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Abstract. This study introduces a two-step reinforcement learning (RL) strategy tailored for "The Lord of the Rings: The Card Game", 
a complex multistage strategy card game. The research diverges from conventional RL methods by adopting a phased learning approach, 
beginning with a foundational learning step in a simplified version of the game and subsequently progressing to the complete, intricate game 
environment. This methodology notably enhances the AI agent’s adaptability and performance in the face of the unpredictable and challenging 
nature of the game. The paper also explores a multi-phase system where distinct RL agents are employed for various decision-making phases of 
the game. This approach has demonstrated remarkable improvement, with the RL agents achieving a winrate of 78.5 % at the highest difficulty
level.
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1. INTRODUCTION

Card games are rapidly gaining popularity, evidenced by the
increasing number of titles on platforms like Google Play,
App Store, and Steam. Market analyses [1] indicate a regular
growth of more than 10% per year in this segment. This surge
in popularity can be attributed to various features, including
deck building, short gaming sessions, and replayability, which
arise from random events occurring during gameplay. As a
result, card games can offer hours of entertainment for enthu-
siasts.

Modern artificial intelligence methods have been proven
to outperform humans in many tasks. However, card games
containing a high degree of randomness are still challeng-
ing. For example, the first AI agent capable of beating pro-
fessional players of no-limit Texas Hold’em was not created
until 2019 [2]. Collectible Card Game (CCG) is a class of card
games which allows the decks of cards to be redefined, which
requires significant adaptation from the player. The "Lord of
the Rings: Card Game" represents this type of card game, mak-
ing it an interesting research object.

A previous paper by the authors [3] demonstrated the suc-
cessful use of the Monte Carlo Tree Search method in the same
game. However, the results achieved at that time at the level of
40% wins could hardly be considered fully satisfactory. There-
fore, it was decided to try to use RL methods, as presented in
this article.

The primary innovation of this paper is its strategy for im-
plementing a two-step RL technique in the intricate and ran-
dom world of ”The Lord of the Rings: The Card Game”
(LOTRCG). The methodology tackles the game’s inherent
complexity by first learning the RL agent in a straightfor-
ward environment and then advancing to the complete diffi-
culty level. Exploring a multi-phase setup where various RL
agents specialize in distinct decision phases of the game repre-
sents a significant advancement in AI-driven strategy gaming.
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The paper comprises four main sections. Section 4. Rein-
forcement Learning Agent explores how the actor-critic model,
state encoders, and action decoders are applied in LOTRCG.
The study progresses to 5. Learning Strategies, which compare
approaches, such as one-step, two-step, and early-terminated
learning, highlight their effectiveness in the game’s challeng-
ing environment. A distinctive feature of this paper is the 6.
Multi-Phase Setup section examines the efficacy of single ver-
sus multiple RL agents during decision-making phases. The
paper ends with 7. Conclusions which recap the findings and
highlight the effectiveness of the two-step learning approach.

2. RELATED WORK

The AI algorithms detailed in this work fall into Reinforcement
Learning (RL), a branch of machine learning that relies on a
trial-and-error approach. The learning process involves the in-
teraction of an agent with its environment, where the agent
observes the game state and decides on appropriate actions.
These actions are implemented in the environment, which pro-
vides a reward in return. There are numerous examples of the
implementation of RL techniques in card games.

Three RL algorithms: Deep Q-Learning, A2C, and Proximal
Policy Optimization (PPO) were compared in the game Chef’s
Hat (Barros et al. [4]). Chef’s Hat is a competitive four-player
card game in which players try to become a chef. The game is
played in turns, in which each player decides whether to play
cards or fold. Due to the four-player nature of the game, it was
possible to experiment with different configurations of agents.
RL algorithms were challenged with random agents in direct
skirmishes and against a human player.

The PPO algorithm was applied to the DouDizhu game
(Guan et al. [5]). DouDizhu is a three-player game mixing
collaboration with competition. Two players have to cooperate
to defeat the third player. The authors developed a framework
called Perfect-Training-Imperfect-Execution (PTIE) based on
centralized training and decentralized execution of RL agents.
PTIE allows agents to train their policies on a game that is
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treated as perfect information. The policies are distilled in or-
der to play the actual game with imperfect information.

