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Abstract. Lithium-based battery systems (LBS) are used in various applications, from the smallest electronic devices to power generation plants.
LBS energy storage technology, which can offer high power and high energy density simultaneously, can respond to continuous energy needs and
meet sudden power demands. The lifetime of LBSs, which are seen as a high-cost storage technology, depends on many parameters such as usage
habits, temperature and charge rate. Since LBSs store energy electrochemically, they are seriously affected by temperature. High-temperature
environments increase the thermal stress exerted on LBS and cause its chemical structure to deteriorate much faster. In addition, the fast charging
feature of LBSs, which is generally presented as an advantage, increases the internal temperature of the cell and negatively affects the battery life.
The proposed energy management approach ensures that the ambient temperature affects the charging speed of the battery and that the charging
speed is adaptively updated continuously. So, the two parameters that harm battery health absorb each other, and the battery has a longer life.
A new differential approach has been created for the proposed energy management system. The total amount of energy that can be withdrawn
from LBS is increased by 14.18% as compared to the LBS controlled with the standard energy management system using the genetic algorithm
optimized parameters. Thus the LBS replacement period is extended, providing both cost benefits and environmentally friendly management by
LBSs turning into chemical waste distinctly later.
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1. INTRODUCTION
In recent years, the increasing need for energy, presented by
developing technology, combined with increasing environmen-
tal concerns have drawn people’s attention to renewable energy
sources [1]. According to data from the National Energy Agency,
fossil fuel consumption is projected to increase by 0.7 times by
2050 unless energy consumption habits are changed. This could
lead to a 1.3-fold increase in the carbon emission rate and a 6 de-
gree rise in global temperature [2]. Renewable energy systems
(RES) are seen as the most effective alternative to fossil fuel
exhaustibility and environmental impacts. Due to their sustain-
able and environmentally friendly energy, RESs are expected
to play a significant role in the future energy world. Renew-
able energy sources (RES) do not have the emissions caused
by fossil fuels and are seen as the energy source of the future
thanks to their sustainable nature [3–5]. However, although sus-
tainable, RESs depend unpredictably on nature and are not a
continuous energy source. For example, solar energy systems
cannot produce energy when the sun is not shining, while wind
energy systems require wind speed to be within certain limits
to generate energy [6]. RESs are combined with other energy
sources or integrated into energy storage systems to overcome
these problems. In this manner, it becomes possible to provide
a stable and fluctuation-free power flow to the load [7].

∗e-mail: gokhan.yuksek@batman.edu.tr

© 2024 The Author(s). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Manuscript submitted 2024-07-01, revised 2024-07-01, initially
accepted for publication 2024-07-30, published in November 2024.

Energy storage systems (ESS) can store and use excess en-
ergy when needed. Many energy storage techniques exist, such
as physical, electromagnetic, chemical and electromechanical
ones. The battery system is the most widely used storage unit,
and it is based on an electrochemical method [8, 9]. Numer-
ous battery types, such as lithium-ion, sodium-sulfur, nickel-
cadmium, vanadium-redox and polysulfide bromine as well as
lead acid batteries, are used in various fields [10–12]. Lithium-
based batteries (LBS) offer high power and energy density si-
multaneously and have the highest utilization rate. Their high
energy density allows them to meet long-term low power de-
mands, while their high power density allows them to meet
instantaneous high power demands. Despite all these advan-
tages, LBSs have the disadvantage of high cost. Therefore, it is
necessary to extend the battery’s life as much as possible and
delay its replacement [13]. Batteries, which are indispensable
for electric vehicles, generate several concerns. LBS can cause
dangerous and unwanted chemical reactions when charged at ex-
treme temperatures. This can shorten battery life and, in worse
case scenarios, lead to safety risks such as fire.

