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Abstract—The method of evaluating the resonant frequencies of 

multilayered resonator containing uniaxial anisotropic dielectrics 

is presented. The detailed solution of Maxwell's equations for such 

a structure by means of the radial modes matching method for 

TE0mn modes is given. The results of calculations using developed 

and launched computer program are given. Results of calculations 

are compared with those obtained by other method using CST 

simulator. These results are in close agreement, which proves the 

correctness of the method. The developed solution, and the 

software program can be used to measure the tensor permittivity 

of dielectrics. 

 

Keywords—dielectric resonator; Maxwell’s equations; radial 

modes matching method; uniaxial anisotropic permittivity 

I. INTRODUCTION 

HE development of materials technology makes that newly 

created materials have previously unattainable electrical 

and magnetic properties. Materials produced and used in 

electronics have a wide range of relative permittivity and 

permeability. These parameters may vary depending on the 

frequency as well as a function of the direction (anisotropic 

dielectric, ferrites). The use of such materials in electronics 

enforces the need for accurate knowledge of their electrical and 

magnetic parameters. It is therefore necessary to develop newer 

and better methods to measure these materials.  

At microwave frequencies, resonant methods are most often 

used, in particular dielectric resonator method [1]. The 

advantage of this method is very good accuracy to determine 

material parameters, as well as measurements are easy. The 

resonant frequency and the Q-factor of structure, which includes 

sample test material are measured at once [2]. The material 

parameters are determined from the equations describing the 

resonance conditions of the test structure. The most commonly 

used is TE011 mode [1]. In measurements, not very complicated 

structures are used [1],[3].  

In microwave devices (filters, antennas) using dielectric 

resonators containing various materials, different complicate 

shapes of structures can be used [4]-[16]. The following 

examples of the shapes of dielectric resonators limited to 

axisymmetric ones can be found: 

- cylindrical or disc [4],[5], 

- disc with curved edge [6], 
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- wedge disc [6],[7], 

- ring [8], 

- toroid [6],[7], 

- split cylinders (SPDR) and rings [9],[10], 

- triple layer cylindrical and ring resonators [11]-[13], 

- spherical and hemispherical [6],[7],[14]-[16], 

- conical [14], 

It follows from the above that it is necessary to be able to 

determine the resonant frequency of TE0mn modes for complex 

structures containing materials with different electrical 

properties. There are many ways to derive these frequencies, 

however, most accurate appear to be modes matching methods, 

either radial or axial 

There are numerous of studies to enable the calculation of the 

resonant frequency of such structure, but most commonly they 

involve simple structure composed of a small number of layers 

of a material [3],[18]-[21]. The most advanced solution relates 

to a multilayered dielectric resonator which can contain up to 10 

regions and 10 layers in each of them, but dielectrics included 

in the system are described by scalar relative permittivity [20]. 

In [22] you can find a solution for a structure consisting of 20 

regions and 20 layers of dielectrics in each of them determined 

by tensor electric permittivity for all modes. However, using the 

solution from [22] requires some experience to distinguish 

between the TE and TM modes. Therefore, this article limits the 

solution to TE modes, but increases the number of regions and 

layers to 50. 

You can use any electromagnetic simulator, e.g. CST [23], 

HFFS [24], QuickWave [25], to calculate the resonant 

frequency of a complex structure. However, each of these 

simulators use approximations of partial differential equations, 

so the accuracy of the calculations is limited. In the 3D 

simulators the structure is meshed and accuracy of the 

computations depends on the mesh size. Thus the accuracy 

depends on the quantization of space. It can also depends on the 

quantization of time (in FDTD), dispersion, round-off errors etc. 

The computation time in some simulators may be much longer 

than in the presented solution. The price of commercial 

electromagnetic simulators is also an important factor but it 

must be added that the 3D electromagnetic simulators can be 

used to any type of structures, which is their main advantage. 

In this paper, a solution employing the radial modes matching 

method for the multilayered resonator containing dielectrics 
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determined by tensor permittivity for TE0mn modes is presented. 