The usage of PPO was also investigated for a drafting phase
in collectible card games (Vieira et al. [6]). The methods built
a deck in three variants that differ in the representation of the
game state. The first variant based on the MLP network in-
cludes all previously selected cards into the state vector. In
the second, the leading role is played by the LSTM network,
which accumulates information about previous card choices
only based on the vector of cards currently available to the
player. Finally, the third option uses only the MLP network
with the same representation as the second option.

Zha et al. [7] developed an open-source platform to learn and
test reinforcement learning agents on card games. The plat-
form supports standard 52-card games like Blackjack, Texas
Hold’em, and also Chinese-originated games such as Mahjong
and DouDizhu. The authors test three algorithms on their plat-
form, such as Deep Q-Network, Neural Fictitious Self-Play,
and one outside RL such as Counterfactual Regret Minimiza-
tion.

To accelerate the learning process in Mahjong’s above-
mentioned game, a mirror loss function was proposed [8]. It
allows the RL agent to take mirrored actions in the mirrored
environment. This method limits the policy space during the
optimization process.

Yao et al. [9] propose a method of handling large action
spaces of the Axie Infinity card game. Axie Infinity is an on-
line competitive 2-player game in which players form a few
subsets of cards to defeat the opponent. Cards to a subset are
chosen based on Q-function approximation. The function in-
dicates the optimal decision from a restricted subset of actions.
The method can be applied to other card games with large ac-
tion spaces like DouDizhu or Hearthstone.

The performance of the RL agent for different state repre-
sentations in the game of Hearts was analyzed by Sturtevant
and White [10].

The Hanabi card game has been seen as a challenge to AI
in recent years [11]. Hanabi is a cooperative card game for 2-5
players. The game stands out for the way it handles imperfect
information. The player does not see his own cards; he can
only observe other players’ cards. To play the right card, the
player must get hints from other participants.

Recently Hanabi has drawn the attention of RL researchers.
Grooten [12] et al. compare different RL algorithms for Han-
abi. The algorithms include Proximal Policy Optimization
(PPO), Vanilla Policy Gradient (VPG), and Simple Policy Gra-
dient (SPG). VPG is an actor-critic method. It maintains sep-
arate neural networks for both policy and value function ap-
proximation. SPG uses only a policy network. The authors
analyze various aspects of the algorithm’s performance within
the game, such as learning curves and policy refinement over
episodes.

Other noteworthy applications of artificial intelligence algo-
rithms in card games can be found in the following papers:
Hanabi [13], Splendor [14], Leduc Hold’em [15] and Legends
of Code and Magic [16].

Fig. 1. An example game state at the Planning phase. The state fea-
tures imperfect information since the player does not observe cards in
the player’s deck and the encounter deck.

3. MULTISTAGE GAME

The Lord of the Rings: The Card Game (LOTRCG) is a
fantasy-themed, cooperative, collectible card game published
in 2011 by Fantasy Flight Games. The game is based on chal-
lenging adventures to complete a scenario. During the scenario
inspired by the famous J.R.R. Tolkien universe, a fellowship
led by the players encounters many adversities, and if they fail,
the scenario is lost. The game can be played in two variants:
solo or two-player cooperative. In LOTRCG, the players can
form their fellowship using a variety of decks. By default, the
core set features four decks, but a more appealing option is
building its own. The game is receiving positive reviews in
the card game community; however, they recognize its steep
learning curve.

An example of a game table view can be seen in Fig. 1.
The "Staging Area" cards represent the world of evil the player
(cards on the bottom) is fighting against. The game’s goal is to
complete a scenario, which means reaching a specified num-
ber of progress points throughout the game. During the sce-
nario, the player encounters objects, such as enemies or lands,
which hinder gaining progress points. These objects require a
player’s reaction. If an enemy appears, the player has to de-
fend himself; otherwise, he can lose his heroes or allies. If a
land card appears, the player can decide whether to explore it.
Leaving lands unexplored makes the scenario progress diffi-
cult.

A game round consists of eight phases (Fig. 2), start-
ing with the Resource phase, where players draw cards and
gain resources, followed by the Planning phase for card pur-
chases. During the Questing phase, players commit characters
to quests and face threats, and in the Travel phase, they can
explore lands. The Encounter and Defense phases involve en-
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Fig. 2. The sequence of activities that constitute one round of the
game. Activities are ordered in rule-based (blue), random events (vio-
let) and player decisions (orange). The bolded rect marks the moment
of determining game-end conditions.

gaging in fights with enemies, and players counterattack in the
Attack phase. The Refresh phase readies all characters and in-
creases the player’s threat level. The game’s outcome is deter-
mined during the Questing and Defence phases, where players
win by achieving quest points or lose if their threat level ex-
ceeds 50 or all heroes die.

