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ANDRZEJ ZORYCHTA *

ROCK BURSTS IN THE LIGHT OF THE CATASTROPHE THEORY

ZJAWISKO TAPNIECIA W SWIETLE TEORII KATASTROF

Rock burst phenomenon because of its jump like character may be considered as a process
of the loss of stability and using the catastrophe theory it is possible to define conditions of such
instability. Analysis of some geomechanical models shows two mechanisms of rock burst: rock
burst as the catastrophic jump or rock burst as a loss of bearing capacity of a seam. Conditions
of rock burst existence were obtained for three and uni-axial stress states and additionally for
a case when roof and floor rocks were considered as the rheological medium.
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W polskim gornictwie wegla kamiennego oraz rud miedzi tapania sa gléwnym
zagrozeniem naturalnym, a wiedz¢ o warunkach ich powstania trudno uznawac za komplet-
na; odnosi si¢ to zarowno do problemu genezy tego zjawiska, jak tez zagadnien pro-
gnozowania i zwalczania. Z geomechanicznego punktu widzenia zasadnicza cecha tapnigcia
jest nagle = skokowe przejscie z jednego stanu réwnowagi do drugiego, co oznacza, 7ec
tapnigcie mozna utozsamia¢ z procesem utraty statecznosci skal otaczajacych wyrobisko,
a jako kryterium przyjmowac¢ warunki niestatecznosci rozwiazan opisujacych zachowanie si¢
odpowiednich modeli geomechanicznych. Metoda pozwalajaca na analizowanie warunkow
powstawania skokowych zmian stanu rownowagi jest teoria katastrof. Poniewaz metoda
energetyczna moze by¢ wykorzystywana do opisu zmian zachodzacych w o$rodku odksztal-
calnym, totez akumulowana w odpowiednich uktadach geomechanicznych energi¢ przyjeto
do analizy istnienia przemian katastroficznych.

Analiz¢ fizycznej strony procesu oparto o mozliwie proste geomechaniczne modele
uktadu zbudowanego z polaczonych szeregowo clementow liniowo odksztalcalnych (w tym
takze cechujacych sig wlasciwosciami reologicznymi), ktore charakteryzowaly warstwy
stropowe i spagowe oraz z nieliniowo odksztalcalnej calizny. Na podstawie analizy przemian
energetycznych  zdefinowane  zostaly  warunki  wystapienia  niestatecznosci  (czyli
tapnigcia), a mianowicie: tapnigcie wskutek przeskoku lub tapnigcie wskutek utraty nosnosci.
Na podstawie otrzymanych warunkéw wykazano, ze:
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1. Zjawisko utraty statecznosci utozsamiane z procesem tapnigcia (dla obu jego
mechanizmow) nie jest wylacznie cecha jednoosiowego stanu naprezenia, lecz rOwniez moze
zachodzi¢ dla stanow trojosiowych.

2. Z punktu widzenia mozliwosci wystapienia tapnigcia najbardziej niekorzystnym jest
jednoosiowy stan naprezenia, co wynika z dwoch przyczyn:

— niezaleznic od mechanizmu stan jednoosiowy jest najmniej chlonny energe-
tycznie,

— dla jednoosiowego stanu naprezenia maksymalne wartosci modutow poznisz-
czeniowych decydujacych o wystapieniu niestatecznosci sa wigksze niz dla stanow troj-
osiowych, a zatem istnieje wigksze prawdopodobienstwo wystapienia przeskoku.

3. Wystepowanie skokowych zmian stanu rownowagi jest cecha uktadu, a konkretnie
istnieniem okreslonych relacji migdzy wlasnosciami odksztalceniowymi warstw stropowych
1 spagowych oraz pozniszczeniowymi whasnosciami poktadu (Scisle rzecz biorac elementu
ulegajacego zniszczeniu). Z tej przyczyny tapiacym nie moze by¢ wegiel, czy (w przypadku
gornictwa rud miedzi) okreslona skata; zatem pojecie naturalnej sktonnosci skaty (wegla) do
tapan, ktore wynika ze stanu wiedzy sprzed ponad ¢wier¢ wicku, nie majac zadnego
fizykalnego uzasadnienia jest aktualnie anachronizmem.

