
BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES
DOI: 10.24425/bpasts.2024.151375

Cascade-Free Predictive Adhesion Control for
IPMSM-Driven Electric Trains

Jiao Ren1∗,Ruiqi Li2∗∗

1 Urban Vocational College of Sichuan,Chengdu 610031, China
2 School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, China

Abstract. The application of active adhesion control to the traction control system of an electric train holds great appeal for maximizing
longitudinal acceleration force. Most of the currently reported works regulate the adhesion between wheel and rail by adjusting the torque
reference of a cascade motor drive controller, which suffers from slow speed response and excessive start torque. This article proposes a
cascade-free predictive adhesion control strategy for electric trains powered by an interior permanent magnet synchronous motor (IPMSM) to
address these issues. The proposed control scheme utilizes an improved perturbation and observation method to predict the time-varying wheel-
rail adhesion state and determine the optimal slip speed. The initial setpoint reference command from the driver master is then adjusted to a
dynamic reference that continuously adapts to the predicted adhesion conditions. Finally, the predictive speed control method is employed to
ensure rapid convergence of the tracking objective. The simulation and hardware-in-the-loop testing results confirm that this approach achieves
excellent dynamic performance, particularly during the train start-up phase and in the high-speed weak magnetic area of the IPMSM.
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1. INTRODUCTION

The acceleration and braking of a train rely on adhesion, which
is the tangential force at the wheel-rail contact point in the di-
rection of train movement. When the driving or braking force
of the train exceeds the adhesion during acceleration or decel-
eration, the wheel slips in case the train is still running and
slides in case braking occurs [1, 2]. To ensure the desired trac-
tion or braking force, adhesion control between the wheel and
the rail has been developed. The primary objective of adhesion
control is to prevent the wheel slip and maintain the adhesion
under specific axle load and environmental conditions [3, 4].
The demand for high-speed and efficient trains has sparked a
growing interest in the advanced functional objectives, namely,
maximizing the utilization of adhesion while ensuring safety
and comfort [5, 6].

In most studies on adhesion control, determining the refer-
ence slip and current adhesion condition is crucial. In [7], the
reference slip is determined through pre-testing on the track.
However, this method has limitations due to uncertainties in
external weather and wheel-rail conditions. Therefore, [8] and
[9] estimate the reference slip online using intelligent algo-
rithms based on train operating parameters such as environ-
ment, speed, and slip ratio. Recently, an event-based adhesion
control strategy has been proposed, which operates without re-
lying on various parameters of train operation [10]. The state
observers are commonly employed for adhesion state estima-
tion as they can directly estimate the train’s adhesion coeffi-
cient. However, the state observer methods are sensitive to
noise and variations in system parameters, which affect their
accuracy. To improve the accuracy of adhesion estimation, the
unscented Kalman filter is employed in [11, 12], which have
shown promising results. Additionally, using information such
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as noise, train acceleration, and jerk, the adhesion state can be
indirectly estimated [13, 14]. Once the train’s reference slip
and the adhesion state are determined, effective control meth-
ods can be employed in the design of adhesion controllers,
such as sliding mode control, extremum seeking control, and
fuzzy control [15, 16, 17], among others. For the convenience
of verifying adhesion control algorithms, a reduced-scale roller
rig that simulates the train’s track and wheels has been devel-
oped [18].

It is worth noting that all these aforementioned adhesion
controllers can be categorized as torque correction controllers,
which are cascaded onto the traction control system, as shown
in Fig. 1. In manual mode, the torque correction controller di-
rectly adjusts the torque command from the operating handle to
maintain adhesion between the wheel and the rail. Similarly,
in automatic mode, the torque reference is also regulated by
the adhesion control, even though this control target is issued
by the traction motor’s speed control loop automatically. The
torque correction-based adhesion controller adapts well to both
driving modes of the train by suppressing or promoting the
output torque of the traction motor. However, the motor con-
troller cascaded with the torque correction controller is gener-
ally driven by Field-Oriented Control (FOC) or Direct Torque
Control (DTC) [19, 20]. These types of motor controllers are
characterized by the utilization of a cascade structure, employ-
ing linear and relatively slow speed controllers, along with in-
ner loops for current, torque, and flux control [21, 22]. Due
to the cascaded nature of adhesion control and motor control,
the higher starting torque provided by the speed controller in
the initial phase is difficult to correct in the first instance by the
torque correction adhesion controller, making the train suscep-
tible to slippage during this phase. In addition, during certain
special operation stages, such as sudden changes in track con-
ditions and high-speed zones, the cascaded traction control ar-
chitecture hinders further improvement in the overall adhesion
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utilization of the train. Moreover, the torque correction con-
troller frequently adjusts the motor’s reference torque based
on the time-varying adhesion state, resulting in an increase in
torque harmonic content.