LBSs need to operate under the control of a battery manage-
ment system (BMS) to ensure high performance and long-lasting
life. However even BMS-controlled LBS performance inevitably
decreases over time [14, 15]. This occurs for two reasons: the
first is the loss of lithium ions due to the formation of solid
electrolytic contact. The second is electrode loss. This situation
increases internal resistance, reducing capacity and efficiency,
and consequently shortening battery life. As both of these occur
as a result of irreversible chemical reactions, batteries need to be
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operated in a controlled manner. High temperatures can affect
lithium-ion batteries’ performance and lifespan, significantly ac-
celerating their deterioration. The battery loses its capacity as
the solid electrolytic contact grows. This is because the rapid
growth of solid electrolytic contact on the surface of the electron
particles causes the battery to lose its capacity. Furthermore, the
temperature of the environment significantly affects the rate of
capacity loss. Battery cell temperature and high temperature en-
vironmental conditions can cause solid electrolytic contacts to
overgrow. Their development also reduces the battery capacity.

Parameters measured directly by sensors, such as current,
voltage and temperature, can be used as regulators or drivers in
BMS [16, 17]. For high performance, battery parameters such
as SoC, C-rate, and depth of discharge are required, which are
indirectly estimated and predicted [18,19]. Furthermore, one of
the most critical parameters affecting ESS reliability and per-
formance is temperature [20–22]. It is possible to determine
whether the system is operating within the safe temperature
range, and to detect potential problems in advance by monitor-
ing the temperature data of the ESS obtained by sensors. In addi-
tion, abnormal performance degradation that may be due to the
effect of temperature can be detected, temperature-appropriate
management can be provided, system failures can be prevented,
efficiency can be maintained at consistently high levels, and en-
ergy security can be ensured through downtime reduction. The
temperature parameter can be used as a safety and performance
indicator of the energy management system (EMS), as well as
part of an algorithm which controls the operation of the EMS
with the temperature parameter as input [23]. In the develop-
ment of strategies to increase the lifetime of components and to
realize the longevity perspective, the use of the parameter of the
internal cell temperatures of the batteries and the external tem-
peratures as an input to the EMS plays an essential role [24–26].

Thermal runaway should be mentioned first to deal with tem-
perature problems in general. A temperature curve and peak
heat dissipation typically mark battery overheating. It consists
of three stages: abnormal generation of heat, initiation of a fire
and explosion, which all correspond to specific temperature
thresholds [27]. Thermal runaway events can be classified into
two paths: internal and external. The internal pathway refers to
thermal failures caused by chemical reactions inside the cell,
while the external pathway refers to smoke and fire observed
outside the cell [28]. Both internal and external, thermal run-
away is hazardous for safety. When the literature is examined,
it is seen that there are many studies on battery cooling systems
and battery thermal management systems (BTMS) to protect
against thermal runaway [29–33]. Studies have been done on
the battery with an external cooling system [34, 35] or efforts
have been made to cool the battery with chemical structure and
material science [36]. First of all, this situation causes extra cost.
Secondly, cooling systems have serious disadvantages, such as
the area they cover and the energy they consume from the bat-
tery. The proposed study uses the temperature parameter as the
primary management input; in the cases where the tempera-
ture increases, the aim is to eliminate other reasons that cause
the temperature to grow and to reduce the effect of the battery
temperature in this way.

The parameter that determines charge and discharge rates,
also known as C-rate, is another critical element that can be
used in ESSs [37]. The C-rate is crucial for evaluating the per-
formance of cells and batteries in energy storage systems. C-rate
expresses a cell or battery’s charge/discharge rate relative to its
rated capacity. This parameter is crucial for BMSs to monitor,
control and optimize battery performance. A battery’s C-rate
indicates how quickly it can store or release energy. This in-
formation determines how your battery will respond to sudden
energy needs, ensuring optimal power [38, 39]. The current at
which the battery is being charged can also be controlled using
this parameter. By using the C-rate parameter as a control argu-
ment, the EMS increases the life and performance of the battery
by ensuring that charging and discharging take place at the op-
timum value. In this way, the cost of the battery is reduced, and
the system’s safety is improved [40].

In temperature scenarios, battery capacity loss significantly
increased [41]. Batteries used in high-temperature environments
without taking precautions will not perform at full capacity and
will age rapidly. For example, the battery is stressed, and chem-
ical degradation accelerates when used at high temperatures.
As a result, the temperature parameter should not be ignored
in the design of an advanced BMS. The responses of the bat-
tery to C-rate values at different temperatures are experimen-
tally demonstrated in [42]. The effect of the heat produced by
the battery on the charging/discharging characteristics was also
studied. [43] is yet another study describing how using tempera-
ture as a direct control parameter alongside the primary control
mechanism has a tangible impact on the charging-discharging
rate. The reference current value is divided into three different
zones according to temperature in order to reduce the stress
caused by temperature. As a result of the study, the system’s
efficiency was measured to be 97.6%.