Z punktu widzenia minimalizacji wielkosci zagrozenia tapaniami ze wszech miar
korzystne sa dzialania wykonywane w utworach stropowych lub spagowych prowadzace do
uaktywniania si¢ w nich procesow dyssypacyjnych. Dzigki temu zmniejsza si¢ zdolnos¢ tych
utworow do oddawania energii 1 w efekcie moze dojs¢ do transformacji uktadu z tapiacego
W nietapiacy.

Stowa kluczowe: geomechanika, reologia, tapania.

1. Introduction

The first works which attempted to define the conditions for potential rock burst
occurrence were phenomenological rock burst theories (Parysiewicz, 1967) providing the
fundamental relations based mainly on the observations made in mines. These
phenomenological theories were marked with certain verbalism — i.e. the absence of
quantitative criteria, hence they were of little practical use in mining where quantitative
prognoses are required. On the other hand they may be used as the basis for evaluating
the theories which give the quantitative criteria for rock burst occurrence. Following the
assumption that one consequence of rock bursts (unlike the explosions within the strata)
is destruction of mining workings, the phenomenological theories (Filcek et al., 1984,
Parysiewicz, 1967) allow to distinguish:

a) Rock bursts due to stress concentration, being the consequence of:

— appearance of the fracture zone in the part of seam adjacent to the workings,

— ability of floor, roof and virgin rock to accumulate the sufficient amount of
elastic energy,

— specific relations between the stress — strain characteristics and the geometry
of rock surrounding the excavations.

b) Rock bursts due to dynamic loading, which may occur in certain conditions:

— appearance of the fracture zone in the part of seam adjacent to the workings,



— ability of floor, roof and virgin rock to accumulate the sufficient amount of
elastic energy,

— there are specific relations between the stress-strain characteristics and
geometrical parameters of rock round the excavations,

— occurrence of mining tremor of high seismic energy,

— the source of mining tremor should be near the excavations since the kinetic
energy reaching the excavation depends on its distance from the source.

In the light of geomechanics, the distinctive feature of rock burst is a sudden, violent
transition from one state of equilibrium to another. According to the definition (Filcek at
al.,, 1984) — which is our starting point — a rock burst is “a physical explosion within
the strata round the excavation leading to its failure”, and “the physical explosion is the
process of rapid change of the state of equilibrium requiring mechanical work and
accompanied by acoustic effects” (Leksykon, 1984). Accordingly, rock bursts are
associated with the loss of stability of rocks surrounding the excavation (Salamon, 1970,
Zorychta, Kileczek, 1998, Zorychta, 1984, Zorychta, 1988), and the conditions for
instability of solutions describing the geomechanical models can be used as the rock
bursts criteria.

The method allowing to analyse the conditions for violent changes of system
equilibrium (it follows from the definition that a rock burst is such an violent change) is
the catastrophe theory (Awrejcewicz, 1996, Geresz, 1980, Poston, Steward, 197§,
Thompson, 1982), which claims that for the function @(x,,x,,..,x,) describing the

physical system there exists a critical point wu(x,,,...x, ) if
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then it is named the degenerated critical point or the catastrophe point. For the function
of one variable @ (x) the condition for the existence of a catastrophe point (meaning the
possibility of violent transitions from one state of equilibrium to another) is given by the
system of equations:

dd (x) d*®(x)
= d
dx ol dx?

The mechanics of deformable bodies offers a number of methods to describe the
changes due to outside interactions. One of these is the energy- based method, where
the state of the system is defined by the amount of accumulated energy, which
means that energy may be the function analysed to find whether a catastrophe point is
possible.



