ARCHIVES OF METALLURGY

Volume 46 2001 Issue 1

DUSKO MINIC*, DRAGANA ZIVKOVIC**, ZIVAN ZIVKOVIC**

DIFFERENTIAL THERMAL ANALYSIS OF THE BINARY SYSTEM Pb-In

RÓŻNICOWA ANALIZA TERMICZNA UKŁADU Pb–In

Results of thermodynamic analysis of Pb–In binary system are presented in this paper. Partial and integral molar quantities in the temperature interval 673—793 K were experimentally determined using quantitative differential thermal analysis. Obtained results were compared with literature data, and good agreement was noticed.

W pracy zaprezentowano wyniki analizy termodynamicznej układu Pb-In. Wyznaczono doświadczalnie funkcje termodynamiczne w zakresie temperatury 673-K za pomocą ilościowej analizy termicznej różnicowej. Uzyskane wyniki dobrze się zgadzają z dostępnymi danymi literaturowymi.

1. Introduction

Pb–In alloys have often been the research subject [1, 2] among numerous lead alloys. Because of their relatively low melting temperatures, they are used as contact alloys for metal-glass or metal-ceramics connections.

There are a lot of data considering the phase diagram of this system, starting with works of Klein and Volk [3] Moore [4] and Valentiner [5] who did first investigations in Pb–In system using thermal analysis and X-ray analysis. Further researchers [6—10] continue with correct determination of phase boundaries, liquidus and solidus curves over the entire composition range, but the most complete assessment of the Pb–In phase diagram is given in the work of N a b o t and A n s a r a [11].

^{*} UNIVERSITY OF PRISTINA, MINING AND METALLURGY FACULTY 38220 KOSOVSKA MITROVICA, YUGOSLAVIA

^{**} UNIVERSITY OF BELGRADE, TECHNICAL FACULTY, 19210 BOR, YUGOSLAVIA

Concerning the thermodynamic investigations of Pb–In binary system, there are a lot of literature data [12—16]. In Hultgren's [12] and Kubaschewski's [13] book, data for partial and integral moral quantities are given for whole concentration range at the temperature of 673 K. Also, Terpilowski and Gregorczyk [14] obtained selected free mixing energies by performing EMF measurements. Wittig and Scheidt [15] determined enthalpies of mixing in this system, while Scheil and Luk as [16] calorimetrically investigated the same thermodynamic parameters. Som mer, Suh and Predel[17] obtained activities of lead and indium at 1000 K by K nudsen method, and Schiu and Munir [18] performed vapor pressure measurements at 1070 K. Nabot and Ansara [11] determined the interaction parameters of G^{xs} , derived from an optimization procedure using Lukas program.

Results of the quantitative DTA thermodynamic analysis for the whole concentration range in the temperature interval 673—973 K are presented in this paper and compared with existing thermodynamic data from literature.

2. Experimental

Quantitative DTA method was used for the experimental thermodynamic investigation of Pb–In binary system. Description of this experimental technique is reported in Refs [19-23].

Metallic Pb and In, used in experiments, were of p.a. purity. Calcinated p.a. pure Al_2O_3 was used as a referent material.

Compositions of the investigated samples are given in Table 1. All experiments were carried out in an air atmosphere. Volume of samples was 0.2 cm^3 .

TABLE 1

sample	mass %		2	С ₁	m	m (total)	
	Pb	In	Pb	In	Pb	In	1
U1	7.7864	92.213	0.0447	0.9553	0.1171	1.3869	1.504
U2	16.702	83.298	0.1	0.9	0.2605	1.2992	1.5597
U3	21.7248	78.275	0.1333	0.8667	0.3445	1.2311	1.5856
U4	31.0887	68.912	0.2	0.8	0.5116	1.1339	1.6455
U5	34.1589	65.841	0.2233	0.7767	0.5691	1.097	1.6661
U6	54.608	45.392	0.4	0.6	0.9929	0.8253	1.8182
U7	64.344	35.656	0.5	0.5	1.223	0.6777	1.9007
U8	73.023	26.977	0.6	0.4	1.4324	0.5435	1.9759
U9	87.832	12.168	0.8	0.2	1.8749	0.2597	2.1346
U10	94.199	5.801	0.9	0.1	2.0961	0.1965	2.2926

Composition of the investigated samples

3. Results and discussion

a) Phase diagram determination

Considering literature data [11], Pb–In diagram exhibits an In-rich and an extended Pb-rich sample phase region in the solid state, while these phases are separated by an intermediate (α In) phase.