To enhance control performance, several different motor
control strategies have been proposed and implemented in
electric traction systems. These strategies include Model Pre-
dictive Control (MPC), Active Disturbance Rejection Control,
and Sliding Mode Control, among others [23, 24, 25]. Notably,
a cascade-free predictive speed control strategy is introduced
for electric trains, demonstrating exceptional dynamic perfor-
mance [22]. However, these efforts have overlooked the adhe-
sion dynamics between the train and the rail. In other words,
the adaptability between the wheel-track adhesion controller
and the motor drive controller has not been taken into account.

This paper presents a novel cascade-free adhesion control
framework aimed at maximizing adhesion during the accelera-
tion mode of electric trains. The framework integrates two con-
trol objectives: wheel-rail active adhesion control and speed
regulation, into a dynamic reference tracking problem based
on the predictive optimum adhesion state. An improved Per-
turbation and Observation (P&O) algorithm is employed to de-
termine the time-varying reference. Subsequently, predictive
speed control is utilized, which uses a single optimization al-
gorithm to generate the control action for the next sampling in-
stant, ensuring consistent operation of the train in the optimal
slip state throughout the acceleration process. The innovations
and contributions of this paper can be summarized as follow:

1) A cascade-free framework for adhesion control is pro-
posed. This control topology represents a pioneering approach
to slip control of electric train, which controls adhesion from
the perspective of reference speed prediction and correction,
rather than the regulation of reference torque.

2) In this cascade-free control framework, the P&O method
in [8] is improved, endowing it with the ablity to directly pre-
dict the electric train’s optimal slip speed. Besides, based on
the predictive optimal slip speed, the initial static reference
speed issued by the master controller is corrected to a dynamic
reference that varies continuously with the adhesion condi-
tions. Therefore, by tracking this time-varying speed control
objective during the train speed regulation phase, the maxi-
mum longitudinal acceleration force can be achieved without
the need for an additional adhesion controller.

The paper is organized as follows. In Section II, the ad-
hesion characteristics and the dynamic model of the train and
the control objectives are described. Section III develops the
cascade-free predictive adhesion control method. Section IV
presents the simulation and hardware-in-the-loop (HIL) plat-
form test results. Finally, Section V concludes the article.

2. PROBLEM FORMULATION

A. Adhesion Characteristics

The power of the electric train is transmitted to the wheels
through the traction transmission system, as shown in Fig. 2.
When the wheel is subjected to the torque generated by the
traction motor, a small sliding occurs on the contact surface be-

tween the wheel and the rail. This phenomenon is commonly
referred to as creepage. Creepage generates adhesion traction,
propelling the train forward. Simultaneously, due to the exis-
tence of the creep phenomenon, a velocity difference occurs
between the rolling linear velocity of the moving wheels and
the forward velocity, known as the creep velocity (also referred
to as the slip speed). The creep ratio λ , defined as the ratio of
the creep velocity to the nominal velocity, characterizes the de-
gree of creep [26, 27]. The creep rate can be expressed as:

λ = vs
max{vd ,vt}

vs = vd − vt

vd = wdrd

(1)

where vs, vd , vt are, respectively, the train slip speed, the train
wheel linear velocity, and the train body speed; rd is the wheel
radius; wd is the axle speed of the wheel pair. Numerous tests
have proven a close relationship between the adhesion charac-
teristics and creep ratio, which is often described by the adhe-
sion coefficient curve µ(λ ) shown in Fig. 3. As shown in Fig.
3, both creep ratio and rail surface conditions affect the vari-
ation of the adhesion coefficient. The definition of adhesion
coefficient demonstrates that the adhesion force Fad is propor-
tional to µ when the load is constant:

µ(λ ) =
Fad

W
(2)

where W is the normal force of the motor car’s single axle.
According to this definition, we can adjust the instantaneous
adhesion coefficient of the train to make high use of the tan-
gential force Fad .

B. Dynamic Model of Electric Train

Establishing an electromechanical coupling model of the elec-
tric train that can capture the relationship between electric con-
trol and adhesion characteristics is essential to build the con-
trol strategy from the electric control perspective. To provide
a concise illustration of the designed controller, the analysis
focuses on a simplified one-dimensional single-axle model of
the train, neglecting various complex factors. And then we
treat the one-dimensional single-axle model of the actual train
as an equivalent rigid particle, and we treat the motion of the
train as the motion of a rigid body, and this variable of the ki-
netic energy of the rigid body is equal to the work done by the
external force. The adopted uniaxial train model satisfies the
following force transfer equation [7]:

Fad = µ(λ )W
W = mwg
Jw

dwd
dt = Tw −Fadr

Tw = TeRg

Tl = Fadr/Rg

Jm
dwm
dt = Te −Tl −Bmwm

(3)

where mw is the total mass applied to single-axle; mw = mM
Nc

;
mM is the total mass of a moving carriage; Nc is the number
of traction units per rolling stock; g is the acceleration of grav-
ity; Rg denotes the gear ratio of the gearbox; wm is the rotor
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speed of the traction motor, wm = Rgwd ; Te, Tl are the elec-
tromagnetic torque and the equivalent load torque of the mo-
tor, respectively; Jm, Jw are the equivalent rotational inertia
of the motor and the equivalent rotational inertia of the wheel
pair, respectively; Bm is the viscous friction coefficient. As the
IPMSM is used as the drive motor in this paper, the electro-
magnetic torque Te can be expressed as

Te =
3p
2
[(Ld −Lq)id iq +ψ f iq] (4)

where the stator current id and iq satisfy the following voltage
equation [28, 29]:{

ud = Rid +Ld
d
dt id −Lqweiq

uq = Riq +Lq
d
dt iq +Ldweiq +weψ f .