2. Geomechanical model of rock burst systems

The analysis of the physical aspects of the process is confined to the simplest model
of the system (Fig. 1) made of linearly deformable roof and floor strata (S) and

non-linearly deformable unmined coal seam (N),

where the vertical stress — strain relations is given by the function o, = f(e,,7,)
(Fig. 2).
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Fig. 1. The scheme of the geomechanical model for three-axial state of stress

Fig. 2. Vertical stress-strain relations for the non-linearly deformable element in the three-axial state of

stress
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The results of laboratory tests (Zorychra, 1988) indicate that for the function f{(,,,) we
can assume

— for 0< e, < g, (n,): MZO (1)
de,
— for ¢,(n,) <e, < o0: O—f(flﬁ'i) <0 2)
de,
0f (&,
—for0<8n<oo:M>0, (3)
ony
where:
& (n,) — strain value at which failing begins — corresponding to the state of

stress described with the parameter 7,
When these two elements are connected in series, the following relations will be valid:

o, =0, =0,
o, o9, o0,

o0~ o T “)

&, = ETE§,
o, o, o,
6t(i) a[(l) at(l) :

Energy accumulated in the system considered here is equal to:

&n

+ J[f(f, M) —p.]d¢, 6)

€no

Aleyn,) = 4[“8"’2" 'ngZ]

where:
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E,.,. E,, — modulus of elasticity for the roof and floor, respectively,
v v, — Poisson’s ratio for the roof and floor, respectively.
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Considering the form of the conditions (8) and (10) we have to analyse three
situations:
1. When we assume that for ¢, (#,) <e¢, < co the following inequality is satisfied:

[f(gn’nn)—pz] =0, (11)

the co-ordinate {¢, 7, } of the catastrophe point can be obtained from the system of
equations:

1 0 :
E .Of(sa"k n"k)+1 = O,
Sk €
~2 12
C’“‘f(gnka rlnk) -0 ( )
0e, 0n, '

The very existence of the catastrophe point {¢, .7, } indicates that there might be
sudden, violent changes of the state of equilibrium of the system, furthermore, those
changes will appear in the post-failure regime of the stress-strain characteristics
€y, > &4 (71,,)- Such instability is called a catastrophic jump, and the violent changes of the
state of equilibrium will proceed for 0 < 1, < #,,; it may also occur for three-axial stress
states. We have to bear in mind that the occurrence of a catastrophic jump depends on
the properties of the system {f(z,,,), E,}. Accordingly, a whole system may be prone to
bursts, while separate elements of the system never have that property.

2. If we assume that for ¢, (n,) <e¢, <oo

1 0f(ens 1)
E, 0O¢

S n

+1>0, (13)

hence for the critical point:

f(gn,,7 r]no)_pz = 07

y :_[MT.[LMHT, (14)

arln ES 68"

which means that:

A7) < 0. (15)

In this case the critical point {¢, ,#, } is not the catastrophe point, therefore the state of

Ny

equilibrium of the system may not undergo and rapid, violent changes. However, as:

0A (e, . Mn,) i

Os, (16)

Ae,  M,) <0,
the energy, which the system can accumulate, reaches its peak value at the critical point
&, > &,(n,) As a result, for the strains ¢, > ¢, there is loss of stability due to the fact
that the external energy supplied to the system is greater than the system can absorb.
This type of instability will be called the loss of a bearing capacity of the system.
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3. If we assume that for ¢, (1,) <&, < oo the following inequalities are satisfied:

S(Ews 1) —p- >0, (17)
1 6f(l‘:n’r]n)

= Ml o 4 1
E o +1>0, (18)

s n

then

OA (En, M)

0. (19)
¢

That means that a critical point (and the catastrophe point) will not exist in this case. In
other words, regardless of the value of the supplied energy no loss of stability will occur
because the energy absorbed by the system is the increasing function of strain. In this
case no rock burst will occur.