In the proposed study, a BTMS was developed that provides
a C-rate parameter that will be adaptively updated with the
temperature value to increase the lifetime of the battery oper-
ating under high-temperature conditions. Due to the thermal
stress caused by increasing battery cell temperature, the battery
charging rate significantly impacts battery health. High-speed
charging technologies offer time advantages. However, they ir-
reversibly damage the battery chemistry. The proposed study
aims to adaptively reduce one of the two factors that adversely
affect battery health when one of them increases, using a dif-
ferential approach. By reducing the thermal stress caused by
the charge rate, the aim is to offset the thermal stress caused
by the temperature rise. A weighting parameter 𝜁 was added to
the differential approach developed to balance between the two
factors. The optimization of 𝜁 parameter is optimized by using
a genetic algorithm.

The contribution of this study to the literature is the design
of a BMS in which the temperature is taken as a basis, and
the charging current is adaptively updated depending on the
temperature to increase the lifetime of the batteries.

The main contributions of this paper are as follows:
1. Design and genetic algorithm optimization of a new adap-

tive energy management system for lithium-based batteries,
where the ambient temperature is taken into account, and the
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charging rate is adaptively updated accordingly to extend the
life of the batteries,

2. Ensuring the performance and safe operation of batteries
under high temperatures and ensuring battery and user safety
by reducing temperature-induced chemical stress without
any cooling system,

3. Reducing environmental waste generation and battery re-
placement costs by extending battery life.

This paper is organized as follows: firstly, the thermal model
of lithium-based batteries is explained. Then, the flowchart of
the proposed study is presented. Subsequently, the impact of
the temperature and C-rate on LBS are investigated. Finally, the
BTMS simulation studies are analyzed and demonstrated to be
superior.

2. MATERIAL AND METHODS

The following equations for the Li-ion battery type represent the
effect of temperature on the model parameters. The equations for
the charging model and the discharging model will be analyzed
separately. First, the discharge model’s equations are given in
equations (1) and (2) below.

𝑓1 (𝑖𝑡, 𝑖∗, 𝑖,𝑇,𝑇𝑎) = 𝐸0 (𝑇) −𝐾 (𝑇) · 𝑄(𝑇𝑎)
𝑄(𝑇𝑎) − 𝑖𝑡

· (𝑖 ∗+𝑖𝑡)

+ 𝐴 · exp (−𝐵 · 𝑖𝑡) −𝐶 · 𝑖𝑡, (1)

𝑉batt (𝑇) = 𝑓1 (𝑖𝑡, 𝑖∗, 𝑖,𝑇,𝑇𝑎) −𝑅(𝑇) · 𝑖. (2)

For the charging model, the following equations are given:

𝑓1 (𝑖𝑡, 𝑖∗, 𝑖,𝑇,𝑇𝑎) = 𝐸0 (𝑇) −𝐾 (𝑇) · 𝑄(𝑇𝑎)
𝑖𝑡 +0.1 ·𝑄(𝑇𝑎)

· 𝑖∗

− 𝐾 (𝑇) · 𝑄(𝑇𝑎)
𝑄(𝑇𝑎) − 𝑖𝑡

𝑖𝑡

+ 𝐴 · exp (−𝐵 · 𝑖𝑡) −𝐶 · 𝑖𝑡, (3)

𝑉batt (𝑇) = 𝑓1 (𝑖𝑡, 𝑖∗, 𝑖,𝑇,𝑇𝑎) −𝑅(𝑇) · 𝑖. (4)

Next, the effect of the battery temperature is considered by
calculating the Nernst/Arrhenius thermoelectric potential, the
polarizing constant and internal resistance [44].