(5)

In (4) and (5), subscript d and q stand for direct and quadrature
axle; u and i are stator voltage and current; R and L are stator
resistance and inductance; we = pwm is electric angular veloc-
ity; ψ f is permanent magnet flux linkage; p is the number of
pole pairs.

Empirically, a moving train generally contains 2-6 power
axles. The single power axle model can be combined to com-
prehensively reflect the essential characteristics of the traction
device comprehensively. According to Newton’s second law,
using the combined single-axle model, the equation of motion
of the whole train can be written as

Nc×Nmc

∑
i=1

Fadi −FR = M
dvt

dt
(6)

where Nmc stands for the quantity of moving cars; Fadi de-
notes the adhesion force of the i-th traction unit; FR is the total
amount of running resistance on the train, which including but
not limited to frictional resistance, air resistance, etc.; M is the
total mass of the train.

C. Tracking Control Objectives
In the automatic mode of electric trains, the primary objective
of traction control is to achieve the tracking of the target speed
vt_re f of the train body. Because of ‘creep’, as long as the
wheel linear speed vd reaches the target speed vt_re f without
slipping, the control objective is considered completed.

We also seek to maximize longitudinal traction during the
traction phase of the train. From Fig. 3 and equation (2), it
can be observed that the maximum adhesion can be obtained
when the train is operating at point (λm,µm). According to the
definition of creep ratio (1), at the operating point (λm,µm), the
wheel linear velocity vd satisfies

vd = λmmax{vd ,vt}+ vt = vs_re f + vt (7)

where vs_re f is the optimal slip speed. Equation (7) indicates
that the rail provides maximum longitudinal traction as long
as the wheel rolling line speed vd and the train body speed vt
always maintain a difference of vs_re f .

In summary, this work aims to develop a control scheme
for generating the control command u to fulfill the following
control objectives:

(1) Drive the electric train modeled by (3) and (6) to track
the prespecified target speed trajectory vt_re f .

(2) Maintain the optimum slip speed vs_re f .
In order to achieve both of these tracking control objectives,

conventional methods employ separate designs shown in Fig.
1. Upon analyzing equation (7), it becomes evident that the
time scales associated with these two control objectives (i.e.,
vt_re f and vs_re f ) are inconsistent, with the first control objec-
tive exhibiting a significantly longer time scale compared to
the second control objective. Therefore, below we consider the
conversion of two tracking control objectives into one tracking
control objective v∗t_re f in a dual-time-scale context.

3. CONTROL DESIGN

Figure 4 illustrates the block diagram of the developed
cascade-free predictive adhesion control method. The pro-
posed method can be divided into three consecutive parts.
Firstly, a load observer is designed to estimate the current ad-
hesion state. Secondly, an improved P&O algorithm predicts
the optimal slip and target speeds online. Lastly, a predictive
speed controller enables the train wheels to track the time-
varying optimal reference speed rapidly. The detailed design
of these three parts will be presented in the following subsec-
tions A, B, and C, respectively.
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Fig. 1. Block diagram of a conventional torque correction-based adhe-
sion control strategy : (a) Manual mode; (b) Automatic mode.

A. Adhesion Coefficient Estimation and Motor Speed Pre-
diction

Accurate motor load torque is needed to predict either the
train’s adhesion state or the traction motor’s speed. The load
torque can be estimated by taking the Laplace transform from
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Fig. 2. Drive energy transfer path and wheel-rail contact model

(3) as given by [15]

T̂l =
p1

s+ p1
(Te − s · Jm ·wm) (8)

where p1 is the pole of the load torque observer.

Equations(2) and (3) state that the adhesion coefficient µ is
proportional to the torque of the corresponding motor load, Tl .
Therefore, the estimated value of the adhesion coefficient can
be calculated by

µ̂ =
˙̂TlRg

mwgr
. (9)

Similarly, the traction motor speed can be predicted with
the help of a load torque observer. To obtain precise predictor
variables, we discretize the mechanical equations of motion of
the traction motor described in equation (3) using the modified
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l m( ),
m m
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Fig. 3. Adhesion characteristics curve
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Fig. 4. General operation block diagram of the proposed cascade-free
predictive adhesion control method

forward Eulerian discretization formula
wp

m(k+1) = wm(k)+Ts · 1
Jm
(Te(k)− T̂l)

ws
m(k+1) = wp

m(k+1)+ Ts
2 · 1

Jm
[(Te(k)− T̂l)+

(T p
e (k+1)− T̂l)]

(10)

where Ts is the system sampling period; wp
m(k+ 1) is the pre-

dicted motor speed; and ws
m(k+1) denotes the corrected motor

speed, which is also the final predicted motor speed. It is worth
noting that the electromagnetic torque Te(k) can be calculated
from equation (4).