As in the catastrophe theory the conditions for instabilities — the necessary
condition for rock bursts are defined, we can clearly see two mechanisms of this process:

— rock bursts due to catastrophic jumps,

— rock bursts due to the loss of bearing capacity of the seam.
The uni-axial case (Fig. 3) where 7, =0 (the element non-linearly deformable,
characterising the properties of the seam will be referred to as the pseudo-elastic element)
will be thoroughly analysed, especially in view of the physical aspects.
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Fig. 3. The scheme of the system for uni-axial state of stress

For the system whose each element is in uniaxial stress state:

d%g") = [f(ﬁ,,)—pz]'[%i"—)Jr 1], 20)
dz;i}(;,,) = /) [%i") +1 } + [fle)—pJ- f,;{:”) : 1)
where:
df(z)

1) =L,

‘n



df(e,)
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As the conditions defining the ocurrence of the catastrophe point have the form:

dA(e,) d*Ale,)
28 _ 0 and D _g
de e de?

n

Accordingly, at that point:

S

[f(sn)—p:]'[%g")ﬂ} w1,

f/(g")'[j%gf)“}f[f(%)—p:)f%g") =1

s s

Three cases will be considered here, as in previous sections.
1. If we assume that for ¢,  <e¢, < oo the inequality is satisfied (Fig. 4a):

& Enp4 €ns Eny G €ny<€n<
n
Es+f (€4} <0 Es+f(E) >0
L " Ry T
1 1
|
(I |
|
|
[ % [
|
[
15 | |
a) I i b) |
! |
! G -t (€, | CL=flEq)
| I v
p E |
B = e A P —— — b —
[ : ! i
! | |
e»’kr I':"p €nk & aﬂo 5kr E""n &n
Gn
Refrom momm = €n, © €y <=
Eg+ '(Eq) >0
f(En)-py >0
) )
€ G =tlEq)
| RF
| ¢
P, ey s s e e
Eno akr T E"

Fig. 4. Vertical stress-strain relation for uni-axial state of stress

(22)

(23)



fle)—p. >0, 24

then the system of equations allowing to determine the co-ordinates of the catastrophe
point {¢,, E,} have the form:

n

E,

f”(gﬂk) = 0

It follows from the first equation that the inequality f'(¢, ) < O must be satisfied for the
catastrophe point, hence the catastrophic jump may occur only in post-failure regime. It
can be demonstrated that for a catastrophe system the possibility for catastrophic jump
occurrence is not related to the catastrophe point only, but also to a certain range of
strain values: ¢, <¢, <e¢,, on the condition that:

+1=0,
(25)

ny

A
N +1=0, (26)

E, <E

Sp Sk

The changes of strain ¢, in the non-linear term present in the function of total strain are
presented in Fig. 5 while the stress variations o, are given in Fig. 6.

The processes taking place within the rock medium result from rock displacement due to
mining activities, accordingly we get the problem of kinematic disturbances [ 14], where
the total strain is a function of time ¢, = ¢,(t). Since these relations are valid:

de, _ f'e,)

= — —+— 1’
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Fig. 5. Vertical strain in the non-linear element as the function of the external strain
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Fig. 6. Vertical stress in the non-linear clement as the function of the external strain

&, _de, &,
dt  de_ dt’
dsz _ d(pl\([)
dr — dt

and additionally for the moment the catastrophic jump occurs the equation (26) is
satisfied, therefore we get:

. de,(1)
lim —= = 0. 7
5 e @

Accordingly, at the moment of the catastrophic jump the strain rate in the pseudo-elastic
element tends to infinity, the rate of total strain changes being still finite. We have to
emphasise that this condition (27) for a rock burst occurrence due to the catastrophic
jump may be used for analysing more complex geomechanical systems, such as
three-axial stress systems and systems involving rheological elements.