The game difficulty could be controlled by the number of
points required for game success. The number 20 is the default
threshold specified by the game rule book. However, for this
article, the difficulty varied from 8 to 20 points.

The game includes many random events. Therefore, all tri-
als’ findings to evaluate the efficacy of agents reflect an average
of 10,000 games. All of the numerical experiments ran on a lo-
cal workstation with Intel Core i9-9960X CPU, 128 GB RAM
and GPU RTX 2060 Super.

4. REINFORCEMENT LEARNING AGENT

Reinforcement Learning has been a new trend in the develop-
ment of artificial intelligence in recent years. The concept is
based on the trial-and-error method [17], in which an AI agent
interacts with an environment. The AI agent is a decision-
making algorithm that takes specific actions based on obser-
vations. This action will be executed in the environment, and
a feedback signal (positive, negative, or zero) is sent to the
agent. RL differs significantly from other machine learning
techniques. RL agent does not operate on a static set of learn-
ing data but receives a feedback signal based on which it per-
forms the learning process. The feedback signal is irregular,

meaning positive or negative information may appear at differ-
ent time intervals. These features are ideally suited to strategy
games, where generating a large, representative set of static
learning data is impossible.

The basic concepts used in the context of reinforcement
learning are as follows:

• state (s): current game situation including all information
coming from the table and hand of the player (see Fig. 1),

• action (a): game action resulting from a decision-making
process,

• policy π(s): a function that maps state probability distribu-
tion over actions,

• reward (r): environment’s reaction to action,
• value function (v): represents a measure of how beneficial it

is for a player to be in a given state or state-action pair. Value
function for policy π can be described with the following
equations [17]:

vπ(s) = ∑
a

π(a|s)∑
s′,r

p(s′,r|s,a)[r+ γvπ(s′)] (1)

qπ(s,a) = ∑
s′,r

p(s′,r|s,a)[r+ γqπ(s′,a′)] (2)

where: vπ(s) - value function for state s, π(a|s) - probability
of action a in state s, p(s′,r|s,a) - probability of reaching
next state s′ and reward r by performing action a from state
s, γ - discount factor, vπ(s′) - value function for the next state
s′, qπ(s,a) - value function for the pair state s and action a,
qπ(s′,a′) - value function for the next state s′ and the next
action a′.

The objective of reinforcement learning is the maximization
of discounted reward in the long term [17]:

Qn+1 =
1
n

n

∑
i=1

Ri = Qn +
1
n
[Rn−Qn] (3)

This formula allows us to iteratively calculate the value func-
tion Qn+1 given its current value Qn and reward Rn. This goal
is achieved through Generalised Policy Iteration (GPI). GPI
consists of two steps: calculating the value function and mod-
ifying the strategy (policy improvement). The value function
can be calculated from the formulas (1) or (2) for each state and
action for low-complexity problems. However, approximation
methods such as linear or neural networks are employed for
large state spaces. Once the value function is obtained, the
strategy is updated according to the formula:

π(s)← argmax
a

∑
s′,r

p(s′,r|s,a)[r+ γvπ(s′)] (4)

The type of RL algorithm used in this paper is Actor-Critic
(AC). It approximates both the value function and the strategy.
The actor is responsible for estimating the probability distri-
butions of actions for a given strategy according to the equa-
tion [17]:

θθθ t+1← θθθ t +α[Rt+1 + γv(St+1,wwwt)− v(St ,wwwt)]
∇π(At |St ,θθθ t)

π(At |St ,θθθ t)
,

(5)
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Fig. 3. Example of the encoding scheme for the planning phase pre-
sented in Fig. 1. Cards in the player’s hand are Lorien Guide (id:3),
Northern Tracker (8), Wandering Took (9) and Gandalf (16). There are
three enemies in the staging area: Forest Spider (22), King Spider (28)
and Ungoliants Spawn (30). The last element of the vector is set to the
current resource pool of 5 points.