B. Best Reference Speed Prediction
In the current train operation control system, the speed com-
mand vt_re f of the train is issued by the commander controller.
Subsequently, the train’s final operating speed is adjusted to a
preset value through the action of the speed regulator. How-
ever, because of creep, an additional anti-slip controller is
required to maintain the adhesion relationship between the
wheels and the rails. In this section, we will present the ap-
proach for transforming the initial setpoint reference vt_re f into
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Fig. 5. Classification diagram of each operation point on the adhesion
curve
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Fig. 6. Flowchart for predicting the optimal reference speed trajectory

an optimal dynamic tracking trajectory v∗t_re f , with the aim of
eliminating the design of the adhesion controller while achiev-
ing maximum adhesion control. The flowchart of the proposed
method is illustrated in Fig. 6.

• Initially, compare the real-time wheel rolling speed vd with
the train body speed command vt_re f . If the wheel speed vd
exceeds or is equal to the train body speed command vt_re f ,
regardless of the adhesion control target, it indicates that the
train is either in the cruise or braking phase. Since this article
specifically addresses maximizing adhesion utilization dur-
ing the train’s acceleration phase, there is no consideration
for correcting the target speed vt_re f at this stage. However,

if the wheel speed vd is slower than the train body speed
command vt_re f , it means that the train is in the traction
phase. In this case, it is necessary to move the operating
point toward (λm,µm) to achieve maximum acceleration, as
depicted in Figure 5.

• Secondly, determine the operating point owning the maxi-
mum adhesion coefficient [i.e., (λm,µm)]. By tracking the
measured wheel slip and the estimated adhesion coefficient
at each time step (i.e., λ (k) and µ̂(k) at time step k), the
adhesion state of the train can be classified into four cate-
gories, namely A, B, C, and D, as shown in Figure 5. How-
ever, due to uncertainties in system parameters, noise inter-
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ference, and other factors, certain operating points may be
erroneously categorized. Previous literature [30] has shown
that changes in acceleration can also be used as criteria for
determining the adhesion state. Because of this, introduce
the train acceleration discriminatory criteria:{

∆µ̂ = ∆µ̂, ∆µ̂ ·∆α >= 0
∆µ̂ = 0, ∆µ̂ ·∆α < 0

(11)

where ∆α is the ramp of the train acceleration, ∆α = α(k)−
α(k− 1). Equation (11) shows that the estimated adhesion
coefficient ∆µ̂ is updated only when the estimated adhesion
coefficient is consistent with the change in the ramp of the
acceleration ∆α ; Otherwise, the slope of the estimated ad-
hesion coefficient is considered to be zero. The acceleration
criterion will improve the discriminative accuracy of the es-
timated adhesion coefficient when the observer is stable.
With the aid of estimated adhesion coefficient, we can de-
termine the class to which the operating point belongs. For
points belonging to classes A and D, the adhesion state sat-
isfies ∆µ̂(k) · ∆λ (k) > 0 where ∆µ̂(k) = µ̂(k)− µ̂(k − 1),
∆λ (k) = λ (k)−λ (k−1). At this time, to move toward the
point of (λm,µm), the operating point needs to move to the
right side; for points corresponding to classes C and B, the
adhesion state satisfies ∆µ̂(k) ·∆λ (k)< 0, indicating that the
operating end needs to move to the left side. Bases on the
above analysis, the updated formula of the reference creep
slip state is designed as

η = 1,r = r2 ∆µ̂(k) ·∆λ (k)> 0
η =−1,r = r1 ∆µ̂(k) ·∆λ (k)< 0
η = 0,r = 0 ∆µ̂(k) ·∆λ (k) = 0

(12)

λre f (k+1) = λre f (k)+η · r ·Ts (13)

where r is the adjustment rate and λre f (k+1) is the predicted
optimum slip rate. Based on equation (12), the distance of
each operation point from the point of (λm,µm) is evalu-
ated. To be spefical, for the operation point in the wheelspin
area, the adjustment rate is set to r = r1(r1 > r2) to achieve
a faster update rate. On the other hand, for the operation
point in the creep area, the regulation rate is set to r = r2
to ensure a gradual approach towards the point (λm,µm) and

6

avoid over-regulation. The continuous iteration of the adhe- 
sion state by equation (12) and equation (13) will make the
operating point gradually approaches (λm, µm). λallow−min
and λallow−max are the maximum and minimum allowable
slip rates to ensure that the reference speed is within an ac- 
ceptable range to avoid idling or skidding the locomotive. It 
is worthy noting that the reference creep λre f (k + 1) though 
iteration may not necessarily the optimum creep rate. For 
safety reasons, the reference creep rate λre f (k + 1) obtained 
by iteration must be treated as follows.