2. When we assume that for ¢, < ¢, < oo the following inequality (Fig. 4 b) is satisfied:

f'(e)
—24+1>0, 28
. + (28)
then at the point ¢, <e¢, <eg, :
fe,)=p.=0 (29)

and additionally:

Flen) [f (E) 1} <0. (30)
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As the result:

dA(e ”u) _ d*Ale,)
- 0 and 02

n

< 0. (31

Hence the point ¢, = ¢, 1is not a catastrophe point, in this case no catastrophic jump
may occur. However, at the point ¢, = ¢, the energy absorbed by the system reaches its
maximum value, so for the strains ¢, > ¢, there will be a loss of stability as the
absorbing ability of the system is thus exceeded. We have to emphasise that in this case
also the loss of stability occurs in the post-failure regime because ¢, > g,.

3. When we assume that for ¢, <, < co the following inequality (Fig. 4c) is satisfied:

f(gn)—pz > 07
1 df(e,)
hence:
dA
G g (33)
de,

then there will be no critical point (nor the catastrophe point). That means that
regardless of the actual amount of energy supplied to the system there will be no loss of
stability as the energy, wich the system can absorb, is the incresing function of strain.

Thus derived formulas define the necessary conditions for a rock burst explained by
the given mechanism. In the light of the sufficient condition for a burst, the external
energy supplied to the system must exceed the maximal energy the system can absorb for
the given mechanism, that is:

A, > Ap={i = p,n}, (34)

while the expressions defining the maximal energy have the form:
— for the catastrophic jump

Ao Ulhﬂhf4—fona p.lde, (33)

— for the loss of a bearing capacity
— 2 s
Lo LG Y e A R N P13 (36)
" 2E ‘
As the rocks possess certain properties of rheological media, let us consider the
system made of a pseudo-elastic element modelling the seam (N) and a rheological

elements (R) simulating the work of roof and floor strata — assuming that each elements
is in uni-axial state of stress.
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Fig. 7. The scheme of a system including a rheological element

The equation of state for the rheological element can be written as (Derski, Ziemba,
1968, Kleczek, 1994, Rabotnow, 1977):

t

-
= |¥,(0);4d 37
o) - [P0 &
0
That means:
do, ~ . de
@ Pog
where:
@ () — the function of stress relaxation
P(t)>0

After the transformations arising from the conditions (4), (5), we obtain:
dA (e,
U1 541 o)

P, (1)
T =) ot |+ ) -n 8

7,
As the system of equations determining the existence of the catastrophe point has the

form:
[f(en)—p-]- [é’(?f)) + 1} —0

ra e |+ De-pd -0

X0

de?

(39)

(40)

then, like before, we will consider two cases determining the possibility of a catastrophic
jump or the loss of bearing capacity.



16

1. When we assume that for ¢, <¢, < oo the following inequality is satisfied:

fle))=p.>0 (41)

then the system of equations allowing to obtain the co-ordinate of the catastrophe point
{€n> Py (0)} has the form:

' (En)

_End 11 =0

¥, () 42)
(e, ) =0

This case defines the possibility of a catastrophic jump occurrence. In the case of
a system including a rheological element we can demonstrate that a catastrophe jump
will occur when:

fim 2]
t=t, dt

2. When we assume that for ¢,  <¢, < oo the following inequality is satisfied:

J'(e)

=~ +1>0 43

() =
therefore the existence of a catastrophe point ¢, <e¢,=¢, is determined by the
equation:

f(gn,,)_pz =0 (44)
By virtue of:
7 % fl(gn,,)
f(e,) |:¢s(t)+l <0
we obtain
dA (Snn) d*4 (8,,")
dgn = 0 and —&;3— e 0 (45)

which means that the energy absorbed by the system at the point ¢, = ¢, reaches
its peak value, so the loss of stability due to the loss of bearing capacity is quite
possible.