The solution of the Maxwell equations for the multilayered 

resonator, which may contain up to 50 regions and 50 layers of 

each of them, which is more than exhaustive demand is 

presented. 

The simplified general structure of the multilayered dielectric 

resonator is shown in Fig. 1. 

It consists of three regions I, II and III with axial symmetry. 

The amount of these regions can be equal to a maximum of 50 

in the developed program. The first region thus has a cylindrical 

shape, the next ones are rings. In each region there is a number 

of layers of material having different relative tensor 

permittivity. The structure is enclosed by a metal cylinder 

whose radius R3 may be infinite. The structure does not affect 

constant or slowly varying external magnetic field.  
 

 

Fig. 1. The multilayered dielectric resonator 

II. THE SOLUTION OF BOUNDARY VALUE PROBLEM FOR THE 

RESONATOR WITH ANISOTROPIC MEDIA 

Stated problem boils down to solve Maxwell's equations for 

such a structure. Due to the rotational symmetry of the analyzed 

structure the Maxwell equations will be solved in a cylindrical 

coordinate system. 

Maxwell's equations in each layer of each region can be 

written as (given the absence of charges and currents sources): 
 

                                        

{
 
 

 
 ∇ ×𝐸⃗ = 𝑗𝜔𝐵⃗ 

∇ ×𝐻⃗⃗ = 𝑗𝜔𝐷⃗⃗ 

∇ ∙𝐷⃗⃗ = 0

∇ ∙𝐵⃗ = 0

                                         

(1)

(2)
(3)

(4)

 

 

Taking into account the linearity and dielectric anisotropy of the 

media belonging to the resonator the following are obtained: 
 

       

{
 
 

 
 ∇ ×𝐸⃗

 = 𝑗𝜔𝜇𝐻⃗⃗    

∇ ×𝐻⃗⃗ = 𝑗𝜔[𝜀]𝐸⃗ 
 

∇ ∙ ([𝜀]) 𝐸⃗ = 0

∇ ∙𝜇𝐻⃗⃗ = 0

                                      

(5)

(6)
(7)

(8)

   

 

where: [𝜀] = [

𝜀𝑡 0 0
0 𝜀𝑡 0
0 0 𝜀𝑧

] is a uniaxial anisotropic permittivity.  

For TE0mn modes, the electric field 𝐸⃗  and magnetic field 𝐻⃗⃗  

vectors take the following form: 𝐸⃗ = [0,0, 𝐸𝜑], 𝐻⃗⃗ = [𝐻𝑟 , 𝐻𝑧 , 0]. 

It was also assumed that the non-zero components of these 

vectors are independent of the angle φ. 

We transform (5-8) using vector calculus and finally obtain (9): 

 

                         ∇(∇ ∙ 𝐸⃗ ) − ∇2𝐸⃗ = 𝜔2𝜇0[𝜀]𝐸⃗                               (9) 
 

The value of the electric field divergence is determined from (7). 

And we obtain (10) 
 

  ∇ ∙ ([𝜀]) 𝐸⃗  = 𝜀𝑡∇ ∙𝐸⃗  −𝜀𝑡 (1 −
𝜀𝑧

𝜀𝑡
)
𝜕𝐸𝑧

𝜕𝑧
                    (10) 

 

The left side of the above equation must be equal to zero (from 

(7)), so we can write (11): 
 

∇ ∙𝐸⃗  = (1 −
𝜀𝑧
𝜀𝑡
)
𝜕𝐸𝑧
𝜕𝑧

                                 (11) 

 

Substituting into (9) we get: 
 

      (1 −
𝜀𝑧

𝜀𝑡
)∇

𝜕𝐸𝑧

𝜕𝑧
− ∇2𝐸⃗ = 𝜔2𝜇0[𝜀]𝐸⃗                     (12) 

 

Writing (12) in a cylindrical coordinate system and using the 

properties of the Laplacian and taking into account the form of 

vectors 𝐸⃗  and 𝐻⃗⃗ , after simple transformations, we obtain (13): 
 

             
𝜕2𝐸𝜑

𝜕𝑧2
+
𝜕

𝜕𝑟
[
1

𝑟

𝜕

𝜕𝑟
(𝑟𝐸𝜑)] −

𝐸𝜑

𝑟2
+ 𝑘0

2𝜀𝑡𝐸𝜑 = 0          (13) 

 

where: 𝑘0 = 𝜔0√𝜀0𝜇0 =
2𝜋

𝜆0
. 