1. Case 1: If the reference creep rate λre f (k + 1) obtained
from the iteration is less than or equal to the minimum
allowable creep rate λallow−min, the minimum permis- 
sible creep rate λallow−min is used as the reference creep 
rate for the next time step.

2. Case 2: If the reference creep rate λre f (k + 1)
obtained by the iteration is within the range of
(λallow−min, λallow−max), it is used as the reference 
creep rate for the next time step.

3. Case 3: If the reference creep rate λre f (k + 1) obtained
from the iteration is more than or equal to the max-
imum allowable creep rate λallow−min, the maximum 
permissible creep rate λallow−max is used as the refer- 
ence creep rate for the next time step.

After obtaining the reference creep rate λre f (k + 1). From 
equation (1) and equation (13), one can obtain the real-time 
slip velocity as follows

vs_re f (k + 1) = λre f (k + 1) · max {vd , vt} . (14)

• Finally, to ensure the rolling linear velocity of train’s wheel
and the real-time running speed of the train body during the 
traction phase always meet the requirements of the optimal 
reference slip speed, based on equation (1) , equation (7)
and equation (14), we correct the reference operating speed
of the train vt_re f to v∗t_re f . The updated equation of v∗t_re f is

v∗t_re f (k + 1) = vt(k) + vs_re f (k + 1) (15)

where vt(k) is the train operating speed at time step k. It’s 
worth pointing out that vt(k) should be vt(k +1) in real. Nev- 
ertheless, because of the high control frequency, vt(k) can be 
nearly equal to vt(k + 1) within one sampling period.
If equation (15) is directly input to the speed control system, 
the traction motor will not start. This is because, during the
start-up phase, both the train body running speed and the 
slip speed are zero. To deal with it, a start term δ e−β t is 
introduced, at which point the train will have an initial start 
speed. Moreover, the start term will decay to zero as the
running time t → ∞ , without affecting the tracking of the 
optimal reference slip speed. The final reference speed of
the train is

v∗t_re f (k + 1) = δ e−β t + vt(k) + vs_re f (k + 1) (16)

  where δ is the initial start speed and β is the decay rate 
of the initial start speed. To avoid affecting the slip speed
control, we set δ < 1, β > 1.
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The final reference speed (16) proposed in this paper depends
on the instantaneous train body speed vt(k). Currently, the
speed measurement method based on the train’s rolling linear
velocity is the most commonly used train speed measurement
method. However, as discussed in Section II , the train’s rolling
linear velocity is not equal to the actual train speed but rather
an approximate value, due to the creep phenomenon. There-
fore, to ensure the accuracy of the subsequently designed con-
troller, more precise methods are desired to obtain the instan-
taneous train speed vt with the correction of the train refer-
ence speed. Potential methods include radar speed measure-
ment, satellite positioning, or multi-sensor fusion techniques
[31, 32, 33].

C. Predictive Speed Control

The corrected reference speed is no longer a flat line but a
curve that constantly varies with the operating speed and op-
timal creep ratio, as shown in Fig. 7. Once the real-time ref-
erence speed of the train, considering the optimal creep ratio,
is obtained, it is converted to the equivalent motor reference
speed

w∗
m =

v∗t_re f

rd
∗Rg. (17)

Given that high-speed trains are a sizeable inertial sys-
tem, the existing PI speed control algorithm used on trains
faces challenges in quickly tracking the constantly changing
reference speed profile with adhesion dynamics. The pre-
experiments conducted on the experimental platform depicted
in Fig.8 found the predictive speed control algorithm advan-
tageous in tracking fast time-varying references. Therefore,
we will describe a predictive speed control algorithm in the
following paragraphs. The speed prediction model (10) of
IPMSM can be rewritten as

wm(k+1) = wm(k)+Ts f (T p
e (k+1)) (18)

where f (T p
e (k+1)) = 1

2·Jm
[3(Te(k)− T̂l)+(T p

e (k+1)− T̂l)].
Te(k) can be calculated from the stator current at time step k

Te(k) =
3p
2
[(Ld −Lq)id(k)iq(k)+ψ f iq(k)]. (19)

T p
e (k+1) can be calculated from the predicted stator current

at time step k+1

T p
e (k+1) =

3p
2
[(Ld −Lq)id(k+1)iq(k+1)+ψ f iq(k+1)].

(20)
The predicted stator current can be obtained by Eulerian

discretization of the electric equation (5). Since the focus of
this paper is not on the control of electric quantities, a detailed
model of this process is not provided.