where θθθ and www are vector parameters of policy and value func-
tion respectively. The critic is responsible for the value func-
tion as follows:

wwwt+1←wwwt +α[Rt+1+γv(St+1,wwwt)−v(St ,wwwt)]∇v(St ,wwwt). (6)

To bring the RL learning model to LOTRCG, we had to cre-
ate different components, such as the underlying agent and the
environment, and auxiliary classes, such as the simulator and
the encoders. The simulator class exchanges info between the
agent and the environment. The agent receives observations
from the environment and decides what to do. The simulation
executes an action in the environment and receives a reward
and the subsequent observation. These and the current obser-
vation and action create an input vector for the agent. The
agent then undergoes a learning process with this input vector.

The experiments with partial rewards have shown a negative
effect on the final effectiveness of the model. Therefore, only
bivalent rewards were used (+1 - win, −1 - loss). This ensures
a neutral, stable learning process focused on a high winrate.

The above description is common to all implementations of
the RL algorithm. What distinguishes the different problems is
the communication scheme between the environment and the
agent. These are necessary to handle the input and output of
the neural network. This issue is described in the following
subsections: state encoding and action decoding.

A. State Encoders

Encoders handle the data flow from the environment to the
agent. They fetch data from the game model and embed it
in a feature vector. This vector then feeds the agent as a neural
network input. The process of state encoding is different for
the Planning and Questing phases.

The feature vector for the Planning phase consists of 33
items (Fig. 3):

• 17 binary vector defining ally cards in the player’s hand,
• 15 binary vector defining enemy cards in the staging area,
• an integer specifying the total resource pool available to the

player.

The feature vector for the Questing phase also relies on bi-
nary and integer variables, but it points to different cards and
statistics regarding a situation on the board as follows:

• Encoding type 0 - enemies in the staging area and round
number,

• Encoding type 1 - lands, enemies in the staging area and
round number,

• Encoding type 2 - enemies in the staging area and combined
threat,

• Encoding type 3 - enemies in the engagement area and com-
bined threat.

Every vector has 18 binary variables representing the player’s
cards: three for hero cards and 15 for allies. The remaining
features depend on a particular encoding scheme. The encod-
ing for the defense decision consists of a binary vector with
IDs for hero, ally, and enemy cards.

We investigated the effect of game state encoding type on ef-
ficiency in the Questing phase. Within four encodings, the best
winrate achieved type 2 (92.2%) followed by type 3 (80.7%).
Opposite to the remaining encodings (type 0 and 1), these two
observe the combined threat, which is a sum of the threat of
all cards in the staging area (yellow rectangle in Fig. 1). The
importance of the combined threat indicates that the RL agent
is learning the game based on a condensed observation since
the combined threat is a composite value that depends on the
cards in the staging area, either lands or enemies.

B. Action Decoder: Macroactions

Action decoders serve as middle-ware between the agent and
the environment. They receive an action from the agent and
translate it into an executable form suited for the environment.
In presented experiments, two forms of action are analysed: a
macroaction (abstract) or a direct card choice.

Macroactions offer a level of abstraction instead of picking
exact cards. It allows the agent to operate on a fixed number of
actions (choose a value for coefficient β ), making the size of
the decision space constant. This means that the output of the
neural network is a single number which is the value of the β

coefficient. The drawback of this approach is losing a degree
of freedom of choice during the decision process.

The proposed macroactions scheme is based on an idea to
define β , which could be understood as a choice of whether the
player’s strategy is to be more offensive or defensive. Weight-
ing coefficient β takes values from set {0.0, 0.2, 0.4, 0.6, 0.8,
1.0}.

For given value of β the cards c are sorted in descending
order according to value of f function:

f (c) =
β ∗ cw +(1−β )∗ cd

cc
(7)

where cw - card willpower, cd - card defense and cc is card cost.
When the ordering process is done, Planning phase cards are

acquired until the total resource pool is depleted.
For the Questing phase, a similar formula applies. Cards are

committed to the quest up to the combined threat level of the
Staging area.
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Algorithm 1 Direct Card Choice - Planning

Require: agent,env
substate← env.encodeStatePlanning()
while len(substate.cardsAvailable)! = 0 do

cardId← agent.actPlanning(substate)
env.applyPlanning(cardId)
substate← env.encodeStatePlanning()

end while

Fig. 4. Testing results of macro and direct agent setups learned at 8
difficulty points.