The equation (13) is solved separately in each layer of each 

of the region by using the method of separation of variables, and 

then the solutions are "stitched" on the borders of regions (r = 

R1, R2, R3…), ensuring continuity of tangential components.  

Assuming that in (13) 𝐸𝜑(𝑟, 𝑧) = 𝑈(𝑟) ∗ Φ(𝑧) , a system of 

two equations of a single variable is obtained: 
 

           

{
 

 
𝑑2Φ(𝑧)

𝑑𝑧2
+ [𝑘0

2𝜀𝑡 − 𝜆𝑚]Φ(𝑧) = 0                                (14)

𝑟2
𝑑2U(𝑟)

𝑑𝑟2
+ 𝑟

dU(𝑟)

𝑑𝑟
+ (𝜆𝑚𝑟

2 − 1)U(𝑟) = 0         (15)

  

 

Equation (15) is the first-order Bessel equation for 𝜆𝑚 > 0, 

and the first-order modified Bessel equation for 𝜆𝑚 < 0. Its 

solutions for 𝜆𝑚 > 0 are Bessel functions of the first kind - 

𝐽1(√𝜆𝑚𝑟) and Neuman functions (Bessel functions of the 

second kind) - 𝑁1(√𝜆𝑚𝑟). And for 𝜆𝑚 < 0. solutions of (15) 

are modified Bessel functions of the first kind - 𝐼1(√𝜆𝑚𝑟) and 

the second kind - 𝐾1(√𝜆𝑚𝑟). It should be noticed that for the I-

st region taking into account the Neuman function is not 

justified physically. 

In each layer of a given region, the tensor permittivity is 

constant and the solutions of (14) are the functions Φ𝑚(𝑧) 
which are a linear combination of trigonometric functions of the 

type sin(𝑣𝑚𝑖
𝑧)  and cos(𝑣𝑚𝑖

𝑧). Where:  𝑣𝑚𝑖
2 = 𝑘0

2 − 𝜆𝑚: 

If 𝑣𝑚𝑖
2 < 0, the trigonometric functions should be replaced 

with appropriate hyperbolic functions, i.e. sinh(𝑣𝑚𝑖
𝑧) and 

cosh(𝑣𝑚𝑖
𝑧).  
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Since the Φ𝑚(𝑧) functions must be defined over the entire 

height of a given region, appropriate continuity conditions must 

be ensured on the electrical walls and on the separation planes 

of individual layers, i.e. Φ−(𝑙𝑖) = Φ
+(𝑙𝑖)  and  Φ(0) = Φ(𝐿′). 

where: Φ−(𝑙𝑖), Φ
+(𝑙𝑖)  - are values of a function  on the left 

and right side of the boundary, and Φ(0),Φ(𝐿′). – are values of 

 on the lower and upper metal plate. 

The 𝐸𝜑 and 𝐻𝑧 field components in each region are a linear 

combination of waveguide modes, so the relationships for the 

electromagnetic field components can be written (assuming that 

the radius of the third area extends to infinity): 
 

𝐸𝜑
𝐼 (𝑟, 𝑧) = ∑

𝑎𝑚

√𝜆𝑚
𝐼
𝐽1 (√𝜆𝑖

𝐼𝑟)Φ𝑚
𝐼 (𝑧)

∞

𝑖=0

                                   (16) 

 

𝐸𝜑
𝐼𝐼(𝑟, 𝑧) = ∑[

𝑏𝑚

√𝜆𝑚
𝐼𝐼
𝐽1 (√𝜆𝑖

𝐼𝐼𝑟)