In this paper, the conventional two-level voltage source in-
verter is used as the motor driver. This type of inverter is capa-
ble of generating eight fundamental voltage vectors, denoted
as u = (u0,u1...,u7). Therefore, combining equations (4), (5),
and (18), the motor speed can be predicted from the eight dif-
ferent voltage vectors at the moment k+1. Based on MPC the-
ory, substituting the predicted eight motor speeds into the cost

function (i.e., the square of the residual difference between the
predicted motor speed and the predicted reference speed) sep-
arately, the voltage vector with the minimum cost function is
selected as the optimal voltage vector for the k+1 time step and
acted on by the traciton motor through the inverter.

Fc = γwm · (w∗
m −wm(k+1))2 +Flump (21)

where γwm is weighting factors; Flump is a set sum function that
weights the other desired electric states.

The first term in equation (21) evaluates the distance of each
predicted motor speed from the desired reference speed. Note
that when the weight γwm is constant, the cost function of the
speed error term will reduce, as the actual speed gradually ap-
proaches the reference speed. To improve the tracking accu-
racy of the controller with minor errors, a dynamic adjustment
weight factor is introduced [34]

γwm = k1e(k2(1−
abs(w∗m−wm)

wmax )) (22)

where k1, k2 are the constant coefficients to adjust the weight,
wmax is the maximum electric angular speed.

Flump is utilized to optimize the stator current and achieve
good torque performance while ensuring the current remains
within a safe amplitude range. Since these aspects are not
the primary control objectives of this paper, they are not de-
tailed here for brevity, and detailed design considerations can
be found in Appendix A.

Coupling (16), (17), (21) leads to the final predictive speed
controller (23), shown at the top of next page.

In summary, the proposed control strategy achieves both
speed regulation and adhesion control for the train by chang-
ing the initial reference speed without the need for additional
adhesion control equipment. This approach avoids adjusting
the creep ratio by torque correction, resulting in a higher ac-
curacy of the creep rate (closer to the optimal creep ratio) and
thus improved the utilization of the adhesion between the train
wheels and rails.

4. SIMULATION AND HIL PLATFORM TEST RESULTS

A. Simulation Conditions

At present, there are no public parameters of the electric mul-
tiple unit (EMU) driven by IPMSM. Therefore, CRH3’s train
body are used as simulation train model parameters shown in
Table I [35]. A IPMSM for a certain type of 160 km/h power-
concentrated EMU (FXD1-J) is selected as the prototype mo-
tor for simulation shown in Table II. The running resistance of
the train is given as

FR = 6.796+0.0062vt +0.000143v2
t . (24)

Empirically, the adhesion characteristic curves of different
railway conditions can be approximated in the following way
[27, 36]

µ(λ ) =

{
a(1− e−bλ )− λ

c , i f λ ≥ 0
−a(1− ebλ )− λ

c , i f λ < 0.
(25)
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u∗ = arg min
u0,u1...,u7

{
γwm · (

δe−β t + vt(k)+ vs_re f (k+1)
rd

·Rg −wm(k+1))2 +Flump

}
(23)

Table 1. Electric train traction system parameters

valueParameter
Vehicle weight(t) M = 61.8
Axle weight(t) mw = 15.45
Wheel radius(m) r = 0.43
Gear ratio Rg = 2.355
Wheel moment of inertia(kg.m^2) Jw = 100
Motor rotational inertia(kg.m^2) Jm = 16
Number of traction units Nc = 2

8Number of IPMSM pole pairs
1225IPMSM rated power(kW)
1660IPMSM rated voltage(V)
477IPMSM rated current(A)
680Maximum starting current(A)

Table 2. Rail surface parameters

Rail surface conditions cba
5.39240.190.3315Dry rail surface
5.39622.870.2478Wet rail surface

Table 3. Control system parameters

valueparametersvalueparameters
β 0.01 λalllow−min 0.04
r1 1 λalllow−max 0.4
r2 0.2 k1 1500000
δ -15 k2 10
Ts(s) 1×10−5 wmax(rad/s) 261

Based on an empirical formula, two railway conditions are
set for the train operation. i.e., a dry railway condition for the
first 10s and a wet railway condition after 10s. The coefficients
for different railway conditions are given in Table II. For dry
rail surfaces, the optimal adhesion operation point (λm,µm) is
(0.107,0.3072). For wet rail surfaces, the optimal adhesion
operation point is (0.155,0.2116).

The parameters of the proposed control strategy are shown
in Table III. The target rolling linear velocity of the train in
this paper is 28.68m/s, equivalent to a traction motor speed of
1500r/min.