Four models (Zorychta, 1988) are considered now to illustrate the possibility of
a catastrophic jump occurrence in systems including rheological elements.

— model consisting of the pseudo-elastic element and the elastic element connected
in series (Fig. 8a)

the seam: o, = f/(e,)

the roof: o, = E¢,
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Fig. 8. Rheological models of the system

f’(s,,) de, d(pk
I P
S

th tem: =
e system [ 5 "

— model consisting of the pseudo-elastic element and the Maxwell’s element
connected in series (Fig. 8b)

the seam: o, = f{e,)

do, de

the roof: as+7:5d~t = SSE
(@))%, @S (6 (e [wf(e)  |den _dow  d*o,
th : o J o) 18 Gn (N0 J Aol B0n) [ Be) o) g [P s 2 B
€ system [rs+ 5. a2 + . er + 3, + ot 0 +1, ar?

— model consisting of the pseudo-elastic element and the Kelvin’s element connect-
ed in series (Fig. 8c¢)

the seam: o, = f(¢,)

2 — Arch. Gornictwa
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de,
*dt

3.d*e 1(e,) de, do, 9. d*p,
th tem: —S——2 4|2y | = Tk 57 VR
© SYSIEM e +[ E,|d T d +ES dt?

S
— model consisting of the pseudo-elastic element and the Newton’s element
connected in series (Fig. 8d)

the roof: g, = E e + 3

the seam: o, = f(e,)

de

S

S dt

the system: e, + fe) _ do

the roof: g,= 39

dt 9, dt
where:
E; — modulus of elasticity,
3, — viscosity,
7, — relaxation time.

s

In numerical calculations the function is used which in qualitative terms
represents the results of laboratory tests (Zorychta, Kileczek, 1998):

f('gn) . RCE’L'eXp< . i)

Ekr Ekr
where:
R, — compressive strength,
&, < &, — pre-failure regime,
e, > ¢, — post-failure regime.

Several additional assumptions were made:

— system loading depends on time-variant total strain e_(¢), while:
dgz - d(tok - t
T g - coust

— the initial loading: p, =0,

— modulus of elasticity E, was chosen such that a catastrophic jump should
occur, in accordance with (26),

— to compare the results of these calculations it was assumed (Derski, Ziemba,

L

1968) that rszz—s for the Maxwell’s model.
S

We have to bear in mind, however, that the results of numerical simulation
shown in Fig. 9 and Fig. 10 should be considered only in qualitative terms, since the
calculations were done for the given form of the function f(¢,) and for subjectively
chosen rheological parameters (Kteczek, 1994). For practical reasons it is impossible
to present the exact quantitative relations as the geological structure of the rock is
very variable and the main aim was to present the phenomenon in qualitative terms.
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Fig. 9. Vertical strain in the non-linear element as the function of time for various rheological models
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Fig. 10. Vertical stress in the non-linear element as the function of time for various rheological models
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Analysing the results of numerical simulation we notice that:

— a catastrophic jump manifested by a violent change in strain (involving
a violent reduction of stress in the pseudo-elastic element) may occur not only when
the roof and floor are modelled as elastic elements, but also when those strata are
modelled as the Maxwell’s element,

— the occurrence of a catastrophic jump depends on whether the roof and floor
strata can immediately impart the energy they accumulated — such effects are not
present in Kelvin’s and Newton’s models as they do not have such property.

