal transmittance of the
algorithm for the task being performed and then, in accordance
with the presented methodology, to determine the uncertainty
budget related to the discrepancy in question. In the case of
the second group of error signals, their origin results from
the inability to achieve infinite precision in writing floating-
point numbers. When determining the implementation value
of the algorithm’s output quantities, the calculation results are
rounded, which is the origin of the error signal in question.

Analyzing the properties of the own error signal related
to rounding, several most important properties of this signal
can be noticed. The first property is the dependence of the
variance of this signal on the length of the word used to write
floating-point numbers. As the length of the word increases,
the accuracy of writing numbers increases, and therefore
the rounding discussed earlier is characterized by a smaller
absolute value and a lower precision compared to previous
one. However, it should be noted that as the word length
increases, the amount of required memory increases and the
computation time increases [11], [15], [24], [26]. Therefore,
the precision of number recording should be selected so that
the variance of the rounding error is small in relation to
other error signals [20]. The second property results from
the influence of the range of input values on the variance
of the analyzed error signal. For a larger range, the value
in question increases with the square of the range increase.
The last important issue is the overall impact of the number
of non-zero values of the algorithm’s transformation matrix
coefficients on the value of the rounding error signal variance.
The discussed relationship causes an increase in the variance
of the rounding own error signal with an increase in the
number of input values of the algorithm and the number of
iterations of the signal decomposition process. The growth in
question can be approximately considered linear.

As the parameters of the own error signals of the wavelet
transform algorithm depend largely on the parameters of
the processed measurement signal, all experiments aimed at
determining the parameters of these signals should take place
in conditions similar to those in which the analyzed algorithm
operates.
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