𝐸0 (𝑇) = 𝐸0
��𝑇ref +

𝜕𝐸

𝜕𝑇
(𝑇 −𝑇ref) , (5)

𝐾 (𝑇) = 𝐾
��𝑇ref · exp

(
𝛼

(
1
𝑇
− 1
𝑇ref

))
, (6)

𝑄(𝑇𝑎) =𝑄
��𝑇𝑎 + Δ𝑄

Δ𝑇
· (𝑇𝑎 −𝑇ref) , (7)

𝑅(𝑇) = 𝑅
��𝑇ref · exp

(
𝛽

(
1
𝑇
− 1
𝑇ref

))
, (8)

where 𝐶 is the nominal discharge curve slope, 𝑇 is the cell
temperature, 𝑇𝑎 is ambient temperature, 𝐸/𝑇 is the temperature
coefficient of reversible voltage, 𝛼 and 𝛽 are the Arrhenius rate
constants for the polarization resistance and internal resistance,
respectively, Δ𝑄/Δ𝑇 is the maximum temperature coefficient of

the capacitance, and 𝑇ref is the ambient temperature [45]. The
relationship between temperature internal resistance and power
loss is also given in equation (9).

𝑇 (𝑡) = 𝐿−1
(
𝑃loss𝑅th𝑇𝑎
1+ 𝑠 · 𝑡𝑐

)
, (9)

where 𝑅th is the temperature-dependent resistance, 𝑡𝑐 is the
temperature-dependent time constant, and 𝑃loss is the power
dissipation due to heat generation. The number of battery cycles
is expressed by N in the expression. The temperature and the
C-rate are closely related. The proposed study is based on the
relationship between these two parameters and how they affect
the battery’s cycle life.

𝑁 (𝑛) = 𝐻
(
𝐷𝑂𝐷 (𝑛)

100

)−𝜉

· exp
(
−𝜓

(
1
𝑇ref

− 1
𝑇𝑎 (𝑛)

))
· (𝐼dis_ave (𝑛))−𝛾1 · (𝐼ch_ave (𝑛))−𝛾2 . (10)

3. PROPOSED TEMPERATURE-BASED CONTROL
FUNCTION

The dynamics of the battery performance concerning the ambi-
ent temperature are crucial for optimizing the battery’s capacity
and longevity. Equation (7) shows the direct relationship be-
tween battery capacity and ambient temperature, with capacity
degradation when the temperature deviates from an established
benchmark. This reference point was set at 25◦C, the nominal
ambient temperature for measurements. This ambient tempera-
ture is crucial as it is considered ideal for the battery to operate,
providing optimum conditions for performance and durability.
Taking the thermal effects a step further, equation (10) shows
how ambient temperature affects battery capacity and signifi-
cantly impacts the number of charge cycles and overall battery
life. This relationship highlights the need to manage thermal
conditions to maintain battery integrity. Specifically, high tem-
peratures can accelerate degradation processes within the bat-
tery, reducing its life and reliability.

Therefore, understanding and controlling temperature effects
is critical for improving battery performance throughout their
operational lifetime. The proposed BTMS uses a novel approach
to dynamically adjust the charge current in order to overcome the
problems associated with high ambient temperature. As shown
in equations (11), (12) and (13), BTMS employs a differential
approach for changing the charge current based on the devia-
tion from the reference temperature, and minimizes the ther-
mal stress on the battery by reducing the charging current in
response to increased temperature. This adaptive charging strat-
egy is critical in high-temperature environments, where the risk
of exacerbating thermal degradation is significant.

𝐶rate =
𝐼𝑐ℎ

𝐼nominal
, (11)

Δ𝑇 =
𝑇𝑎 −𝑇ref
𝑇𝑎

, (12)

𝐶rate (𝑛) = 𝐶rate (𝑛−1) − 𝜁∗Δ𝑇. (13)
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Ultimately, this adaptive approach reduces the adverse effects
of high temperatures on battery chemistry and increases battery
life. BTMS effectively slows down the degradation processes
and extends the battery’s life by applying a lower charge current
as temperatures rise. This strategy allows the batteries to op-
erate within more secure thermal parameters, preserving their
capacity and prolonging their life under varying environmen-
tal conditions. Active thermal management through intelligent
charge adjustment represents a significant step forward in bat-
tery technology. It offers a practical solution to one of the most
pressing challenges facing battery management systems. Fig-
ure 1 shows the flow diagram of the proposed BTMS.