∞

𝑖=0

+
𝑐𝑚

√𝜆𝑚
𝐼𝐼
𝑁1 (√𝜆𝑖

𝐼𝐼𝑟)]Φ𝑚
𝐼𝐼 (𝑧)                      (17) 

 

𝐸𝜑
𝐼𝐼𝐼(𝑟, 𝑧) =  ∑

𝑑𝑚

√𝜆𝑚
𝐼𝐼𝐼
𝐾1 (√𝜆𝑖

𝐼𝐼𝐼𝑟)Φ𝑚
𝐼𝐼𝐼(𝑧)

∞

𝑖=0

                           (18) 

 

𝐻𝑧
𝐼(𝑟, 𝑧) =  

𝑗

𝜔𝜇0
∑𝑎𝑚𝐽0 (√𝜆𝑖

𝐼𝑟)Φ𝑚
𝐼 (𝑧)

∞

𝑖=0

                            (19) 

 

𝐻𝑧
𝐼𝐼(𝑟, 𝑧) =

𝑗

𝜔𝜇0
∑[𝑏𝑚𝐽0 (√𝜆𝑖

𝐼𝐼𝑟)

∞

𝑖=0

+ 𝑐𝑚𝑁0 (√𝜆𝑖
𝐼𝐼𝑟)]Φ𝑚

𝐼𝐼 (𝑧)                          (20) 

 

𝐻𝑧
𝐼𝐼𝐼(𝑟, 𝑧) =

𝑗

𝜔𝜇0
∑

𝑑𝑚

√𝜆𝑚
𝐼𝐼𝐼
𝐾0 (√𝜆𝑖

𝐼𝐼𝐼𝑟)Φ𝑚
𝐼𝐼𝐼(𝑧)

∞

𝑖=0

                   (21) 

 

where: 𝑎𝑚, 𝑏𝑚, 𝑐𝑚 and 𝑑𝑚 are complex constants, 
 

Due to the negligibly small values of the higher components 

of the series, the summation can be limited to a finite number of 

elements N. The coefficients 𝑎𝑚, 𝑏𝑚, 𝑐𝑚 and 𝑑𝑚 should be 

selected to ensure the continuity of the electromagnetic field at 

the boundaries of the regions, i.e. to: 
 

                             𝐻𝑧
𝐼(𝑅1, 𝑧) − 𝐻𝑧

𝐼𝐼(𝑅1, 𝑧) = 0                          (22) 

                             𝐸𝜑
𝐼 (𝑅1, 𝑧) − 𝐸𝜑

𝐼𝐼(𝑅1, 𝑧) = 0                          (23) 

                             𝐻𝑧
𝐼𝐼(𝑅2, 𝑧) − 𝐻𝑧

𝐼𝐼𝐼(𝑅2, 𝑧) = 0                        (24) 

                             𝐸𝜑
𝐼𝐼(𝑅2, 𝑧) − 𝐸𝜑

𝐼𝐼𝐼(𝑅2, 𝑧) = 0                         (25) 
 

In the case of a finite number of terms fulfilling the conditions 

of equality is impossible for all z. Therefore, these coefficients 

are determined from the condition that the mean square error 

(functional) component of the difference on either side of the 

boundary reached the minimum value. The corresponding 

functionals have the form (here written for the three regions): 
 

                    𝐹1 = ∫|𝐻𝑧
𝐼(𝑅1, 𝑧) − 𝐻𝑧

𝐼𝐼(𝑅1, 𝑧)|
2 𝑑𝑠

𝑆

                   (26) 

                    𝐹2 = ∫|𝐸𝜑
𝐼 (𝑅1, 𝑧) − 𝐸𝜑

𝐼𝐼(𝑅1, 𝑧)|
2
𝑑𝑠

𝑆

                   (27) 

                     𝐹3 = ∫|𝐻𝑧
𝐼𝐼(𝑅2, 𝑧) − 𝐻𝑧

𝐼𝐼𝐼(𝑅2, 𝑧)|
2 𝑑𝑠

𝑆

                (28) 