Comparison between Pb–In phase diagram assessed by N a b o t and A n s a r a [11] and results obtained by DTA investigations in this paper, is shown in Fig. 1.

Fig. 1. The phase diagram of Pb-In system (lines - Nabot and Ansara [11]; dark points - this work)

b) Determination of the calibration constant

According to the basic equation of the quantitative DTA:

$$m\Delta H_T^0 = gK_s \int_a^c \Delta T dT,$$
(1)

where are: m — sample mass, ΔH_T^0 — the enthalpy of reaction, gKs — calibration constant and $\int_a^c \Delta T dT = S$ — peak area, it was necessary to determine the value of calibration constant, gKs, which represents the equivalent factor betwen the enthalpy of reaction and the peak area. In order to obtain these values, DTA measurements for different masses of lead and indium were performed and gKs — constants were determined from a slope of dependencies $m\Delta H_f/M = f(S) (\Delta H_f$ — heat of fussion and M — atomic weight for the responding metal) using statistic method of minimal squares. In this case, the values are 0.15058 J/mm² for lead and 0.136675 J/mm² for indium. Dependencies of the calibration constant on composition of binary system Pb–In are presented in Figure 2. Linear dependence of gKs could be noticed, as was proved by earlier given conclusions for different binary systems [21–23].

Fig. 2. Values of calibration constants, gKs for Pb-In system

c) Determination of mixing enthalpy in liquid and solid state

During the quantitative DTA experiments of any binary system, samples are melted two times. Considering the first melting, metal with lower melting temperature is melted, and first peak is registered on DTA curve. First peak area is proportional to the enthalpy of melting for this metal. With further heating, the second metal with higher melting temperature is melted and mixed in alloy. Then, a second peak is registered on DTA curve of the first melting. Second peak area is proportional to the enthalpy of melting for the second metal and mixing enthalpy of the alloy. Enthalpy needed for this melting is given as:

$$\Delta H_I = X_1 L_1 + X_2 L_2 + \Delta H_{\text{lig}},\tag{2}$$

where are: ΔH_I — enthalpy of the first melting, X_i — molar content of the component "*i*", L_i — melting enthalpy of the component "*i*", and ΔH_{liq} — mixing enthalpy in liquid state.

After cooling, sample is melted for the second time, and new peak is registered on DTA curve. This peak area is proportional to he sum of pure metal enthalpy of melting, mixing enthalpy in liquid state and enthalpy of mixing for solid solutions. The expression responding to this case is given as:

$$\Delta H_{II} = X_1 L_1 + X_2 L_2 + \Delta H_{\text{lig}} - \Delta H_{\text{sol}}$$
(3)

where are: ΔH_{II} — enthalpy of the second melting and ΔH_{sol} — mixing enthalpy in solid state.

Mixing enthalpy in solid state, ΔH_{sol} , presents difference between ΔH_I and ΔH_{II} :

$$\Delta H_{\rm sol} = \Delta H_I - \Delta H_{II}. \tag{4}$$

Using Eqs. (2-4), mixing enthalpies in liquid and solid state were determined. The results are presented in Fig. 3, and compared with literature data [15-16].

d) Determination of other thermodynamic values

Beside obtained values for enthalpy of mixing in liquid state, values for mixing entropy are needed for further calculations. Certain simplification was done in this case, by using ideal mixing entropy, according to equation:

$$\Delta S_{id}^{m} = -R(x_{1}\ln x_{1} + x_{2}\ln x_{2}), \qquad (5)$$

where are: ΔS_{id}^m — mixing entropy for ideal solution and R — gas constant.

Next step was determination of Planck potential values for corresponding compositions of the investigated system and temperatures, which can be obtained using the following expression:

$$P_{i,x,T} = \Delta S^m_{i,x,T} - \left(\Delta H^m_{i,x,T}/T\right) \tag{6}$$

Tangent construction on Planck potential curve, presented as a dependence on composition, enabled the determination of $-R \ln a_{xt}$ term (Fig. 4).

Based on obtained data for $-R \ln a_{Pb}$ and $-R \ln a_{In}$, activities of Pb and In at different temperatures (673, 773, 873 and 973 K) were calculated. Further, activity coefficients, partial ad integral molar quantities at the investigated temperatures were determined and presented in Table 2.