Fig. 1. Flowchart of the proposed battery management approach

4. SIMULATION STUDY

Table 1 gives information about the Powerbrick+ LiFEPO4 bat-
tery used in the simulation studies. A Simulink diagram was
created using Matlab for simulation studies to minimize the ef-
fect of temperature on the battery and optimize the temperature
and charge rate process.

The simulation diagram consists of the battery and control
blocks, the block containing the proposed algorithm, and the
blocks that perform the power calculations, as shown in Fig. 2.
In this way, the system dynamics and control mechanisms are
modelled in detail. The proposed algorithm controls the temper-
ature in each cycle, determines the charging rate of the system
according to the temperature value, and generates control sig-
nals.

Table 1
Battery fabrication parameters

Parameter Value

Nominal voltage 12.8 V

BOL capacity 40 Ah

Cut-off voltage 10.5

Nominal current 20 A (0.5C)

EOL capacity 40*0.8 Ah

Nominal charge current 20 A (0.5C)

BOL internal resistance 0.015 Ohm

EOL internal resistance 0.01512 Ohm

Stored energy 512 Wh

Mass 5.25 kg

Max discharge 2C

Fig. 2. Simulink model of the proposed system
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The battery block contains electrochemical and thermal mod-
els of the battery. Battery parameters such as voltage, current and
temperature are continuously monitored and controlled. These
components are critical to simulate the battery’s instantaneous
operating conditions accurately.

The control block is used to optimize the performance of
the battery system, extend its life and ensure its thermal safety.
These blocks monitor the operating conditions of the battery
and generate control signals. The proposed algorithm focuses
on the temperature control of the battery and updates the charge
rate by controlling the temperature value of the battery in each
cycle. The algorithm consists of three steps: temperature mea-
surement, decision-making and control signal generation. In the
temperature measurement step, the sensors take the current tem-
perature values. The decision step determines the appropriate
charge rate according to these temperature values. In the control
signal generation step, the control signals required to adjust the
charge rate are generated and applied to the system.

Figure 3 shows the amount of energy the system can produce
during its lifetime operating under a constant C-rate under vary-
ing temperature conditions. While 625 kWh of energy can be
obtained from the battery at 25 degrees nominal temperature,
this value decreases to 503.92 kWh at 35 degrees. In regions
with high summer temperature averages, such as the Middle
East and South America, this value drops to 411.75 kWh.
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Fig. 3. Total energy provided by whole battery life under varying
cell temperature

In desert regions, which we call extreme temperatures, the
battery can produce 340.47 kWh of energy under a constant
C-rate value. As can be seen, as the temperature increases, the
battery’s life decreases significantly due to the thermal stress on
the battery.

When the battery is analyzed in terms of C-rate under constant
temperature, which can be seen in Fig. 4, it is noted that the
battery life decreases in parallel as the charging rate increases.
When we discharge with 1.5C, 3612.4 kWh of energy can be
withdrawn, and when we reduce the battery charging rate by
33% and charge with 1C, 4205.25 kWh of energy is provided.
Similarly, when we reduce it to the minimum and charge it with
0.25C, the energy that can be drawn is 9608.09 kWh. At the
same time, it should be noted that the lower the C-rate value, the

more the expected time for charging will increase. Therefore,
it is essential to establish a balance and optimization between
time and battery life.
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Fig. 4. Total energy provided by whole battery life under varying
C-rate values

4.1. Weighting parameter optimization by genetic
algorithm

The genetic algorithm (GA) is an evolutionary algorithm in-
spired by the processes of biological evolution. It operates on a
population of solution candidates and mimics the mechanisms
of selection, crossover and mutation, which are the basic prin-
ciples of natural selection. In each iteration, the most suitable
individuals are selected, crossed to produce new individuals,
and diversified by random mutations. This process continues
until a set-stopping criterion is met, and usually produces re-
sults close to the best solution. Genetic algorithms are suitable
for complex and multidimensional optimization problems and
have a high probability of reaching the global optimum.