                     𝐹4 = ∫|𝐸𝜑
𝐼𝐼(𝑅2, 𝑧) − 𝐸𝜑

𝐼𝐼𝐼(𝑅2, 𝑧)|
2
𝑑𝑠

𝑆

                 (29) 

 

Functionals achieve these minimum values if and only if their 

derivatives with respect to unknown coefficients are equal to 

zero (Rayleigh-Ritz method). After differentiating 𝐹1 with 

respect to 𝑎𝑚, 𝐹2 with respect to 𝑏𝑚, 𝐹3 with respect to  𝑐𝑚 and 

𝐹4 with respect to 𝑑𝑚, a system of 4N linear equations is 

obtained, allowing the determination of the unknown constants 

𝑎𝑚, 𝑏𝑚, 𝑐𝑚 and 𝑑𝑚 (30).  
 

                                             𝑊̃ [

𝑎1
𝑎2…
𝑑𝑚

] = 0                                      (30) 

 

This system has a non-zero solution if and only if its 

determinant is equal to zero  
 

                                              𝑑𝑒𝑡𝑊̃ = 0                                        (31) 
 

The matrix 𝑊̃  with dimensions 4Nx4N, for three regions, has 

the form (32), and its elements are presented in Table I. 
 

                               𝑊̃ = [
𝑈1 𝑈2 𝑈3 𝑈4
𝑈5 𝑈6 𝑈7 𝑈8

]                            (32) 

 

where: U4 and U5 are matrices with zero elements, and the 

remaining matrices have the form of 𝑈𝑖 = [𝑣𝑖1 𝑣𝑖2]
𝑇. 

 
TABLE I 

ELEMENTS OF W MATRIX FOR THREE REGIONS 
 

i 𝑣𝑞𝑘
𝑖1 (𝑞, 𝑘 = 1,2,…𝑁) 𝑣𝑞𝑘

𝑖2 (𝑞, 𝑘 = 1,2,…𝑁) 

1 𝐽0(ℎ𝑖
𝐼𝑅1)〈Φ𝑘

𝐼 (𝑧)Φ𝑞
𝐼∗(𝑧)〉 

𝐽1(ℎ𝑖
𝐼𝑅1)

ℎ𝑖
𝐼

〈Φ𝑘
𝐼 (𝑧)Φ𝑞

𝐼𝐼∗(𝑧)〉 

2 𝐽0(ℎ𝑖
𝐼𝐼𝑅1)〈Φ𝑘

𝐼𝐼(𝑧)Φ𝑞
𝐼∗(𝑧)〉 

𝐽1(ℎ𝑖
𝐼𝐼𝑅1)

ℎ𝑖
𝐼𝐼

〈Φ𝑘
𝐼𝐼(𝑧)Φ𝑞

𝐼𝐼∗(𝑧)〉 

3 𝑁0(ℎ𝑖
𝐼𝐼𝑅1)〈Φ𝑘

𝐼𝐼(𝑧)Φ𝑞
𝐼∗(𝑧)〉 

𝑁1(ℎ𝑖
𝐼𝐼𝑅1)

ℎ𝑖
𝐼𝐼

〈Φ𝑘
𝐼𝐼(𝑧)Φ𝑞

𝐼𝐼∗(𝑧)〉 

6 𝐽0(ℎ𝑖
𝐼𝐼𝑅2)〈Φ𝑘

𝐼𝐼(𝑧)Φ𝑞
𝐼𝐼∗(𝑧)〉 

𝐽1(ℎ𝑖
𝐼𝐼𝑅2)

ℎ𝑖
𝐼𝐼

〈Φ𝑘
𝐼𝐼(𝑧)Φ𝑞

𝐼𝐼𝐼∗(𝑧)〉 

7 𝑁0(ℎ𝑖
𝐼𝐼𝑅2)〈Φ𝑘

𝐼𝐼(𝑧)Φ𝑞
𝐼𝐼∗(𝑧)〉 

𝑁1(ℎ𝑖
𝐼𝐼𝑅2)