2 - Arch. Hutnictwa

Fig. 4. Tangent construction on Planck potential curve

TABLE 2

Thermodynamic values for system Pb and In determined by DTA method a) 673 $\,K$

	γ(Pb)	a (Pb)	γ(In)	a (In)	$G^{xs}(Pb)$	$G^{xs}(In)$	ΔG^{XS}	$G^{M}(Pb)$	$G^{M}(In)$	ΔG^M
U1	1.3579	0.0607	1.0122	0.967	1711.82	68.07	141.5	-15677	- 187.7	- 880
U2	1.36	0.136	1.0466	0.942	1720.47	254.84	401.4	-11163	-334.3	-1417
U3	1.357	0.181	1.0385	0.900	1708.11	211.376	410.8	-9563	- 588.9	-1785
U4	1.365	0.273	1.0487	0.839	1741.0	266.33	561.2	-7264	-982.2	-2238
U5	1.3658	0.305	1.066	0.828	1744.57	357.61	667.3	- 6644	- 1056	-2303
U6	1.272	0.509	1.0866	0.652	1348.38	464.71	818.1	- 3778	-2393	-2947
U7	1.15	0.575	1.178	0.589	782.01	916.614	849.3	- 3096	-2961.7	- 3029
U8	1.08	0.648	1.29	0.516	430.62	1424.8	828.2	-2427	-3702.2	- 2937
U9	1.043	0.835	1.38	0.276	239.32	1802.1	551.8	-1008	- 7203	-2247
U10	1.048	0.944	1.32	0.132	266.59	1553.43	395.2	- 322	-11330	-1423

a) 773 K

	γ(Pb)	a (Pb)	γ(In)	a(In)	$G^{xs}(Pb)$	$G^{xs}(In)$	ΔG^{XS}	$G^{M}(Pb)$	$G^{M}(In)$	ΔG^M
U1	1.2304	0.055	1.0045	0.957	1332.6	28.863	87.14	-18640	-265.0	- 1086
U2	1.24	0.124	1.0465	0.941	1382.4	292.44	401.4	-13415	- 384.6	-1687
U3	1.2378	0.165	1.0176	0.882	1371.09	112.46	280.2	-11579	- 806	-2242
U4	1.315	0.263	1.0312	0.825	1759.8	197.76	510.1	-8583	-1236	-2705
U5	1.3166	0.294	1.0369	0.805	1767.4	233.19	575.8	-7867	-1390	-2837
U6	1.2425	0.497	1.0683	0.641	1395.4	424.8	813.0	-4493	-2858	-3512
U7	1.144	0.572	1.15	0.575	864.59	898.21	881.4	-3590	- 3556	- 3573
U8	1.065	0.639	1.25	0.5	404.72	1434	816.4	-2878	-4454	- 3508
U9	1.0375	0.83	1.295	0.259	236.59	1661.3	521.5	-1197	-8682	-2694
U10	1.0466	0.942	1.23	0.123	293.126	1330.4	396.8	-383.9	-8682	-1692

b) 873 K

	γ(Pb)	a(Pb)	γ(In)	a(In)	$G^{xs}(Pb)$	$G^{xs}(In)$	ΔG^{XS}	$G^{M}(Pb)$	$G^{M}(In)$	ΔG^M
U1	1.1856	0.053	1.0031	0.958	1236	22.75	76.998	-21320	- 309	-1248
U2	1.19	0.119	1.0422	0.938	1262	300.1	396.4	-15449	-464	- 1963
U3	1.1852	0.158	1.0141	0.879	1233	102.2	253.1	-13392	-936	-2596
U4	1.245	0.249	1.031	0.825	1590.5	223.34	496.7	-10091	-1396	-3135
U5	1.244	0.278	1.0325	0.8022	1590.2	232.6	535.8	-9291	-1601	-3318
U6	1.2125	0.485	1.0616	0.637	1398	434.3	820	- 5252	- 3273	-4064
U7	1.124	0.562	1.136	0.568	848.4	925.5	886.9	-4182	-4105	-4143
U8	1.045	0.627	1.2425	0.497	319.4	1575	822.05	-3388	- 5074	-4062
U9	1.032	0.826	1.25	0.25	232.1	1619	509.6	-1387	-10061	-3122
U10	1.044	0.939	1.17	0.117	314	1139	396.6	-450.6	-15572	-1962