In this section, the weighting parameter 𝜁 , which controls the
rate at which the C-rate decreases with each charging cycle, is
optimized. The 𝜁 parameter dynamically adjusts the initial C-
rate value at each cycle and aims to maximize the energy output
while extending the battery life.

4.1.1. Cost function

The cost function evaluates the effect of dynamic C-rate changes
controlled by parameter 𝜁 on the battery performance. It opti-
mizes the value 𝜁 over the battery life and total energy amount.
The proposed cost function is given as equation (14):

𝐽 (𝜁) = −
𝐿 (𝜁 )∫
0

𝐸 (𝑡, 𝜁) d𝑡 . (14)

Here, 𝐸 (𝑡, 𝜁) is the amount of energy withdrawn during the
battery life, depending on the C-rate determined by time 𝑡 and
weight parameter 𝜁 . 𝐿 (𝜁) is the battery lifetime calculated de-
pending on the value of 𝜁 . 𝐽 (𝜁) calculates the total energy output
depending on 𝜁 and tries to maximize this value. Equation (15)
finds the expression 𝜁∗ to minimize the cost function.

𝜁∗ = argmin𝜁 𝐽 (𝜁). (15)
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4.1.2. Optimization process

The optimization process uses a genetic algorithm to determine
the optimal value of parameter 𝜁 according to the flowchart
presented in Fig. 5:
1. Starting population: starts with various values of 𝜁 .
2. Simulation: for each 𝜁 the battery model is simulated, and
𝐸 (𝑡, 𝜁) and 𝐿 (𝜁) are calculated.

3. Cost evaluation: 𝐽 (𝜁) is calculated for each 𝜁 .
4. Genetic algorithm: selection, crossover and mutation are

carried out until the value of 𝜁 that gives the lowest 𝐽 (𝜁)
is found. This model can provide more efficient energy uti-
lization and battery life in battery management systems. The
optimal value of the 𝜁 parameter optimally balances energy
efficiency and the battery’s lifetime.

Fig. 5. Genetic algorithm optimization flowchart

The optimization studies have shown that the best result in
terms of time and energy is obtained from 𝜁 = 13.45. Figure 6
shows the cost function minimization by the genetic algorithm.
The optimum 𝜁 parameter found by the genetic algorithm con-
siders the total energy that can be obtained and aims to ensure
that the extended charging times are acceptable.

Fig. 6. Cost function minimization by the genetic algorithm

4.2. Case Study I: constant load profile

Firstly, a constant load causing a constant 1C discharge at the
output was used. Figure 7 shows the temperature profile also
used. The battery was tested at different temperatures during
its lifetime. A separate C-rate was determined for each temper-
ature cycle using the proposed approach. Using four different
𝜁 parameters, the variation of the charging current values ob-
tained is given in Fig. 8, and the corresponding C-rate values
are presented in Fig. 9.

Fig. 7. Temperature profile of the simulation studies

Figure 10 compares the energy amounts obtained from
the battery tested under constant load and different weight-
ing parameters. When the weighting parameter is set as 𝜁 =

10749.0271 kWh of energy can be extracted from the bat-
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Fig. 8. Charging currents under different weighting parameters
for constant load condition test

Fig. 9. C-rate values under different weighting parameters
for constant load condition test

tery for 2878.5 hours. However, the charging time increases
by 249.3 hours as compared to the system controlled with a
constant C-rate. An increase of 9.41% is observed in the en-
ergy that can be obtained. When the parameter is updated to
𝜁 = 13.45, which is the optimal 𝜁 of the genetic algorithm, the to-
tal charging time increases by 343.3 hours, but the amount of en-
ergy that can be obtained increases by 14.18% to 781.663 kWh.
When the weighting parameter is doubled as compared to the
first case (𝜁 = 20), the charging time increases by 738.4 hours,
and the amount of energy that can be obtained is measured as
874.926 kWh, with an increase of 27.8%.
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Fig. 10. Energy comparison of different weighting parameters
for constant load condition test

4.3. Case Study II: variable load profile

The second simulation study used a load requiring variable dis-
charge with the profile presented in Fig. 11. While preparing the
profile, sudden charging requirements were created, and station-
ary states were added and designed to use different discharge
currents in the whole process. The battery was tested at various
temperatures during its lifetime. A separate C-rate was deter-
mined for each temperature cycle using the proposed approach.
Using four different 𝜁 parameters, the variation of the charging
current values obtained is given in Fig. 12, and the correspond-
ing C-rate values are presented in Fig. 13.