Table 1. An example planning action loop.

TableRes. PoolStaging AreaHand# Action

-522, 28, 303, 8, 9, 161 Play 9
922, 28, 303, 8, 16 32 Play 3

3, 922, 28, 308, 16 03 -

Algorithm 2 Direct Card Choice - Questing

Require: agent,env
state← env.encodeStateQuesting()
cardIds← agent.actQuesting(state)
env.applyQuesting(cardIds)

Table 2. Winrate for setup: direct AC agent at planning, direct AC at
questing and random agent at defence. Difficulty: 8 points.

winrate [%]encodinglearning ratenumber of neurons

9126e-470 .9
8828e-4100 .7
8337.5e-470 .7

looping workflow (Alg. 2). It begins with encoding a game
state. The action is a list of IDs of available cards - hero and
allies. Then, the action is applied to the environment. Follow-
ing the example, now the agent has three heroes (IDs: 0, 1, 2)
accompanied by four allies (IDs: 3, 5, 9, 10). Three enemies
(IDs: 22, 28, 30) are in the staging area. The agent decides to
commit (ids: 1, 3, 10) to the quest, leaving the rest (ids: 0, 2, 5,
9) for later phases, such as the defence or attack phase (phases
6 and 7 in Fig 2).

D. Hyper-parameter optimisation
The study used a three-layer MLP neural network, in which the
size of the input layer was related to the game state encoding
method used, while the size of the output layer was related
to the action decoding. Hyper-parameter optimisation involves
the number of neurons in the hidden layer and the learning rate.

Table 2 presents three networks which achieved the best re-
sults after optimisation. Two of them used the questing state
encoding type of 2, which allowed the winrate about 90%.

Networks with a minimum of 70 neurons in the hidden layer
are effective. Increasing the number of neurons may cause
overfitting, where the network only remembers specific actions
for given observations instead of generalizing them. A high
number of neurons can also lead to instability during the learn-
ing process.

Hyper-parameter optimisation consisted of 100 trials. Each
samples the search space, meaning the AI setup plays 10000
episodes to learn the RL agent. The evaluation function tracks
the best average reward from a recent 1000 episodes and
records it as the trial score.

5. LEARNING STRATEGIES

Initial attempts to learn the model to play at the normal diffi-
culty level (20) were unsuccessful. Simply changing the val-
ues of the hyperparameters and increasing the computational
budget had no effect. Hence, a step-by-step learning strategy
was developed, inspired by Curriculum Learning or Progres-
sive Learning concepts.

Curriculum Learning (CL) in machine learning mimics the
human educational approach of progressing from simple to
complex concepts [18]. Pioneered by Bengio et al. in 2009,

C. Action Decoder: Direct Card Choice

The direct method restricts the agent’s response to a two-point 
distribution of whether a card should be played. This query 
for neural network is repeated for all the cards available in 
the hand and the answer with the highest certainty is selected. 
These decisions are based on Planning substates. The deci- 
sions are executed in a loop until no cards are affordable for 
the agent (Alg. 1). The loop passes the current substate to the 
agent, which returns an action. The action has a form of ID 
of a card from the player’s hand. The last step of the loop is 
applying to the action to the environment.

  Table 1 presents an example loop execution. The agent has 
four cards in hand (IDs 3, 8, 9, and 16) and five tokens in the 
resource pool. Three enemies are in the staging area (IDs: 22, 
28, 30). He decides to play a card (ID:9) with a cost of 2 - 
it shows up on the table, and the resource pool gets updated. 
Then, the agent purchases a card (ID:3) with a cost of 3. The 
resource pool drops to zero, and the program breaks the loop. 
The agent’s cumulative action consists of cards with ID:9 and 
ID:3 played in those two iterations.

Direct actions at the Questing phase are processed in a no-
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CL structures the training of models by initially presenting
easier tasks or examples and gradually increasing complex-
ity [19]. This method has proven effective across various
domains, including object localization, detection, and neural
machine translation.

Progressive Reinforcement Learning (PRL) has demon-
strated significant potential in various domains, notably in rec-
ognizing actions in skeletal animation as illustrated by Tang et
al. [20]. Their method effectively samples frames from videos,
progressively selecting the most relevant ones in the animation
sequence, showcasing the adaptability of PRL in handling se-
quential data.