3. The influence of geomechanical factors on possibility of rock burst occurrence

Analysing the conditions for loss of stability determining two mechanisms of rock
bursts: rock bursts due to catastrophic jump and to the loss of bearing capacity we
have to consider certain problems:

1. The loss of stability identified as a rock burst (for both mechanisms) is not
a feature of the uni-axial stress state only; it may also occur for three-axial states
while the endangered stress states regime is given by the inequality:

0<n,<mn, {i=pn}

2. In the light of the possibility of rock burst occurrence the uni-axial stress state
seems most hazardous, for two reasons:

— regardless of the mechanism for the uni-axial state (for the same external
strain ¢_) energy absorption ability is smallest:

A oo =P

— for the uni-axial stress state the maximal values of post-failure moduli are
greater than those for three-axial states; hence the probability of a catastrophic jump
occurrence is greater, too:

0f(ens 1. = 0)

Oe,

< Amax
n;

=0

0
5 (f(cn:r]n> )
e

max max

n

3. Violent changes of the state of equilibrium (i.e. a rock burst due to a catastrophic
jump) is a property of the system — a definite relation between the deformability of
roof and floor strata and post-failure characteristics of the seam (the fracturing
element, to be more specific). Catastrophic jumps occur when floor and roof strata
impart the previously accumulated energy. Furthermore, we have to discuss the
term: “natural propensity of rocks (e. g. coal) to bursts” and resulting indices, such as
W, It must be pointed out that:

— the assumption that rock has a natural tendency to burst means there will
always exist a catastrophe point (or rather a catastrophe regime) on the stress-strain
characteristics, while the results of experiments performed on sedimentary rocks
using rigid testers reveal that such a point does not exist.
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— burst propensity indices for rock (or coal) are determined for the raising part
of the stress-strain characteristics, hence they are not related to post-failure
properties which determine rock burst occurrence.

4. A rock burst due to the loss of bearing capacity is not a natural property of rock
because the loss of stability is unavoidable for each rock subjected to loading such
that p, > R.(n,), provided the energy supplied to the system is more than can be
absorbed.

5. The condition for the existence of a catastrophe point allows to propose the index
of rock burst hazard due to catastrophic jump Q:

max

p ES
On that basis two cases can be distinguished:
Q,< 1 — systems not prone to catastrophic jump = burst-free systems,
Q,>1 — systems prone to catastrophic jumps = burst-prone systems.

The index value can be determined by way of laboratory tests, where we have to
obtain:

— post-failure properties of coal or the virgin ore rocks in copper mining; such
tests should be run using rigid testing machines,

— elasticity modulus of the roof and floor rock during the unloading phase.
6. With an eye to minimise the burst hazard, all activities performed in roof and floor
strata aimed to activate the dissipation processes are strongly recommended. As the
result, roof and floor strata capacity to impart energy is reduced, so a burst-prone
system may become burst-free. For example, when the elasticity modulus for the
unloading phase is increased (for instance when the structure of roof and floor rock is

destroyed), E, — o):
: f/(gn)
1 i1 =1
1m l: I +

E;— o s

That means that a rock burst due to a catastrophic jump will not occur; yet the rock
burst due to the loss of bearing capacity is still possible. Theoretically speaking,
similar effects are produced when rheological processes within the floor and roof
rocks are intensified (for instance when viscosity is increased).

4. Conclusions

Rock bursts are considered to be the major natural hazard in coal and copper
mining in Poland, while the knowledge of rock burst conditions is far from complete:
that refers both to the causes of burst processes as well as forecasting methods and
the ways to mitigation their impacts. These considerations (the paper was confined to
relatively simple geomechanical models) reveal that even for more complex geo-
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mechanical systems, which better simulate the actual mining conditions, it is still
possible to determine the criteria for the occurrence of rock bursts treated as the loss
of stability. That may lead to new methods to minimise the hazard.

One more thing calls for an explanation. As it was shown, a rock burst is the
result of energy transitions within the system made of the seam and the surrounding
rock; so the burst (because of the possibility of catastrophic jump) must involve the
whole system. Accordingly, there will be no burst of coal or a given rock in copper
mining — hence it will be necessary to update the regulations where we can find the
term “tendency of coal (rock) to bursts”. Let us conclude, then: the concept of
‘natural tendency of a given rock (coal) to bursts’ was introduced more than twenty
five years ago. It is not justified on the grounds of physics, so at present it becomes
an outdated term.
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