ℎ𝑖
𝐼𝐼

〈Φ𝑘
𝐼𝐼(𝑧)Φ𝑞

𝐼𝐼𝐼∗(𝑧)〉 

8 𝐾0(ℎ𝑖
𝐼𝐼𝐼𝑅2)〈Φ𝑘

𝐼𝐼𝐼(𝑧)Φ𝑞
𝐼𝐼∗(𝑧)〉 

−𝐾1(ℎ𝑖
𝐼𝐼𝐼𝑅2)

ℎ𝑖
𝐼𝐼𝐼

〈Φ𝑘
𝐼𝐼𝐼(𝑧)Φ𝑞

𝐼𝐼𝐼∗(𝑧)〉 
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where: 〈Φ𝑘
(𝛼)(𝑧)Φ𝑞

(𝛽)(𝑧)〉 = ∫ Φ𝑘
(𝛼)(𝑧)Φ𝑞

(𝛽)(𝑧)
𝐿′

0
𝑑𝑧, and ℎ𝑖

(𝛼) =

√𝜆𝑖
(𝛼)

. 

III. RESULTS AND DISCUSSION 

This section presents the results of the calculations of the 

resonant frequency of the TE0mn modes of a resonator in the 

form of a cylinder and a cone. The simulations started with 

determining the resonant frequencies of various TE0mn modes 

for a cylindrical resonator placed in a metal cavity with a height 

equal to the height of the resonator and a radius much larger than 

the radius of the cylinder. The geometric dimensions and 

electrical parameters of the resonator were identical to those in 

[21], i.e. height hd = 8.998 mm, diameter rd = 9.995 mm, relative 

longitudinal electrical permittivity εz = 9.389, transverse 

permittivity εt = 11.478. For such a structure, determining the 

resonant frequency is very simple and does not require advanced 

methods. The results of calculations are shown in Table II. This 

table also presents the calculation results for two other structures 

and the results presented in the literature. The results are almost 

identical. 

 
TABLE II 

THE COMPARISON OF RESONANT FREQUENCIES OF TE011 MODE [GHZ] 
 

Sample 
Publication 

[xy] 
Measurement 

This method 

1 9.720     [21] 9.714 9.719 

2 10.704   [21] 10.706 10.704 

3 8.5405   [18] - 8.5421 

Sample no. 1: diameter D = 9.985 mm, height L = 9.998 mm, t 

=9.389, z =11.478, centrally placed within a metal cylinder having 

a diameter d = 15.5 mm, height h = 13 mm with stands of the same 

diameter as the sample located on both sides of the sample, the 

height l1 = 1.501 mm and a relative permittivity 1 =1.031. 

Sample no. 2: diameter D = 10.002 mm, height L = 5.002 mm, t 

=9.399, z =11.553, located centrally in the cylinder identical as for 

sample no.1 with stands of the same diameter as the sample located 

on both sides of the sample, the amount l1 = 3.999 mm and a relative 

permittivity 1 =1.031. 

Sample no. 3: diameter D = 37.7 mm, height L = 9.4 mm, t =4.43, 

z =4.59, centrally placed within a metal cylinder having a diameter 

d = 140 mm and height h = 9.4 mm 

 

For the structure presented earlier, the resonant frequencies 

of the TE0mn modes were calculated by changing the elements 

of the permittivity tensor. The results are presented in Figs 2 and 

3. As can be seen from Fig.2, the resonant frequencies do not 

change as a function of the longitudinal component of 

permittivity εz. This result is correct because the 

electromagnetic field components for these modes do not 

depend on εz. 
 