An RL agent learned in a simple environment can be used
for a new, more complex problem [21]. This progressive tech-
nique consists of two sequential phases. In the first, called ex-
perimentation, the agent solves a simple problem using vanilla
Q-Learning. Then, introspection is performed, which gener-
ates a symbolic representation of the solved problem. This
representation will then be used to gain knowledge of states
unexplored by the agent with increased difficulty in the next
experimentation phase. Prior knowledge gained from solv-
ing simple problems was also presented for classification tasks
such as image and audio recognition [22].

The solution presented in this paper can be classified as an
example of incremental learning. Preliminary research is based
on a single RL agent setup, which will be extended in the Sec-
tion 6. Multi-phase setup.

The learning process of a neural network is stochastic. This
is due to the random initialisation of the network weights
and the strongly random nature of the LOTRCG game. Two
cards draw events are in each game round (violet rectangles in
Fig. 2). This results in a learning process that is never repeat-
able.

The game’s difficulty affects the model’s ability to learn to
win. Figure 5 shows ten learning curves for three selected diffi-
culties of 1, 5, and 9 points. For the lowest difficulty (1 point),
the network only takes 500 episodes (full games) to reach a
high winrate. We observe large differences between the learn-
ing processes for a game with a difficulty of 5 points (Fig. 5b).
In most cases, after 2500 episodes, the average reward is at 0.0.
However, it should also be noted that the learning process went
practically perfectly in a few cases. Playing at a difficulty level
of 9 points is more challenging. As shown in Fig. 5c, only a
few learning processes can lead the network to positive results.
Further raising the difficulty strengthened this effect, and for a
game with a difficulty of 20 points, not a single win was ob-
served even after 20,000 episodes. This means that the network
has not even begun to learn.

A. One-step learning

If learning a network on a game of difficulty 20 has proved
impossible, using networks learned on lower difficulties is the
simplest solution. While these networks show good efficiency
on a simplified game, they may also prove helpful in a full-
difficulty game. The results of this experiment are shown in
Fig. 6. Learning was carried out on nine variants of game dif-

ficulty. To improve reliability, ten iterations of the learning
process of 1000 episodes were performed on each. Each net-
work was then tested on a game with a difficulty of 20. It can
be seen that only networks learned on difficulties 3 to 8 achieve
a win rate above 30%. The best result of 48% was achieved by
the network trained on difficulty 4.

B. Two-step learning

If single learning has proven unsuccessful, one alternative is
to split the learning process into two steps. During the first
step, the network would learn on a simplified difficulty; in
the second step, it would learn on the full difficulty. How-
ever, the query remains as to the optimal threshold for this type
of division. Efficient computation is crucial, considering that
the network learning tasks in the RL model are highly time-
consuming. One experiment can take several days to complete.

For a complete two-step learning, there are nine attempts
at learning the network with reduced difficulty, followed by
the learning process at full difficulty for each attempt. Due to
the extensive computational time required, which would have
taken many days, we abandoned this strategy and instead fo-
cused on searching for more efficient solutions.

Therefore, the aim is to reduce the number of learning pro-
cesses and shorten their length while keeping the winrate as
high as possible.

The first solution analysed was to select only a few networks
for learning on the game with simplified difficulty. Figure 7
shows the distribution of the winrate after. Chart a) the first
learning step is for games of reduced difficulty (from 1 to 9
points), while the second b) is the results after learning the
selected networks on a game of difficulty 20.

Networks whose winrate was above 90% were admitted to
the second step. Therefore, only six cases are analysed in the
second stage. The best final result was achieved by a network
that learned the 0→ 6→ 20 scheme, with a probability of vic-
tory of 73%.

The right axis in Figure 7 shows the time of the learning pro-
cess. For the first graph a), it increases with the game’s diffi-
culty. This effect is related to the increasing number of rounds
required to win the game at a more difficult level. Learning in
the second step b) does not show this trend, but the increased
computational budget (20x2500 episodes) increased one learn-
ing process to more than 3 hours.

C. Two-step early-terminated learning

With the assumed calculation budgets, a full calculation in a
two-step scheme takes about 24 hours. The question, therefore,
arose as to whether it would be possible to reduce this time and
what impact this would have on the quality of the solution.