B. Simulation Results

Figure 9 shows the control performance of the train’s body
speed and rolling linear velocity. Firstly, it can be seen that the
initial reference speed of the train undergoes a change from a
straight line to a slowly rising smooth line after the prediction
correction. Sesequently, with the proposed control method,
the train’s wheels steadily track the corrected reference speed
within the first 19s. Figure 12 is the tracking performance for
the creep ratio. At 18.42s, the actual creep ratio between the

Fig. 8. Wheel and train body speed tracking performance

Fig. 9. IPMSM speed tracking performance

Fig. 10. IPMSM electromagnetic torque and load torque performance

wheel and the rail is measured to be 0.15, with an error of only
0.005 compared to the optimum creep rate. It is found that the
proposed method can accurately predict and track the optimal
slip velocity for various rail conditions, even when the wheel-
rail situation abruptly transitions from dry to wet at 10s.
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Fig. 11. Creep ratio performance

Fig. 12. Performance of train body speed with comparative simulation

Fig. 13. Performance of train body acceleration with comparative sim-
ulation

Further, this indicates that during this phase, the train ex-
erts maximum traction and operates at maximum acceleration.
However, after the 19s, the rolling linear velocity speed wheel
starts to gradually deviate from the reference speed, eventually
reaching the preset value at 27 seconds. Throughout this phase
, the acceleration continues to decrease, and the improved P&O
algorithm starts to deviate from the actual optimal creep rate.

It can also be observed that the acceleration drops
after 19s, i.e., the shaft speed does not track to

Fig. 14. Performance of train adhesion coefficient with comparative
simulation

Fig. 15. Creep ratio performance based on torque correction method

Fig. 16. IPMSM electromagnetic torque performance with comparative
simulation

the predicted optimum speed, can be explained by
the voltage constraint equation (equation 26), where√

(Rid −weLqiq)2 +(Ri1 +weLd id +weψ f )2 represents
the stator voltage and umax means the maximum inverter out-
put voltage. When the motor speed exceeds the baseline speed,
the torque current decreases due to the constraint imposed by
the maximum output voltage umax of the inverter. The IPMSM
runs from the constant torque zone to the weak magnetic area.
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Fig. 17. Hardware-in-the-loop platform diagram : (a) HIL platform
setup; (b) Topology of the HIL platform.

Fig. 18. IPMSM speed tracking performance in the HIL platform

The IPMSM cannot provide enough electromagnetic torque to
maintain maximum adhesion traction, as shown in Fig. 10 and
Fig. 11.√

(Rid −weLqiq)2 +(Ri1 +weLd id +weψ f )2 ≤ umax (26)

Fig. 19. Adhesion coefficient tracking performance in the HIL platform

Fig. 20. IPMSM output torque performance in the HIL platform

To further validate the control performance of the proposed
methodmethod, we conducted a comparison with a PI torque
correction-based technique. The parameters of PI torque
correction-based controller are K p = 1000,Ki = 0.1. These
were tuned using a trial-and-error method based on engineer-
ing experience. At present, the specific parameter adjustment
methods in PI-based adhesion control is lacked. Without loss
of the generality, the torque correction method also uses an im-
proved P&O strategy to predict the adhesion state between the
wheels and the rails. The motor control algorithm in the torque
correction method consists of a PI control for the outer loop
and model predictive current control combined with maximum
torque to current ratio control for the inner loop. The follow-
ing evaluation function was employed to evaluate the adhesion
performance of the train during the acceleration phase.

ηad =
µave

µopt−ave

=

∫ tacc
0 µdt∫ ton

0 µoptdt
. (27)

10

Where ηad is the adhesion efficiency; µave is the average adhe-
sion coefficient during acceleration; µ is the average op-opt−ave

timal adhesion coefficient available to the wheel-rail; and tacc
denotes the time taken by the train throughout the acceleration 
process.

The adhesion efficiency of the two methods calculated by
(27) is given in Table IV. As seen from Table IV, the pro-
posed method takes 32.58s to reach the target speed, which
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is 7s faster than the comparison method. The adhesion effi-
ciency of the proposed method is 88.38%, indicating a 9.99%
improvement compared to the torque-corrected process.

Figure 13 shows the control performance of the train body
speed for both methods. In the early stage of the traction phase,
the method based on torque correction exhibits faster speed.
As the traction phase progresses, the proposed method gradu-
ally outpaces the torque correction-based method, reaching the
preset speed 7s earlier. From the control performance of the
vehicle acceleration (Fig.14) and the coefficient of adhesion
between wheels and rails (Fig.15), it can be seen that the co-
efficient of adhesion and acceleration of the proposed control
method consistently exceed those of the comparison method,
except for the early stage of the traction phase (0-2s). Partic-
ularly, after entering the weak magnetic zone, the train’s ac-
celeration controlled by the proposed method decreases mono-
tonically and smoothly.

In contrast, the acceleration controlled by the torque correc-
tion method undergoes a sudden drop. The performance of the
motor torque (Fig. 17) reveals the reason for the sudden drop
in the acceleration of the train controlled by the torque correc-
tion method in the weak magnetic zone. When entering the
soft magnetic area, the motor cannot generate enough torque
to maintain an optimal sticking condition. The weakening of
the adhesion state causes the torque correction to increase and
the electromagnetic torque to decrease further, which in turn
causes the adhesion coefficient and acceleration of the train to
plummet.