 
Fig. 2. Resonant frequency as a function of the permittivity εz for uniaxial 

anisotropic dielectric cylindrical resonator obtained by means of radial modes 

matching method (RMM) 

 

Fig. 3. Resonant frequency as a function of the permittivity εt for uniaxial 
anisotropic dielectric cylindrical resonator obtained by means of radial modes 

matching method (RMM) 

For comparison, Figs 4 and 5 show the results obtained using 

the CST electromagnetic simulator. As you can see, the results 

are almost identical. Figs 6 and 7 show the relative difference in 

frequencies calculated by both programs - Rf. This difference 

was defined as (33): 
 

𝑅𝑓 =
𝑓𝑅𝑀𝑀−𝑓𝐶𝑆𝑇

𝑓𝐶𝑆𝑇
∙ 100 [%]           (33) 

 

where: Rf – the relative difference of frequencies, fRMM – the 

resonant frequency obtained by means of the radial modes 

matching method, fCST – the resonant frequency obtained by 

means of the CST electromagnetic simulator. 

As seen in Fig. 6, Rf varies from 0 to 0.3 percent with the 

change of εz and from 0 to 0.7 percent as a function of εt for 

TE011 mode. For other modes, the Rf coefficient does not exceed 

1 percent. This is a very good agreement between the obtained 

results, especially considering the relationship between the 

resonant frequency calculated by the CST simulator and the 

place of resonator excitation. 
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Fig. 4. Resonant frequency as a function of the permittivity εz for uniaxial 

anisotropic dielectric cylindrical resonator obtained by means of CST 

simulator 

 

Fig. 5. Resonant frequency as a function of a permittivity εt for uniaxial 
anisotropic dielectric cylindrical resonator obtained by means of CST 

simulator 

 

Fig. 6. The coefficient Rf as a function of the permittivity εz for uniaxial 

anisotropic dielectric cylindrical resonator 

 

Fig. 7. The coefficient Rf as a function of the permittivity εt for uniaxial 

anisotropic dielectric cylindrical resonator 

In the radial modes matching method, a complex structure 

can be obtained by dividing it into regions and layers that are 

cylinders and rings. This division for a cone shaped resonator is 

shown in Fig. 8. 

 

Fig. 8. The approximation of the conical resonator in the radial modes 

matching method 

According to the rules of the radial modes matching method, 

the structure was divided into N + 1 regions, with N regions 

creating the space of the cone. The radii of the regions were 

determined assuming that the height of the cone will be divided 

into N parts (hN) and that each region will have a height equal to 

the multiple of the value hN. Hence, the dependence on the radius 

of a given region is obtained in the form (34): 
 

      𝑅𝑖 = 𝑅𝑐 − (𝑁 − 𝑖 − 1) ∙ ℎ𝑁 ∙
(𝑅𝑐−𝑅1)

𝐿𝑐−ℎ𝑁
           (34) 

 

where: Ri – is a radius of i region, N – numbers of regions in a 

cone, Rc – the radius of base of a cone, R1 – the radius of first 

region, Lc – the height of a cone, hN=Lc/N. 
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An example of the values of the heights and radii of the regions 

of the approximated conical resonator divided into 30 regions is 

presented in Table III. 
 

TABLE III 
AN APPROXIMATION OF A CONE IN PRESENTED METHOD 

 

i Radius [mm] Height [mm] 

1 0.05 9.998000000 

2 0.220431034 9.664733333 

3 0.390862069 9.331466667 

4 0.561293103 8.998200000 

5 0.731724138 8.664933333 

6 0.902155000 8.331666667 

7 1.072586000 7.998400000 

8 1.243017000 7.665133333 

9 1.413448000 7.331866667 

10 1.583879000 6.998600000 

11 1.754310000 6.665333333 

12 1.924741000 6.332066667 

13 2.095172000 5.998800000 

14 2.265603000 5.665533333 

15 2.436034000 5.332266667 

16 2.606466000 4.999000000 

17 2.776897000 4.665733333 

18 2.947328000 4.332466667 

19 3.117759000 3.999200000 

20 3.28819000 3.665933333 

21 3.458621000 3.332666667 

22 3.629052000 2.999400000 

23 3.799483000 2.666133333 

24 3.969914000 2.332866667 

25 4.140345000 1.999600000 

26 4.310776000 1.666333333 

27 4.481207000 1.333066667 

28 4.651638000 0.999800000 

29 4.822069000 0.666533333 

30 4.992500000 0.333266667 

 

The accuracy of mapping the conical resonator by such 

division depends on the number of regions. Therefore, 

calculations were carried out for various numbers of regions in 

order to determine the number of ones enabling a sufficient 

approximation of the cone. The results of these calculations are 

presented in Figs 9 and 10. 