A simple reduction in the number of episodes and iterations
of the learning process immediately resulted in a lower win
rate. Therefore, a scheme was proposed in which the network
selection was based on exceeding the average reward during
learning. Final testing on the full game difficulty was only
conducted at the end.

The algorithm allows setting the reward threshold, after
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a) b) c)
Fig. 5. Learning curves for three different game difficulty levels. a) 1 point, b) 5 points and c) 9 points. The full difficulty of the game is 20 points.

Fig. 6. Winrate of networks learned on the game with lower difficulties
and tested on full difficulty (20 points).

a)

b)
Fig. 7. Distribution of winrate for a) first step of learning (difficulty from
1 to 9), b) second step of learning at full difficulty (20 points).

which learning will be terminated. This way, the number of
networks selected for the second learning step can be con-
trolled.

a)

b)
Fig. 8. Number of episodes and learning time for first(a) and second b)
step in early-terminated learning scheme. The average reward thresh-
old is: a) greater than 0.5, b) greater than -0.1.

Figure 8a) shows that for a game with low difficulty levels
(1-3), the model needs to play less than 1000 games to reach
the expected threshold of average reward. For higher difficul-
ties, this number increases until the learning process breaks
the budget limit of 10,000 episodes. As in the previous exper-
iment, a strong advantage of low computation time for small
values of difficulty points can be seen.

On this basis, six networks were selected for the second step
out of the nine tested. The second learning step was carried
out in a similar way as before. To improve the quality of the
solution, the budget was increased to 20 iterations of the learn-
ing process, each consisting of 2,500 episodes. Learning was
based on a game with a target difficulty of 20 points. As seen in
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Fig. 8b) the networks learned on difficulties 1-3 could not fully
cope with the new task, and the learning process proceeded un-
til the 50,000 episode limit. In contrast, the networks based on
difficulties 3-6 in the first step learned relatively quickly to win
on the full difficulty. Final testing confirmed that the best re-
sult was achieved by the 0→ 6→ 20 scheme, giving a winning
factor of 64% after 16 hours of computation.

D. Strategies comparison

A graphical comparison between the three described learning
strategies is presented in Fig. 9.

The research aimed to determine the ideal difficulty level for
the learning process in the game. Analyses were conducted for
each strategy from difficulties 1 to 9, concluding with testing
at level 20.

The illustration highlights a unique internal learning ar-
chitecture that utilises successive modules, represented by
coloured rectangles, operating on results from the previous
module. The computation time elapsed is shown on the ver-
tical axis. The graph does not preserve proportions to enhance
readability, so the total time is indicated at the top of each
strategy. The most significant computational effort occurs dur-
ing the second learning step, in which up to 50,000 games are
played at the highest difficulty level of 20.

The crossed-out elements on the graph represent the elim-
inated cases. By selection, we cut down the number of ana-
lyzed alternatives, accelerating the learning process. Eliminat-
ing analyses in the second step of learning is especially crucial
due to their high computational cost.

Fig. 9 clearly shows that difficulty 6 is the optimal midpoint
when learning in two steps. Early-terminated learning allowed
us to find the same solution in less time. It would, therefore,
be possible to use strategy c) to find the optimal midpoint and
then strategy b) for the already chosen optimal difficulty.

Additionally, experiments were carried out by dividing the
learning process into more than two steps to gradually increase
game difficulty. These did not give a better quality solution and
resulted in a much longer computation time. In the LOTRCG
game, the optimal choice is two learning steps.

6. MULTI-PHASE SETUP

The analyses presented so far have dealt with using a single
RL agent to make decisions in the Questing phase. This was
an initial simplification, but it should be remembered that each
round of the game contains five decision moments. In previous
research [23], we identified three of them (Planning, Questing
and Defence phases in Fig. 2) as the most important.

Each of those three decisions could be managed by RL
agents. At the same time, it must be remembered that any in-
creased number of RL agents increases the computation time.
It is also possible to combine RL and random agents, each spe-
cialising in a different decision. Table 3 presents a compari-
son for different numbers of RL agents used. With only one
RL agent, the best solutions can be seen when using it at the
Questing phase (28%). Two agents on the Planning and Quest-
ing phases yield a result (66%) that is significantly better than

Table 3. Comparison of winrates for different setups of agents.