Fig. 11. Load current profile for variable load condition test

Figure 14 compares the energy amounts obtained from
the battery tested under variable load profiles under different
weighting parameters. When the weighting parameter is set as
𝜁 = 10824.341 kWh of energy can be extracted from the bat-
tery for 3156.2 hours. However, the charging time increases by
241.6 hours as compared to the system controlled with a con-
stant C-rate. An increase of 8.14% is observed in the energy that
can be obtained. When the parameter is updated to 𝜁 = 13.45,
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Fig. 12. Charging currents under different weighting parameters
for variable load condition test

Fig. 13. C-rate values under different weighting parameters
for constant load condition test

which is the optimal 𝜁 of the genetic algorithm, the total charg-
ing time increases by 338.6 hours, but the amount of energy
that can be obtained increases by 11.84% to 852.482 kWh.
When the weighting parameter is doubled as compared to the
first case (𝜁 = 20), the charging time increases by 738.4 hours,
and the amount of energy that can be obtained is measured as
983.606 kWh, with an increase of 29.04%.

In the proposed approach, it is seen that if the weighting
parameter is selected more widely, the energy that can be drawn
from the battery in the long term may increase, but the charging
time in single cycles will increase at the same rate. There is
an inverse relationship between the increase in the weighting

Fig. 14. Energy comparison of different weighting parameters
for variable load condition test

parameter and the charging current, and as one increases, the
other decreases. The proposed approach creates flexibility for
the designer in this regard, and it is foreseen that the most
appropriate weighting parameter will be selected due to the
cost-benefit analysis. Table 2 shows the comparative results of
all simulation studies.

Table 2
Comparison of the test profiles in terms of energy and time

Load 𝜁 Energy (kWh) Time (h)

Constant
load

profile

0
(Constant C-rate) 684.5776 2629.2

10 749.0271 2878.5

13.45 (GA) 781.663 3005.6

15 798.809 3072.4

20 874.926 3367.6

Variable
load

profile

0
(Constant C-rate) 762.224 2914.6

10 824.341 3156.2

13.45 (GA) 852.482 3270.1

15 873.641 3348.4

20 983.606 3770.4

5. CONCLUSIONS

In this study, an adaptive battery management system based on
temperature and charging rate is developed for lithium-based
battery systems (LBS). LBS, an electrochemical storage tech-
nology, can offer high power and high energy density at the same
time. Thus, it can respond to continuous power needs and meet
sudden power demands. The temperature harms LBS chemistry,
and it is crucial to use LBS in high-temperature environments
with unique management systems for its extended life.
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In the proposed approach, a differential relationship between
ambient temperature and charging rate is established, and the
aim is to update the charging rate as the temperature changes.
In this manner, two conditions likely to cause thermal stress
on LBS are prevented from affecting LBS simultaneously. With
the proposed approach, the life of the battery is extended, and
environmental waste generation is reduced by postponing the
battery replacement time. The genetic algorithm optimized the
𝜁 parameter used for balancing in the study.

The study was carried out under two different load profiles.
Firstly, in the simulation studies performed under constant load,
it was observed that 14.18% more energy could be obtained as
compared to the EMS using constant charging speed using the
optimal 𝜁 , obtained by genetic algorithm. On the other hand, it
was observed that the amount of energy that can be obtained can
be increased by 27.8% by using 𝜁 = 20, although this causes the
charging time to increase. Similarly, in the simulation studies
under variable load current, it is observed that an 11.84% energy
increase is obtained when the weighting parameter 𝜁 = 13.84 is
selected. In comparison, a 29.04% energy increase is observed
when 𝜁 = 20 is selected.

The findings obtained reveal the success of the proposed bat-
tery management system and ensure the safe operation of LBS
by protecting it from temperature-related hazards while healthily
extending the battery life.
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