19

20

	γ(Pb)	a(Pb)	γ(In)	a(In)	$G^{xs}(Pb)$	$G^{xs}(In)$	ΔG^{XS}	$G^{M}(Pb)$	$G^{M}(In)$	ΔG^M
U1	1.138	0.05	1.033	0.958	1050	24.5	70.39	-24089	- 345	-1406
U2	1.1	0.11	1.0411	0.937	771	325	370.4	-17855	- 526	-2259
U3	1.14	0.152	1.0038	0.87	1061	30.7	168.2	-15239	-1126	- 3007
U4	1.19	0.238	1.0275	0.822	1407	219	457	-11612	-1585	- 3591
U5	1.186	0.265	1.0287	0.799	1385	228	487	-10743	-1815	- 3808
U6	1.175	0.47	1.0583	0.635	1304	458	797	-6107	- 3673	-4647
U7	1.102	0.551	1.12	0.56	785	916	851	-4821	-4690	-4755
U8	1.035	0.621	1.2175	0.487	278	1582	803	- 3854	- 5820	-4640
U9	1.025	0.82	1.215	0.243	199	1575	474.8	-1605	-11444	- 3573
U10	1.042	0.938	1.15	0.115	334	1130	314.1	-517	-17496	-2215

a)

Fig. 5. Dependencies of activities vs. composition for: a) Pb; b) In in comparison with literature data

Positive deviation from R a o u l t law, for both components in the Pb–In system, can be noticed at all investigated temperatures and indicates the weak interactions between lead and indium. This influences the positive values for partial and integral excess Gibbs energies. Also, the activity values decrease with temperature increase and become nearer to the line of ideal solution behaviour.

The comparative review of the experimentally obtained and literature data for the lead and indium activity values at the temperature 1000 K is shown in Fig. 5. A good agreement could be noticed.

4. Conclusions

Results of thermodynamic analysis of binary Pb–In system, determined by quantitative DTA method, are presented in this paper. Adequate calibration constants are determined and linear dependence of gKs on composition is proved. Values for the enthalpy of mixing in liquid and solid state show agreement with literature data. The comparison between experimentally obtained activity values and literature data show relatively good agreement.

REFERENCES

- [1] W. Hofman, Lead and Lead Alloys, New York 1970.
- [2] J. Matthew, M. Krane, F. P. Incepera, D. R. Gaskell, Met. Mat. Trans. 29A, 843 (1998).
- [3] Z. Klein, H. Volk, Z. Anorg. Chem. 256, 246 (1947).
- [4] A. Moore, J. Graham, G. K. Willamson, G. V. Raynor, Acta Met. 3, 579 (1955).
- [5] S. Valentiner, Z. Metallknd 49, 375 (1958).
- [6] T. Heumann, B. Predel, Z. Metallknd 57, 1, 50 (1966).
- [7] G. Nembach, Trans. Met. Soc. AIME 245, 131 (1969).
- [8] J. N. Liao, D. L. Johnson, R. C. Nelson, Mater. Res. Bull. 10, 225 (1975).
- [9] D. S. Evans, A. Prince, Met. Sci. 12, 600 (1978).
- [10] R. Ferro, A. Saccone, S. Delfino, D. Maccio, F. H. Hayes, J. A. Robinson, J. Min. Met. 35, 2—3, 315 (1999).
- [11] J. P. Nabot, I. Ansara, Bull. Alloy Phase Diag. 8, 3, 246 (1987).
- [12] R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, K. Kelley, The Selected Values of the Thermodynamic Properties of Binary Alloys, ASM, Metals Park, OH, 1973.
- [13] O. Kubaschewski, C. B. Alcock, Metallurgical Thermochemistry, Pergamon Press, New York, 1979.
- [14] J. Terpilovski, Z. Gregorczyk, Arch. Hutnictwa 6, 197 (1961).
- [15] F. E. Witting, P. Scheidt, X Phys. Chem. Neue Folge 28, 120 (1961).
- [16] E. Scheil, H. L. Lukas, Z. Metallknd. 52, 6, 417 (1961).
- [17] F. Sommer, Y. H. Suh, B. Predel, Z. Metallknd. 69, 7, 470 (1978).
- [18] D. H. Schiu, Z. A. Munir, Met. Trans. 2, 10, 2953 (1971).
- [19] B. Dobovisek, B. Straus, Min. Metall. Q. 3, 273 (1960).
- [20] R. Capelli, S. Delfino, A. Saccone, A. Borse, R. Ferro, Thermoch. Acta 28, 113 (1979).
- [21] Z. Zivkovic, Thermochim. Acta 44, 385 (1981).
- [22] Z. Zivkovic, B. Dobovisek, Min. Metall. Quart. 2-3, 221 (1979). (in Slovenian).
- [23] Z. Zivkovic, B. Dobovisek, Differential Thermal Analysis, Bor, 1984. (in Serbian)

REVIEWED BY: DOC. DR HAB. INZ. LESZEK ZABDYR

Received: 7 December 2000.