AI setup winrate
defensequestingplanning

randomrandomRL 11.2±0.6
randomRLrandom 28.3±0.9

RLrandomrandom 7.0±0.5
randomRLRL 66.2±0.9

RLrandomRL 16.3±0.7
RLRLrandom 33.6±0.9
RLRLRL 64.4±0.9

Table 4. Comparison between one RL agent setup vs. two RL agents
- final winrates in testing and learning time.

random-RL-random
learning strategy winrate [%] learning time [h]

1-step 4.048.8
2-step 24.072.7

2-step early-term. 15.964.2

RL-RL-random
learning strategy winrate [%] learning time [h]

1-step 9.171.4
2-step 39.478.5

2-step early-term. 19.872.2

for only one agent. The simultaneous combination of three RL
agents (winrate 64%) does not significantly change the quality
of the solution.

The two-agent configuration appears to be the most econom-
ical solution, so further research has been devoted to it. Con-
sequently, all the tests described in Section 5. Learning Strate-
gies were repeated. This time, with two RL agents, on the
Planning and Questing phases.

Table 4 contains the final comparison of the results obtained
by the best one RL setup (random-RL-random), and the best
two RL combination (RL-RL-random). Results for one RL
agent have already been presented on Fig. 9, where the win-
ner is two-step learning with a full budget. For two RL agents
setup, all learning strategies provide winrate above 70%. How-
ever, the learning time is higher. In both uninterrupted cases,
approximately twice as long.

It is interesting to compare the results of two agents learning
in a one-step strategy with a two-step early-terminated learning
strategy. A similar win rate (approximately 72%) was achieved
more than twice shorter time. Thus, the one-step learning
scheme should not be rejected.

The highest score (78.5%) was achieved, however, after a
long 39-hour uninterrupted, dual-agent RL learning process,
which was broken down into two steps. In the first step, a
neural network with random weights was learning to play at
difficulty 6, and then the network was subjected to a learning
process at a maximum difficulty 20 points.
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Fig. 9. Illustration of three examined learning strategies. The simplest is a) a one-step continued process, where the agent learns 9 times for
different difficulties. The second scheme b) involves two-step learning (without interruption). The third is strategy c), where learning is early-
terminated when the average reward reaches the threshold.

7. CONCLUSIONS

It has been demonstrated that reinforcement learning tech-
niques can be utilised to construct an agent that dominates in
the sophisticated and strategic card game Lord of The Rings.
The game is characterised by multiple stages featuring five
decision-making phases alongside random events and rule-
based actions.

The study has indicated that the quality of the result is heav-
ily influenced by the patterns used in game state coding and
action decoding. Furthermore, as anticipated, tuning the hy-
perparameters of the artificial neural network resulted in a no-
ticeable increase in the average percentage of the winrate.

Much of the research was dedicated to discovering strate-
gies for model learning. This was necessary as direct learning
the game at its highest difficulty level was unfeasible. Three
approaches were trialled, employing regulated alterations in
gameplay complexity and interrupting the learning process.
Results indicated that the most effective method was two-
step learning without interruptions. However, this was found
to require a great deal of computational power. Interruption
schemes based on an estimated average reward threshold pro-
vide a more cost-effective solution.

The analysed game features decisions of varying nature,
prompting the need to merge agents specialised in different
phases. The research identified the Planning and Questing
as the crucial phases. Utilising a two-step learning strategy,
a model was developed that attained a 78.5% winrate when
tested on 10,000 random games at the highest difficulty level.

This is significantly better than the previous studies on the use
of MCTS methods [3], which achieved an average winrate of
40%, as well as 60% reported by evolutionary algorithms for a
similar collectible card game [24].

The analysis of the results indicated that for games with sev-
eral different decisions in a round, more benefit is obtained
from introducing several smaller independent agents than from
a large effort to develop just one agent. However, one has to be
aware that the inevitable consequence of using several models
is a higher memory cost and a proportional increase in learning
time.

In the future, enhancing the learning strategy of a team of
collaborating agents seems beneficial. Learning each agent
separately and subsequently training them in collaboration
should reduce the computational cost. Moreover, indepen-
dent agents should be able to communicate with each other
through the development of further encodings. This structure
could be hierarchical or employ a combination of various AI
algorithms (e.g. Deep RL, Long-Short Term Memory, Trans-
former), which showed to be impressively efficient for Star-
craft II game [25].
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