Figure 16 shows the creep rate variation curve for the torque
correction method. From 0-5s, the actual creep rate of the train
gradually moves from 1.0 (slip zone) to the predicted reference
creep rate. The difference with the creep ratio control perfor-
mance of the proposed method (Fig.11) is that the actual creep
ratio of the proposed method is always stable in the creep zone.
In contrast, due to the ample initial start torque (Fig. 17), the
torque correction method causes the actual initial creep ratio
to operate in the slip zone before gradually approaching the
optimum creep ratio. This behavior explains why the train is
more prone to slipping during the start-up phase when using
the torque correction method.

Comparative simulation results show that the proposed
method has a higher adhesion utilization and better anti-slip
control performance in the traction phase, especially in the
start-up phase and in the weak magnetic region of the IPMSM.

C. HIL Platform Test Results

In this section, the electric train dynamic model and a wheel-
rail model are built based on the starHIL semi-physical sim-
ulation platform to enhance the simulation’s resemblance to
actual working conditions. The control method compiled by
Simulink has been downloaded directly into the real-time rapid
control prototype hardware via Rapid Prototyping Control
technology, as shown in Fig. 18. The parameters of train sys-
tem and controller are consistent with the pure simulation con-
ditions, although the hardware limits the sampling frequency
to 10khz. Table IV in the revised manuscript shows the com-

Table 4. COMPUTATIONAL BURDEN OVERVIEW

Proposed methodPI methodParameters
27Execution time µ 30s µs

30%27%Processor utilization

putational burden of two methods (PI method and proposed
method). nThe proposed PB-ESO with optimized gains). The
memory usage of the proposed method is only %3 higher than
PI.

Figure 19 shows the train traction motor’s speed tracking
curves for the proposed and the comparison methods; Figure
20 shows the adhesion coefficients between the wheels and the
rails for both methods. Similar to the simulation results, the
proposed method has a higher average adhesion utilization in
the HIL platform, especially in the high-speed motor operation
region. However, During the start-up phase, the adhesion coef-
ficient decreases compared to the simulation results, showing
significant fluctuations and even negative values. We analyzed
that this is due to the limitation imposed by the hardware com-
putation frequency.

Figure 21 shows the control performance of the motor out-
put torque. Similar to the simulation results, the torque correc-
tion method’s torque performance demonstrates a rapid surge
in starting torque, reaching up to 2.8e−4Nm. In contrast, the
proposed method gradually increases the output torque, pro-
viding superior traction control to prevent wheel slip during
the start-up phase. However, the proposed method encounters
an elevation in dynamic torque pulses due to the limitations
imposed by sampling and computation frequencies. As a re-
sult, further improvements are required to refine the proposed
approach and enhance its adaptability to lower control frequen-
cies in real-world operating conditions.

5. CONCLUSION

This study suggests a cascade-free predictive adhesion control
technology for IPMSM-driven electric trains, aimed at achiev-
ing maximum acceleration. The simulation and HIL platform
test results show that the proposed method improves the wheel-
rail adhesion utilization during the acceleration phase of the
train and obtains superior dynamic performance. In particu-
lar, it addresses the issue of excessive start-up torque that can
lead to wheel slip with conventional control methods. In ad-
dition, the torque performance of the train in the high-speed
weak magnetic area of the IPMSM is ensured, enabling the
train to attain better tractive effort in this phase.

The proposed control method is still in the laboratory stage.
A limitation is that the control performance of the proposed
strategy relies heavily on the controller’s sampling and calcu-
lation frequency. Lower controller calculation frequencies will
result in high harmonic torque in the dynamic stage. One can
hopefully further enhance the overall control performance of
the proposed strategy by improving the optimal slip velocity
estimation algorithm and traction motor control algorithms.
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APPENDIX

Flump is a non-negative lumped function that measures how far
each expected electrical state of the IPMSM is from the desired
values. The design details of Flump is as follows

Flump = γMT PACMT PA(k+1)︸ ︷︷ ︸
a

+ γTeCTe(k+1)︸ ︷︷ ︸
b

+

γImCIm(k+1)︸ ︷︷ ︸
c

(28)

where γMT PA , γTe, γIm are weighting factors , and we have the
following.

• Term(b) is used to achieve the maximum-torque-per-ampere
(MTPA) control. The MTPA trajectory is derived by the La-
grange multiplier method and can be described by the for-
mula

id_MT PA =
ψ f

2(Lq −Ld)
−

√
ψ2

f

4(Lq −Ld)2 + i2q. (29)

Thus, the form of CTe(k+1) is

CMT PA(k+1) = (id(k+1)− id_MT PA(k+1))2. (30)

• Term(b) weights Te f which are high-pass filtered versions
of the predictive torque. This penalizes the switching states
that generate high frequencies in the predictive torque. As a
consequence, the form of CTe(k+1) is

CTe(k+1) = (Te f (k+1))2. (31)

• Term(c) is the stator current protection term. It is designed
as a nonlinear function,

CIm(k+1) =

{
∞,

√
i2sd(k+1)+ i2sq(k+1)≥ Ilim

0, else
(32)

where Ilim is the maximum allowable current.
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