Rk values defined as the relative difference in the resonant 

frequency for a specific value of the number of regions in 

relation to the maximum number of these regions – 50, are 

described by the formula (35): 
 

    𝑅𝑘 =
𝑓𝑖−𝑓𝑚𝑎𝑥

𝑓𝑚𝑎𝑥
∙ 100 [%]            (35) 

 
 

where: Rk – the relative difference of frequencies, fmax – the 

resonant frequency obtained for maximum number of regions, fi 

– the resonant frequency obtained for i region. 

 

 
Fig. 9. Resonant frequencies as a function of number of regions in radial 

modes matching method (RMM) 

As can be seen from Fig. 9, as the number of regions 

increases, the values of the calculated resonant frequencies 

stabilize towards the asymptotic value. This is clearly visible in 

Fig. 10, where for the number of regions above 30, changes in 

resonant frequencies do not exceed 0.1 percent for all TE0mn 

modes. 

Similarly to the cylinder, calculations were made for a conical 

resonator (N = 40) as a function of both permittivities for five 

TE0mn modes. The results are presented in Figs 11 and 12. 

 

 
Fig. 10. Relative difference Rk as a function of number of regions in radial 

modes matching method (RMM) 
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Fig. 11. Resonant frequency as a function of the permittivity εz for uniaxial 

anisotropic dielectric cone shaped resonator obtained by means of radial 

modes matching method (RMM) 

 

Fig. 12. Resonant frequency as a function of the permittivity εt for uniaxial 

anisotropic dielectric cone shaped resonator obtained by means of radial 

modes matching method (RMM) 

Calculations were also made using the CST simulator. The 

results are presented in Figs 13 and 14 along with calculations 

using the radial modes matching method. 
 

 
Fig. 13. Resonant frequency as a function of the permittivity εz for uniaxial 

anisotropic dielectric cone shaped resonator obtained by means of radial 

modes matching method (RMM) and CST simulator 

 
Fig. 14. Resonant frequency as a function of a permittivity εz for uniaxial 

anisotropic dielectric cone shaped resonator obtained by means of radial 

modes matching method (RMM) and CST simulator 

Figs 15 and 16 show the relative difference Rf calculated by 

both programs for cone shaped resonator as a function of εz and 

εt.  
 

 
Fig. 15. The coefficient Rf as a function of a permittivity εz for uniaxial 

anisotropic dielectric conical resonator. 

 

 
Fig. 16. The coefficient Rf as a function of a permittivity εz for uniaxial 

anisotropic dielectric conical resonator. 
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As seen, Rf varies from -0.1 to -0.07 percent with the change 

of εz and from -0.5 to 0.3 percent as a function of εt for TE011 

mode. This is a very good agreement between the obtained 

results, especially considering the fact that the cone in the radial 

modes matching method was approximated using a cylinder and 

rings. 

CONCLUSION 

The paper presents the application of the radial modes 

matching method to determine the resonant frequencies of 

TE0mn modes in a multilayered resonant structure containing 

uniaxial anisotropic materials. The solution of Maxwell's 

equations for TE0mm modes is presented. A computer program 

was developed and launched enabling the analysis of structures 

composed of a maximum of 50 regions and 50 layers in each. 

This allows you to analyze complex structures such as a cone, a 

sphere, etc. The work deals with a cone shaped resonator as an 

example structure. The results of calculations as a function of 

the longitudinal and transverse components of tensor 

permittivity are presented, comparing them with the results 

obtained using the CST electromagnetic simulator. An analysis 

of the influence of the number of regions on the accuracy of 

calculations of resonant frequencies in the conical resonator was 

carried out. The obtained results allow the conclusion that the 

radial modes matching method can be successfully used to 

analyze axisymmetric structures with complex shapes. 
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